Recap
 UMVUE
 Examples
 Summary

 000
 0000
 000000000000
 0

Biostatistics 602 - Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator

Hyun Min Kang

February 28th, 2013

• For single-parameter exponential family, is Cramer-Rao bound always attainable?

- How about exponential family with two or more parameters?
- For any statistic $T(\mathbf{X})$, does $\phi(T)$ always result in a better unbiased estimator than W? Why?
- What is the Rao-Blackwell Theorem?
- Is the best unbiased estimator (UMVUE) for $\tau(\theta)$ unique?
- What is the relationship between the UMVUE and the unbiased estimators of zero?

Biostatistics 602 - Lecture 14

February 28th, 2013

Rao-Blackwell Theorem

Related Theorems

Hyun Min Kang

Last Lecture

Theorem 7.3.17

Let $W(\mathbf{X})$ be any unbiased estimator of $\tau(\theta)$, and T be a sufficient statistic for θ . Define $\phi(T) = E[W|T]$. Then the followings hold.

- $\bullet E[\phi(T)|\theta] = \tau(\theta)$
- **2** $Var[\phi(T)|\theta] \leq Var(W|\theta)$ for all θ .

That is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

Theorem 7.3.19 - Uniqueness of UMVUE

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Theorem 7.3.20 - UMVUE and unbiased estimators of zero

If $E[W(\mathbf{X})] = \tau(\theta)$. W is the best unbiased estimator of $\tau(\theta)$ if an only if W is uncorrelated with all unbiased estimator of 0.

Hyun Min Kang Biostatistics 602 - Lecture 14 February 28th, 2013 3 / 23 Hyun Min Kang Biostatistics 602 - Lecture 14 February 28th, 2013 4 /

The power of complete sufficient statistics

Remarks from previous Theorems - #1

Theorem 7.3.23

Let T be a complete sufficient statistic for parameter θ . Let $\phi(T)$ be any estimator based on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.

From Rao-Blackwell Theorem, we can always improve an unbiased estimator by conditioning it on a sufficient statistics.

• $W(\mathbf{X})$: unbiased for $\tau(\theta)$.

Hyun Min Kang

• $T^*(\mathbf{X})$: sufficient statistic for θ .

UMVUE

 $\phi(T) = E[W(\mathbf{X})|T(\mathbf{X})]$ is a better unbiased estimator of $\tau(\theta)$.

Remarks from previous Theorems - #2

In fact, we only need to consider functions of minimal sufficient statistics to find the best unbiased estimator.

Let $T(\mathbf{X})$ be a minimal sufficient, and $T^*(\mathbf{X})$ be a sufficient statistic. Then by definition, there exists a function h that satisfies $T = h(T^*)$.

$$E[\phi(T)|T^*] = E[\phi\{h(T^*)\}|T^*] = \phi\{h(T^*)\} = \phi(T)$$

Therefore $\phi(T)$ remains the same after conditioning on any sufficient statistic T^* .

Remarks from previous Theorems - #3

Biostatistics 602 - Lecture 14

February 28th, 2013

Complete sufficient statistics is a very useful ingredient to obtain a UMVUE.

- $\phi(T)$ is an unbiased estimator for $E[\phi(T)] = \tau(\theta)$.
- By Theorem 7.3.20, $\phi(T)$ is the best unbiased estimator if and only if $\phi(T)$ if and only of $\phi(T)$ is uncorrelated with U(T), which is any unbiased esimator of 0.
- By definition, T is complete is E[U(T)] = 0 for all θ implies U(T) = 0 almost surely.
- Suppose that T is a complete statistic, then $\mathit{U}(\mathit{T})$ can only be zero almost surely.
- Therefore, $\mathrm{Cov}(\phi(\mathit{T}), \mathit{U}(\mathit{T})) = \mathrm{Cov}(\phi(\mathit{T}), 0) = 0$, and $\phi(\mathit{T})$ is the best unbiased estimator of its expected value (Theorem 7.3.23).

