Recap: Dealing with large data with `lm`

```r
\>
y <- rnorm(5000000)
\> x <- rnorm(5000000)
\>
\> system.time(print(summary(lm(y~x))))
```

```
Call:
  lm(formula = y ~ x)

Residuals:
    Min     1Q Median     3Q    Max
-5.1310 -0.6746  0.0004  0.6747  5.0860

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0005130  0.0004473 -1.147  0.251
x             0.0004  0.0004473  0.900  0.370

Residual standard error: 1 on 4999998 degrees of freedom
Multiple R-squared: 5.564e-08, Adjusted R-squared: -1.444e-07
F-statistic: 0.2782 on 1 and 4999998 DF, p-value: 0.5979
```

Homework #4

- Homework 4 due is Today

Midterm

- Midterm is on Thursday, March 10th.

Recap: A faster R implementation

```r
# note that this is an R function, not C++
fastSimpleLinearRegression <- function(y, x) {
y <- y - mean(y)
x <- x - mean(x)
n <- length(y)
stopifnot(length(x) == n)        # for error handling
s2y <- sum( y * y ) / ( n - 1 ) # \sigma^2
s2x <- sum( x * x ) / ( n - 1 ) # \sigma^2
sxy <- sum( x * y ) / ( n - 1 ) # \sigma_{xy}
rxy <- sxy / sqrt( s2y * s2x )   # \rho_{xy}
b <- rxy * sqrt( s2y / s2x )
se.b <- sqrt( ( n - 1 ) * s2y * ( 1 - rxy * rxy ) / ( n-2 ) )
tstat <- rxy * sqrt( ( n - 2 ) / ( 1 - rxy * rxy ) )
p <- pt( abs(t), n - 2, lower.tail=FALSE )^2
return(list( beta = b , se.beta = se.b , t.stat = tstat , p.value = p ))
}
```
Recap: Streaming the inputs to extract sufficient statistics

Sufficient statistics for simple linear regression

1. \(n \)
2. \(\sigma^2 = \text{Var}(x) = (x - \bar{x})^T(x - \bar{x})/(n - 1) \)
3. \(\sigma_y^2 = \text{Var}(y) = (y - \bar{y})^T(y - \bar{y})/(n - 1) \)
4. \(\sigma_{xy} = \text{Cov}(x, y) = (x - \bar{x})(y - \bar{y})/(n - 1) \)

Extracting sufficient statistics from stream

- \(\sum_{i=1}^{n} x = n\bar{x} \)
- \(\sum_{i=1}^{n} y = n\bar{y} \)
- \(\sum_{i=1}^{n} x^2 = \sigma^2_x(n - 1) + n\bar{x}^2 \)
- \(\sum_{i=1}^{n} y^2 = \sigma^2_y(n - 1) + n\bar{y}^2 \)
- \(\sum_{i=1}^{n} xy = \sigma_{xy}(n - 1) + n\bar{x}\bar{y} \)

Today and Next Lectures

Generating random numbers from complex distributions

- Why learn random number generation?
- 'Good' random number generators
- Sampling from uniform distribution
- Sampling from normal distribution
- Sampling from other common distributions

Generating random numbers from complex distributions

- Monte-Carlo Methods
- Importance Sampling

Random Numbers

True random numbers

- Truly random, non-deterministic numbers
- Easy to imagine conceptually
- Very hard to generate one or test its randomness
- For example, http://www.random.org generates randomness via atmospheric noise

Pseudo random numbers

- A deterministic sequence of random numbers (or bits) from a seed
- Good random numbers should be very hard to guess the next number just based on the observations.
Usage of random numbers in statistical methods

- Resampling procedure
 - Permutation
 - Bootstrapping
- Simulation of data for evaluating a statistical procedure (e.g. HMM).
- Stochastic processes
 - Markov-Chain Monte-Carlo (MCMC) methods

Usage of random numbers in other areas

- Hashing
 - Good hash function uniformly distribute the keys to the hash space.
 - Good pseudo-random number generators can replace a good hash function.
- Cryptography
 - Generating pseudo-random numbers given a seed is equivalent to encrypting the seed to a sequence of random bits.
 - If the pattern of pseudo-random numbers can be predicted, the original seed can also be deciphered.

