The E-M Algorithm in Genetics

Biostatistics 666

Maximum Likelihood Estimation of Allele Frequencies

- Find parameter estimates which make observed data most likely
- General approach, as long as tractable likelihood function exists

Can use all available information

Provides justification for natural estimators

Today:

The Expectation–Maximization algorithm in Genetics

- Frequency estimates for...
 - Recessive alleles
 - A, B, O alleles
 - Haplotype frequencies

Setting for the E-M Algorithm...

- Specific type of incomplete data
 - More possible categories (genotypes) than can be distinguished (phenotypes)

- For example, consider disease locus with recessive alleles...
 - What are the possible genotypes?
 - What are the possible phenotypes?

Setting for the E-M Algorithm...

- Problem is simple with complete data ...
 - For example, estimating allele frequencies when all genotypes can be distinguished ...
- ... but available data can be "incomplete".
 - For example, for recessive disease phenotypes, homozygotes and heterozygotes are hard to distinguish.

The E-M Algorithm

- Consider a set of starting parameters
- Use these to "estimate" the complete data
- Use estimated complete data to update parameters
- Repeat as necessary

An Example ...

A random sample of 100 individuals

- 4 express a recessive phenotype
 - Assume the phenotype is controlled by a single gene

Let's follow E-M algorithm steps ...

Step 1:

- Set starting values for parameters
- For allele frequency estimation...
 - Equal frequencies are a common choice
 - $p_{rec} = 0.5$

Useful to repeat process using different starting point

Step 2:

Estimate "complete data"

Assign phenotypes to specific genotype categories

Use Bayes' Theorem

Step 2 (continued):

 Calculate probability of each genotype among the 96 "normal" individuals

$$P(+/+; Normal) = \frac{P(+/+, Normal)}{P(Normal)} = \frac{P(+/+, Normal)}{P(+/+, Normal) + P(+/-, Normal)}$$
$$= \frac{P(+/+)}{P(+/+) + P(+/-)}$$

Step 2 (Finally!):

 At the first iteration, the complete data would be filled in as:

- 4 individuals with recessive genotype
- 64 individuals with heterozygous genotype
- 32 individuals with dominant genotype

Step 3:

Estimate allele frequencies by counting...

$$p_{rec} = \frac{N_{het} + 2N_{rec/rec}}{2N}$$

What would be the estimated allele frequencies?

Repeat as necessary ...

-							
	Round	Estimate	E(+/+)	E(+/-)	E(-/-)	In L	
	1	0.50	32.00	64.00	4.00	-14.40240	
	2	0.36	45.18	50.82	4.00	-9.33657	
	3	0.29	52.36	43.64	4.00	-8.02405	
	4	0.26	56.60	39.40	4.00	-7.58067	
	5	0.24	59.21	36.79	4.00	-7.41213	
	6	0.22	60.87	35.13	4.00	-7.34396	
	7	0.22	61.94	34.06	4.00	-7.31540	
	8	0.21	62.64	33.36	4.00	-7.30317	
	9	0.21	63.10	32.90	4.00	-7.29787	
	10	0.20	63.40	32.60	4.00	-7.29555	
	11	0.20	63.60	32.40	4.00	-7.29453	
	12	0.20	63.73	32.27	4.00	-7.29408	
	13	0.20	63.82	32.18	4.00	-7.29388	
	14	0.20	63.88	32.12	4.00	-7.29379	
	15	0.20	63.92	32.08	4.00	-7.29375	
	16	0.20	63.95	32.05	4.00	-7.29374	

Alternatives

Analytical solutions

Generic maximization strategies

 Calculating second derivates a useful complement, whatever method we use...

Other Applications of the E-M Algorithm in Genetics

- Classic example:
 - ABO blood group
- Most common application:
 - Haplotype frequency estimates

The ABO blood group

- Determines compatibility for transfusions
- Controlled by alleles of ABO gene
- 3 alternative alleles
 - A, B and O
- 6 possible genotypes, n (n + 1) / 2
 - A/A, A/B, A/O, B/B, B/O, O/O

ABO Blood Group II

Dhonotype	Antigen		Antibody	
Phenotype	Α	В	Α	В
A	+	-	-	+
В	-	+	+	-
O	-	-	+	+
AB	+	+	-	-

There are only 4 possible phenotypes for the ABO blood group.

Genotypes and Phenotypes

Genotype	Phenotype		
A/A	A		
A/B	AB		
A/O	A		
B/B	В		
B/O	В		
O/O	O		

ABO Example

- Data of Clarke et al. (1959)
 - British Med J 1:603-607
 - Reported excess of gastric ulcers in individuals with blood type O

• $n_A = 186$, $n_B = 38$, $n_{AB} = 36$, $n_O = 284$

Quick Exercises!

Write out the likelihood for these data...

• What are complete data categories?

 Express the complete data "counts" as a function of allele frequency estimates and the observed data...

The iterations give ...

Iteration	p _A	p _B	p _o
1	0.300	0.200	0.500
2	.243	.074	.683
3	228	.070	.700
4	.228	.070	.702
5	.228	.070	.702

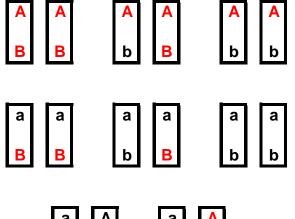
Alternatives to E-M...