Hyun Min Kang Biostatistics 602 - Lecture 14 February 28th, 2013 7 / 23 Hyun Min Kang Biostatistics 602 - Lecture 14 February 28th, 2013 8 /

Summary of Method 2 for obtaining UMVUE

Use complete sufficient statistic to find the best unbiased estimator for $\tau(\theta)$.

- **1** Find complete sufficient statistic T for θ .
- 2 Obtain $\phi(T)$, an unbiased estimator of $\tau(\theta)$ using either of the following two ways
 - Guess a function $\phi(T)$ such that $E[\phi(T)] = \tau(\theta)$.
 - Guess an unbiased estimator $h(\mathbf{X})$ of $\tau(\theta)$. Construct $\phi(T) = E[h(\mathbf{X})|T]$, then $E[\phi(T)] = E[h(\mathbf{X})] = \tau(\theta)$.

Hyun Min Kang Biostatistics 602 - Lecture 14 February 28th, 2013 9 /

UMVUE Examples Summa

Example - Normal Distribution (cont'd)

- $E(s_{\mathbf{X}}^2) = \sigma^2$
- $s_{\mathbf{X}}^2$ is a function of **T**
- Therefore $s_{\mathbf{X}}^2$ is the best unbiased estimator of σ^2 .

Example - Normal Distribution

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Find the best unbiased estimator for (1) μ , (2) σ^2 , (3) μ^2 .

Solution

Hyun Min Kang

- First, we need to find a complete and sufficient statistic for (μ, σ^2) .
- We know that $\mathbf{T}(\mathbf{X})=(\overline{X},s_{\mathbf{X}}^2)$ is complete, sufficient statistic for $(\mu,\sigma^2).$
- Because $E[\overline{X}] = \mu$, \overline{X} is an unbiased estimator for μ , \overline{X} is also a function of $\mathbf{T}(\mathbf{X})$.

February 28th, 2013

• Therefore, \overline{X} is the best unbiased estimator for μ .

Example - Normal Distribution (cont'd)

To obtain UMVUE for μ^2 , we need a $\phi(\mathbf{T})=\phi(\overline{X},s_{\mathbf{X}}^2)$ such that $E[\phi(\mathbf{T})]=\mu^2.$

$$E(\overline{X}) = \mu$$

$$E((\overline{X})^2) = \operatorname{Var}(\overline{X}) + E(\overline{X}^2) = \frac{\sigma^2}{n} + \mu^2$$

$$E\left(\overline{X}^2 - \frac{\sigma^2}{n}\right) = \mu^2$$

$$E\left(\overline{X}^2 - \frac{s_{\mathbf{X}}^2}{n}\right) = \mu^2$$

- $\overline{X}^2 s_{\mathbf{X}}^2/n$ is unbiased estimator for μ^2
- And it is a function of $(\overline{X}, s_{\mathbf{X}}^2)$.
- Hence, $\overline{X}^2 s_{\mathbf{X}}^2/n$ is the best unbiased estimator for μ^2 .

Hyun Min Kang Biostatistics 602 - Lecture 14 February 28th, 2013 11 / 23 Hyun Min Kang Biostatistics 602 - Lecture 14 February 28th, 2013 12

Example - Normal Distribution - Alternative method

 X_1X_2 is unbiased for μ^2 because $E[X_1X_2]=E(X_1)E(X_2)=\mu^2$.

$$\phi(T) = E[X_1 X_2 | \mathbf{T}] = \frac{\sum_{i \neq j} E[X_i X_j | \mathbf{T}]}{n(n-1)}$$

$$= \frac{\sum_{i=1}^n E[X_i^2 | \mathbf{T}] + \sum_{i \neq j} E[X_i X_j | \mathbf{T}] - \sum_{i=1}^n E[X_i^2 | \mathbf{T}]}{n(n-1)}$$

$$= \frac{E[(\sum_{i=1}^n X_i)^2 | \mathbf{T}] - E[\sum_{i=1}^n X_i^2 | \mathbf{T}]}{n(n-1)}$$

$$= \frac{E[(n\overline{X})^2 - (n-1)s_{\mathbf{X}}^2 - n\overline{X}^2 | \mathbf{T}]}{n(n-1)} = \frac{n(n-1)\overline{X}^2 - (n-1)s_{\mathbf{X}}^2}{n(n-1)}$$