Pseudo-random numbers: Example code

```c++
#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
    int n = (argc > 1) ? atoi(argv[1]) : 1;
    int seed = (argc > 2) ? atoi(argv[2]) : 0;

    srand(seed); // set seed -- same seed, same pseudo-random numbers

    for(int i=0; i < n; ++i) {
        std::cout << (double)rand()/RAND_MAX << std::endl;
        // generate value between 0 and 1
    }

    return 0;
}
```

True random numbers

- Generate on through physical process
- Hard to generate automatically
- Very hard to provide true randomness
Pseudo-random numbers: Example run

user@host:~/$ src/randExample 3 0
0.242578
0.0134696
0.383139
user@host:~/$ src/randExample 3 0 (same seed should generate same pseudo-random numbers)
0.242578
0.0134696
0.383139
user@host:~/$ src/randExample 3 10
7.82637e-05
0.315378
0.556053

Properties of pseudo-random numbers

Deterministic
- Given a fixed random seed, the pseudo-random numbers should generate identical sequence of random numbers
- Deterministic feature is useful for debugging a code

Irregularity and Unpredictability
- Without knowing the seed, the random numbers should be hard to guess
- If you can guess it better than random, it is possible to exploit the weakness to generate random numbers with a skewed distribution.

Good vs. bad random numbers

- Images using true random numbers from random.org vs. rand() function in PHP
- Visible patterns suggest that rand() gives predictable sequence of pseudo-random numbers

Generating uniform random numbers - example in R

```r
> x <- runif(10)  # x is size 10 vector uniformly distributed from 0 to 1
> x <- runif(10,0,10)  # x ranges 0 to 10
> x <- as.integer(10,0,10)  # integers from 0 to 9
> set.seed(3429248)  # set an arbitrary seed
> x <- as.integer(runif(10,0,10))
> x
[1] 7 6 3 4 6 7 4 9 2 1
> set.seed(3429248)  # setting the same seed
> x <- as.integer(runif(10,0,10))  # reproduce the same random variables
> x
[1] 7 6 3 4 6 7 4 9 2 1
```
Generating uniform random numbers in C++

```cpp
#include <iostream>
#include <boost/random/uniform_int.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/random/mersenne_twister.hpp>

int main(int argc, char** argv) {
    typedef boost::mt19937 prgType; // Mersenne-twister: a widely used lightweight pseudo-random-number-generator
    boost::uniform_int<> six(1,6); // uniform distribution from 1 to 6
    boost::variate_generator<prgType&, boost::uniform_int<> > die(rng,six); // die maps random numbers from rng to uniform distribution 1..6

    int x = die(); // generate a random integer between 1 and 6
    std::cout << "Rolled die: " << x << std::endl;

    boost::uniform_real<> uni_dist(0,1);
    boost::variate_generator<prgType&, boost::uniform_real<> > uni(rng,uni_dist);
    double y = uni(); // generate a random number between 0 and 1
    std::cout << "Uniform real: " << y << std::endl;
    return 0;
}
```

Running Example

```
user@host:~/$ ./randExample
Rolled die: 5
Uniform real: 0.135477

user@host:~/$ ./randExample
Rolled die: 5
Uniform real: 0.135477

The random number does not vary (unlike R)
```

Specifying the seed

```cpp
int main(int argc, char** argv) {
    typedef boost::mt19937 prgType;
    prgType rng;
    if ( argc > 1 )
        rng.seed(atoi(argv[1])); // set seed if argument is specified

    boost::uniform_int<> six(1,6); // ... same as before
}
```

Running Example

```
user@host:~/$ ./randExample
Rolled die: 5
Uniform real: 0.135477

user@host:~/$ ./randExample 1
Rolled die: 3
Uniform real: 0.997185

user@host:~/$ ./randExample 3
Rolled die: 4
Uniform real: 0.0707249

user@host:~/$ ./randExample 3
Rolled die: 4
Uniform real: 0.0707249
```
If we don’t want the reproducibility

// include other headers as before
#include <ctime>
int main(int argc, char** argv) {
 typedef boost::mt19937 prgType;
 prgType rng;
 if (argc > 1)
 rng.seed(atoi(argv[1])); // set seed if argument is specified
 else
 rng.seed(std::time(0)); // otherwise, use current time to pick arbitrary seed to start
 boost::uniform_int<> six(1,6);
 // ... same as before
}

Sampling from known distribution using R

> x <- rnorm(1) # x is a random number sampled from N(0,1)
> y <- rnorm(1,2) # y is a random number sampled from N(3,2^2)
> z <- rbinom(1,0.3) # z is a Bernoulli random number with p=0.3

What if runif() was the only random number generator we have?

