Announcements

Homework #2

- For problem 3, assume that all the input values are unique
- Include the class definition into myTree.h and myTreeNode.h (do not make .cpp file)
- The homework .tex file containing the source code is uploaded in the class web page
Announcements

Homework #2

- For problem 3, assume that all the input values are unique
- Include the class definition into myTree.h and myTreeNode.h (do not make .cpp file)
- The homework .tex file containing the source code is uploaded in the class web page

815 projects

- Instructor sent out E-mails to individually today morning
Recap: Elementary data structures

<table>
<thead>
<tr>
<th></th>
<th>SEARCH</th>
<th>INSERT</th>
<th>REMOVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>SortedArray</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Tree</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Hash</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>

- Array or list is simple and fast enough for small-sized data
- Tree is easier to scale up to moderate to large-sized data
- Hash is the most robust for very large datasets
Recap: Example of a linked list

- Example of a doubly-linked list
- Singly-linked list if prev field does not exist
Recap: An example binary search tree

- Pointers to left and right children (NIL if absent)
- Pointers to its parent can be omitted.
Correction: Building your program (lecture 6)

Individually compile and link - Does NOT work with template

- Include the content of your .cpp files into .h
- For example, Main.cpp includes myArray.h

user@host:~/> g++ -o myArrayTest Main.cpp

Or create a Makefile and just type 'make'

all: myArrayTest # binary name is myArrayTest

myArrayTest: Main.cpp # link two object files to build binary
 g++ -o myArrayTest Main.cpp # must start with a tab

clean:
 rm *.o myArrayTest
Today

Data structure
- Hash table

Dynamic programming
- Divide and conquer vs dynamic programming
Two types of containers

Containers for single-valued objects - last lectures

- **INSERT**(T, x) - Insert x to the container.
- **SEARCH**(T, x) - Returns the location/index/existence of x.
- **REMOVE**(T, x) - Delete x from the container if exists
- STL examples include `std::vector`, `std::list`, `std::deque`, `std::set`, and `std::multiset`.

Containers for (key,value) pairs - this lecture

- **INSERT**(T, x) - Insert $(x.key, x.value)$ to the container.
- **SEARCH**(T, k) - Returns the value associated with key k.
- **REMOVE**(T, x) - Delete element x from the container if exitst
- Examples include `std::map`, `std::multimap`, and `__gnu_cxx::hash_map`
Direct address tables

An example (key,value) container

- \(U = \{0, 1, \cdots, N - 1\} \) is possible values of keys (\(N \) is not huge)
- No two elements have the same key

Direct address table: a constant-time container

Let \(T[0, \cdots, N - 1] \) be an array space that can contain \(N \) objects

- \text{INSERT}(T, x) : \(T[x.key] = x \)
- \text{SEARCH}(T, k) : \text{RETURN} \ T[k]
- \text{REMOVE}(T, x) : \(T[x.key] = \text{NIL} \)
Analysis of direct address tables

Time complexity

- Requires a single memory access for each operation
- $O(1)$ - constant time complexity

Memory requirement

- Requires to pre-allocate memory space for any possible input value
- $2^{32} = 4 \text{GB} \times (\text{size of data})$ for 4 bytes (32 bit) key
- $2^{64} = 18 \text{EB} (1.8 \times 10^7 \text{TB}) \times (\text{size of data})$ for 8 bytes (64 bit) key
- An infinite amount of memory space needed for storing a set of arbitrary-length strings (or exponential to the length of the string)
Hash Tables

Key features

- \(O(1)\) complexity for **Insert**, **Search**, and **Remove**
- Requires large memory space than the actual content for maintaining good performance
- But uses much smaller memory than direct-address tables
Hash Tables

Key features

- $O(1)$ complexity for Insert, Search, and Remove
- Requires large memory space than the actual content for maintaining good performance
- But uses much smaller memory than direct-address tables

Key components

- Hash function
 - $h(x.key)$ mapping key onto smaller 'addressible' space H
 - Total required memory is the possible number of hash values
 - Good hash function minimize the possibility of key collisions

- Collision-resolution strategy, when $h(k_1) = h(k_2)$.
Chained hash : A simple example

A good hash function

- Assume that we have a good hash function $h(x.key)$ that 'fairly uniformly' distribute key values to H
- What makes a good hash function will be discussed later today.

A ChainedHash

- Each possible hash key contains a linked list
- Each linked list is originally empty
- An input $(key, value)$ pair is appened to the linked list when inserted
- $O(1)$ time complexity is guaranteed when no collision occurs
- When collision occurs, the time complexity is proportional to size of linked list assocated with $h(x.key)$
Illustration of ChainedHash
Simplified algorithms on ChainedHash

Initialize(T)
- Allocate an array of list of size m as the number of possible key values

Insert(T, x)
- Insert x at the head of list $T[h(x.key)]$.

Search(T, k)
- Search for an element with key k in list $T[h(k)]$.

Remove(T, x)
- Delete x from the list $T[h(x.key)]$.
Analysis of hashing with chaining

Assumptions

- Simple uniform hashing
 - \(\Pr(h(k_1) = h(k_2)) = 1/m \) input key pairs \(k_1 \) and \(k_2 \).
- \(n \) is the number of elements stores
- Load factor \(\alpha = n/m \).