$$= \overline{X}^2 - s_{\mathbf{X}}^2 / n$$

Hyun Min Kang

Biostatistics 602 - Lecture 14

February 28th 201

n. 2013

Hyun Min

Biostatistics 602 - Lecture 1

ebruary 28th, 2013

14 / 23

00000•00000

o O 0000

Summary

Example - Uniform Distribution - for $g(\theta)$

We need to find a function of $\phi(T)=X_{(n)}$ such that $E[\phi(T)]=g(\theta)$.

$$g(\theta) = E[\phi(T)] = \int_0^{\theta} \phi(t) n\theta^{-n} t^{n-1} dt$$

Taking derivative with respect to θ , and applying Leibnitz's rule.

$$g'(\theta) = \frac{d}{d\theta} \int_0^\theta \phi(t) n\theta^{-n} t^{n-1} dt$$

$$= \phi(\theta) n\theta^{-n} \theta^{n-1} + \int_0^\theta \phi(t) t^{n-1} n \frac{d}{d\theta} \theta^{-n} dt$$

$$= \phi(\theta) n\theta^{-1} + \int_0^\theta \phi(t) t^{n-1} n(-n) \theta^{-n-1} dt$$

$$= \phi(\theta) n\theta^{-1} - n\theta^{-1} \int_0^\theta \phi(t) n t^{n-1} \theta^{-n} dt$$

Example - Uniform Distribution

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$. Find the best unbiased estimator for (1) θ , (2) $g(\theta)$ differentiable on $(0, \theta)$ (3) θ^2 , (4) $1/\theta$.

Solution - MVUE of θ

- $T(\mathbf{X}) = X_{(n)}$ is a complete and sufficient statistic for θ .
- $f_T(t) = n\theta^{-n}t^{n-1}I(0 < t < \theta).$
- $E[T] = E[X_{(n)}] = \int_0^\infty t n \theta^{-n} t^{n-1} dt = \frac{n}{n+1} \theta$ (biased)
- $E[\phi(T)] = E\left[\frac{n+1}{n}X_{(n)}\right] = \theta.$

 $\frac{n+1}{n}X_{(n)}$ is the best unbiased estimator of θ .

Example - Uniform Distribution - for $g(\theta)$ (cont'd)

$$g'(\theta) = \phi(\theta)n\theta^{-1} - n\theta^{-1} \int_0^\theta \phi(t)nt^{n-1}\theta^{-n}dt$$

$$= \phi(\theta)n\theta^{-1} - n\theta^{-1}E[\phi(T)]$$

$$= \phi(\theta)n\theta^{-1} - n\theta^{-1}g(\theta)$$

$$\phi(\theta) = \frac{g'(\theta) + n\theta^{-1}g(\theta)}{n\theta^{-1}}$$

Therefore, the best unbiased estimator of $g(\boldsymbol{\theta})$ is

$$\phi(T) = \frac{g'(T) + nT^{-1}g(T)}{nT^{-1}}$$

$$\phi(X_{(n)}) = \frac{g'(X_{(n)}) + nX_{(n)}^{-1}g(X_{(n)})}{nX_{(n)}^{-1}}$$

$$= \frac{1}{n}X_{(n)}g'(X_{(n)}) + g(X_{(n)})$$

Hyun Min Kang

Biostatistics 602 - Lecture 14

February 28th, 2013

15 / 23

Hyun Min Kang

Biostatistics 602 - Lecture 14

February 28th, 2013

Recap

Examples

Summary

UMVUE

Examples

Summary

Example - Uniform Distribution - for θ^2

$g(\theta) = \theta^2$, and $g'(\theta) = 2\theta$.

$$\phi(X_{(n)}) = \frac{1}{n} X_{(n)} \cdot 2X_{(n)} + X_{(n)}^{2}$$
$$= \frac{n+2}{n} X_{(n)}^{2}$$

Example - Uniform Distribution - for $1/\theta$

$$g(\theta) = 1/\theta$$
, and $g'(\theta) = -1/\theta^2$.