If we know the inverse CDF, it is easy to implement

> x <- qnorm(runif(1)) # x follows N(0,1)
> y <- qnorm(runif(1),3,2) # equivalent to y <- qnorm(runif(1))*2+3
> z <- qbinom(runif(1),1,0.3) # z is a Bernoulli random number with p=0.3

Random number generation in C++

#include <iostream>
#include <ctime>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/random/mersenne_twister.hpp>
int main(int argc, char** argv) {
 typedef boost::mt19937 prgType;
 prgType rng;
 if (argc > 1)
 rng.seed(atoi(argv[1]));
 else
 rng.seed(std::time(0));
 boost::normal_distribution<> norm_dist(0,1); // standard normal distribution
 // PRG sampled from standard normal distribution
 boost::variate_generator<prgType&, boost::normal_distribution<> > norm(rng,norm_dist);
 double x = norm(); // Generate a random number from the PRG
 std::cout << "Sampled from standard normal distribution : " << x << std::endl;
 return 0;
}
Generating random numbers from complex distributions

Problem

- When the distribution is complex, the inverse CDF may not be easily obtainable
- Need to implement your own function to generate the random numbers

A simple example - mixture of two normal distributions

\[f(x; \mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \alpha) = \alpha f_N(x; \mu_1, \sigma_1^2) + (1 - \alpha) f_N(x; \mu_2, \sigma_2^2) \]

How to generate random numbers from this distribution?

A C++ implementation

Will be included the next homework!

Sample from Gaussian mixture

Key idea

- Introduce a Bernoulli random variable \(w \sim \text{Bernoulli}(\alpha) \)
- Sample \(y \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(z \sim \mathcal{N}(\mu_2, \sigma_2^2) \)
- Let \(x = w y + (1 - w) z \).

An R implementation

```r
w <- rbinom(1,1,alpha)
y <- rnorm(1,mu1,sigma1)
z <- rnorm(1,mu2,sigma2)
x <- w*y + (1-w)*z
```

Sampling from bivariate normal distribution

Bivariate normal distribution

\[
\begin{pmatrix} x \\ y \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix} \right)
\]

Sampling from bivariate normal distribution

```r
x <- rnorm(1,mu.x,sigma.x)
y <- rnorm(1,mu.y,sigma.x) # WRONG. Valid only when sigma.xy = 0
```

How can we sample from a joint distribution?
Possible approaches

Use known packages
- `mvtnorm()` package provides `rmvnorm()` function for sampling from a multivariate-normal distribution
- If we use this, we would never learn how to implement it

Use conditional distribution
\[y | x \sim \mathcal{N} \left(\mu_y + \frac{\sigma_{xy}}{\sigma_x^2} (x - \mu_x), \sigma_y^2 \left(1 - \frac{\sigma_{xy}^2}{\sigma_x^2 \sigma_y^2} \right) \right) \]

\[x \leftarrow \text{rnorm}(1, \mu.x, \sigma.x) \]
\[y \leftarrow \text{rnorm}(1, \mu.y + \frac{\sigma_{xy}}{\sigma.y^2} (x - \mu.x), \frac{\sigma.y^2 - \sigma_{xy}^2}{\sigma.y^2}) \]

Sampling from multivariate normal distribution

Problem
- Randomly sample from \(x \sim \mathcal{N}(m, V) \)
- The covariance matrix \(V \) is positive definite

Using conditional distribution
- Sample \(x_1 \sim \mathcal{N}(m_1, V_{11}) \)
- Sample \(x_2 \sim \mathcal{N}(m_2 + V_{12} V_{22}^{-1} (x_1 - m_1), V_{22} - V_{12}^T V_{11}^{-1} V_{12}) \)
- Repetitively sample \(x_i \) from subsequent conditional distributions.
This approach would require excessive amount of computational time

Using Cholesky decomposition for sampling from MVN

Key idea
- If \(x \sim \mathcal{N}(m, V) \), \(Ax \sim \mathcal{N}(Am, AA^T) \).
- Sample \(z \sim \mathcal{N}(0, I_n) \) from standard normal distribution
- Find \(A \) such that
\[x = Az + m \sim \mathcal{N}(m, AA^T) = \mathcal{N}(m, V) \]

- Choleskey decomposition \(V = U^T U \) generates an example \(A = U^T \).

An example R code
\[z \leftarrow \text{rnorm(length}(m)) \]
\[U \leftarrow \text{chol}(V) \]
\[x \leftarrow m + t(U) \odot z \]

Summary

Today
- True random numbers and pseudo-random numbers
- Sampling from a uniform distribution
- Sampling from a normal distribution
- Sampling from multivariate normal distribution

More complex distributions
- Monte-Carlo Methods
- Importance Sampling