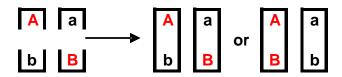
- Analytical solutions are not known for the general case
- Generic maximization strategies could be employed
- Could derive solutions using part of the data...
 - Would this be a good idea?

The E-M Haplotyping Algorithm

- Excoffier and Slatkin (1995)
 - Mol Biol Evol 12:921-927
 - Provide a clear outline of how the algorithm can be applied to genetic data
- Combination of two strategies
 - E-M statistical algorithm for missing data
 - Counting algorithm for allele frequencies

Original Application of the E-M Algorithm to A Genetic Problem

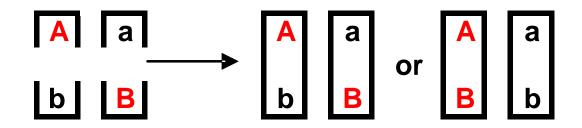

 Ceppellini R, Siniscalco M and Smith CAB (1955) The Estimation of Gene Frequencies in a Random-Mating Population. *Annals of Human Genetics* 20:97-115


 This was ~20 years before the E-M algorithm was formally outlined in the statistical literature!

Counting for Allele Frequencies

- For co-dominant markers, allele frequency typically carried out in very simple manner:
 - Count number of chromosomes (e.g. 2N)
 - Count number of a alleles (e.g. n_a)
 - Allele frequency is simple proportion (n_a/2N)
- Haplotypes can't always be counted directly
 - Focusing on unambiguous genotypes introduces bias

Counting Haplotypes for 2 SNPs

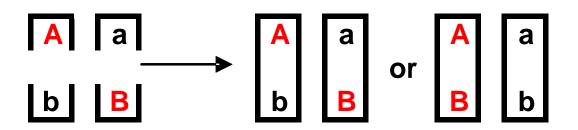

a A a AB B b b

Ambigous Genotype

Multiple Underlying Genotypes Possible

Unambigous Genotypes
Underlying Haplotype is Known

Probabilistic Interpretation


Probability of first outcome:

$$2 P_{Ab} P_{aB}$$

Probability of second outcome:

$$2 P_{AB} P_{ab}$$

Probabilistic Interpretation

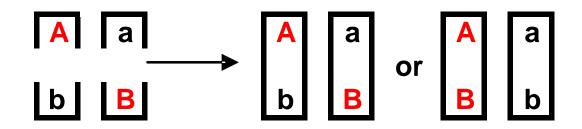
For example, if:

$$P_{AB} = 0.3$$

$$P_{ab} = 0.3$$

$$P_{Ab} = 0.3$$

$$P_{aB} = 0.1$$

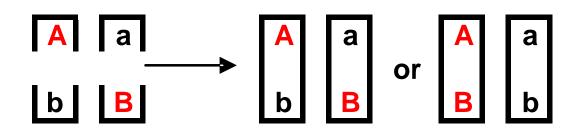

Probability of first outcome:

$$2 P_{Ab} P_{aB} = 0.06$$

Probability of second outcome:

$$2 P_{AB} P_{ab} = 0.18$$

Probabilistic Interpretation II


Conditional probability of first outcome:

$$2 P_{Ab} P_{aB} / (2 P_{Ab} P_{aB} + 2 P_{AB} P_{ab})$$

Conditional probability of second outcome:

$$2 P_{AB} P_{ab} / (2 P_{Ab} P_{aB} + 2 P_{AB} P_{ab})$$

Probabilistic Interpretation II

For example, if:

$$P_{AB} = 0.3$$

$$P_{ab} = 0.3$$

$$P_{Ab} = 0.3$$

$$P_{aB} = 0.1$$

Conditional probability of first outcome:

$$2 P_{Ab} P_{aB} / (2 P_{Ab} P_{aB} + 2 P_{AB} P_{ab}) = 0.25$$

Conditional probability of second outcome:

$$2 P_{AB} P_{ab} / (2 P_{Ab} P_{aB} + 2 P_{AB} P_{ab}) = 0.75$$

E-M Algorithm For Haplotyping

- "Guesstimate" haplotype frequencies
- Use current frequency estimates to replace ambiguous genotypes with fractional counts of phased genotypes
- Estimate frequency of each haplotype by counting
- Repeat steps 2 and 3 until frequencies are stable

Computational Cost (for SNPs)

- Consider sets of m unphased genotypes
 - Markers 1..m
- If markers are bi-allelic
 - 2^m possible haplotypes
 - 2^{m-1} ($2^m + 1$) possible haplotype pairs
 - 3^m distinct observed genotypes
 - 2ⁿ⁻¹ reconstructions for n heterozygous loci

E-M Algorithm for Haplotyping

- Cost grows rapidly with number of markers
- Typically appropriate for < 25 SNPs
 - Fewer microsatellites
- Fully or partially phased individuals contribute most of the information

Other Common Applications

E-M Algorithm also commonly used for:

- Estimating recombination fractions
- Defining genotype intensity clusters
- Finding sub-populations and their allele frequencies

Today:

The E-M algorithm in genetics

Outline the approach

Examined specific examples

Next Lecture ...

E-M algorithm for Haplotyping

Historical Alternatives

Recent Enhancements and Alternatives

Hypothesis testing

Recommended Reading

Excoffier and Slatkin (1995)
 Mol Biol Evol 12:921-927

 Introduces the E-M algorithm in the context of haplotyping