$$\phi(X_{(n)}) = \frac{1}{n} X_{(n)} \cdot \left(-\frac{1}{X_{(n)}^2} \right) + \frac{1}{X_{(n)}}$$
$$= \frac{n-1}{nX_{(n)}}$$

Hyun Min Kang

Biostatistics 602 - Lecture 14

February 28th, 2013

Hyun Min Kang

February 28th, 2013

10 / 00

Recap 000

00000

Summa

UMVL

Examples

Summary

Example - Binomial best unbiased estimator

Problem

 $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Binomial}(k, \theta)$. Estimate the probability of exactly one success.

Solution

• The quantity we need to estimate is

$$\tau(\theta) = \Pr(X = 1 | \theta) = k\theta(1 - \theta)^{k-1}$$

- We know that $T(\mathbf{X}) = \sum_{i=1}^{n} X_i \sim \operatorname{Binomial}(kn, \theta)$ and it is a complete sufficient statistic.
- So we need to find a $\phi(T)$ that satisfies $E[\phi(T)] = \tau(\theta)$.
- There is no imeediately evident unbiased estimator of $\tau(\theta)$ as a function of T.

Solution - Binomial best unbiased estimator

Start with a simple-minded estimator

$$W(\mathbf{X}) = \begin{cases} 1 & X_1 = 1 \\ 0 & \text{otherwise} \end{cases}$$

• The expectation of W is

$$E[W] = \sum_{x_1=0}^{k} W(x_1) {k \choose x_1} \theta^{x_1} (1-\theta)^{k-x_1}$$
$$= k\theta (1-\theta)^{k-1}$$

and hence is an unbiased estimator of $\tau(\theta) = k\theta(1-\theta)^{k-1}$.

- The best unbiased estimator of $\tau(\theta)$ is

$$\phi(T) = E[W|T] = E[W(\mathbf{X})|T(\mathbf{X})]$$

Hyun Min Kang

Biostatistics 602 - Lecture 14

February 28th, 2013

19 / 23

Hyun Min Kang

Biostatistics 602 - Lecture 14

February 28th, 2013

Solution - Binomial best unbiased estimator (cont'd)

$$\phi(t) = E\left[W(\mathbf{X})|\sum_{i=1}^{n} X_{i} = t\right] = \Pr\left[X_{1} = 1|\sum_{i=1}^{n} X_{i} = t\right]$$

$$= \frac{\Pr(X_{1} = 1, \sum_{i=1}^{n} X_{i} = t)}{\Pr(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{\Pr(X_{1} = 1, \sum_{i=2}^{n} X_{i} = t - 1)}{\Pr(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{\Pr(X_{1} = 1)\Pr(\sum_{i=1}^{n} X_{i} = t)}{\Pr(\sum_{i=1}^{n} X_{i} = t)}$$

$$= \frac{\left[k\theta(1 - \theta)^{k-1}\right]\left[\binom{k(n-1)}{t-1}\theta^{t-1}(1 - \theta)^{k(n-1)-t-1}\right]}{\binom{kn}{n}\theta^{t}(1 - \theta)^{kn-t}} = k\frac{\binom{k(n-1)}{t-1}}{\binom{kn}{t}}$$

Hyun Min Kang

Biostatistics 602 - Lecture 14

February 28th, 2013

Summary

21 / 23

February 28th, 2013

22 / 23

Summary

Today

- Rao-Blackwell Theorem
- Methods for obtaining UMVUE

Next Lecture

Bayesian Estimators

Solution - Binomial best unbiased estimator (cont'd

Therefore, the unbiased estimator of $k\theta(1-\theta)^{k-1}$ is

$$\phi\left(\sum_{i=1}^{n} X_i\right) = k \frac{\left(\sum_{i=1}^{k(n-1)} X_i\right)}{\left(\sum_{i=1}^{kn} X_i\right)}$$

Hyun Min Kang

Biostatistics 602 - Lecture 14

Hyun Min Kang Biostatistics 602 - Lecture 14

February 28th, 2013

23 / 23