Expected time complexity for Search

- \(X_{ij} \in \{0, 1\} \) a random variable of key collision between \(x_i \) and \(x_j \).
- \(E[X_{ij}] = 1/m \).

\[
T(n) = \frac{1}{n} E \left[\sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} (X_{ij})\right) \right] = \Theta(1 + \alpha)
\]
Interesting properties (under uniform hash)

Probability of an empty slot

$$\Pr(k_1 \neq k, k_2 \neq k, \ldots, k_n \neq k) = \left(1 - \frac{1}{m}\right)^n \approx e^{-\alpha}$$

Birthday paradox: expected \# of elements before the first collision

$$Q(H) \approx \sqrt{\frac{\pi}{2}} m$$

Coupon collector problem: expect \# of elements to fill every slot

$$\sum_{i=1}^{m} \frac{m}{i} \approx m(\ln m + 0.577)$$
Hash functions

Making a good hash functions

- A hash function $h(k)$ is a deterministic function from $k \in K$ onto $h(k) \in H$.
- A good hash function distributes map the keys to hash values as uniform as possible.
- The uniformity of hash function should not be affected by the pattern of input sequences.

Example hash functions

- $k \in [0, 1), h(k) = \lfloor km \rfloor$
- $k \in \mathbb{N}, h(k) = k \mod m$
'Good' and 'bad' hash functions

An example: \(h(k) = \lfloor km \rfloor \)

- When the input is uniformly distributed
 - \(h(k) \) is uniformly distributed between 0 and \(m - 1 \).
 - \(h(k) \) is a good hash function

- When the input is skewed: \(\Pr(k < 1/m) = 0.9 \)
 - More than 80% of input key pairs will have collisions
 - \(h(k) \) is a bad hash function
 - Time complexity is close to a single linked list

Good hash functions

- 'Goodness' of a hash function can be dependent on the data
- If it is hard to create adversary inputs to make the hash function 'bad', it is generally a good hash function.
Examples of good hash functions

For integers

- Make the hash size m to be a large prime
- $h(k) = k \mod m$

For floating point values $k \in [0, 1)$

- Make the hash size m to be a large prime
- $h(k) = \lfloor k \times N \rfloor \mod m$ for a large number N.

For strings

- Pretend the string is a number with numeral system of $|\Sigma|$, where Σ is the set of possible characters.
- Apply the same hash function for integers
Open Addressing

Chained Hash - Pros and Cons

- Easy to understand
- Behavior at collision is easy to track
- Every slot maintains pointer - extra memory consumption
- Inefficient to dereference pointers for each access
- Larger and unpredictable memory consumption
Open Addressing

Chained Hash - Pros and Cons

△ Easy to understand
△ Behavior at collision is easy to track
▽ Every slots maintains pointer - extra memory consumption
▽ Inefficient to dereference pointers for each access
▽ Larger and unpredictable memory consumption

Open Addressing

- Store all the elements within an array
- Resolve conflicts based on predefined probing rule.
- Avoid using pointers - faster and more memory efficient.
- Implementation of REMOVE can be very complicated
Probing in open hash

Modified hash functions

- \(h : K \times H \rightarrow H \)

- For every \(k \in K \), the probe sequence
 \(< h(k, 0), h(k, 1), \cdots, h(k, m - 1) >\) must be a permutation of
 \(< 0, 1, \cdots, m - 1 >\).
Algorithm **OPENHASHINSERT**

Data: T: hash, k: key value to insert
Result: k is inserted to T

for $i = 0$ to $m - 1$ do
 $j = h(k, i)$ if $T[j] == \text{NIL}$ then
 $T[j] = k$;
 return j;
end
error "hash table overflow";
Algorithm **OPENHASHSEARCH**

Data: \(T \): hash, \(k \): key value to search

Result: Return \(T[k] \) if exist, otherwise return \(\text{NIL} \)

```plaintext
for i = 0 to m - 1 do
    j = h(k, i);
    if \( T[j] == k \) then
        return j;
    end
    else if \( T[j] == \text{NIL} \) then
        return \text{NIL};
    end
end
return \text{NIL};
```
Strategies for Probing

Linear Probing

- \(h(k, i) = (h'(k) + i) \mod m \)
- Easy to implement
- Suffer from primary clustering, increasing the average search time
Strategies for Probing

Linear Probing

- \[h(k, i) = (h'(k) + i) \mod m \]
- Easy to implement
- Suffer from primary clustering, increasing the average search time

Quadratic Probing

- \[h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m \]
- Better than linear probing
- Secondary clustering: \(h(k_1, 0) = h(k_2, 0) \) implies \(h(k_1, i) = k(k_2, i) \)
Strategies for Probing

Double Hashing

- $h(k, i) = (h_1(k) + ih_2(k)) \mod m$
- The probe sequence depends in two ways upon k.
- For example, $h_1(k) = k \mod m$, $h_2(k) = 1 + (k \mod m')$
- Avoid clustering problem
- Performance close to ideal scheme of uniform hashing.
Hash tables: summary

- Linear-time performance container with larger storage
- Key components
 - Hash function
 - Conflict-resolution strategy
- Chained hash
 - Linked list for every possible key values
 - Large memory consumption + dereferencing overhead
- Open Addressing
 - Probing strategy is important
 - Double hashing is close to ideal hashing
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Hash Tables</th>
<th>ChainedHash</th>
<th>OpenHash</th>
<th>Fibonacci</th>
<th>Summary</th>
</tr>
</thead>
</table>

When are binary search trees better than hash tables?

- When the memory efficiency is more important than the search efficiency
- When many input key values are not unique
- When querying by ranges or trying to find closest value.
When are binary search trees better than hash tables?

- When the memory efficiency is more important than the search efficiency
When are binary search trees better than hash tables?

- When the memory efficiency is more important than the search efficiency
- When many input key values are not unique
When are binary search trees better than hash tables?

- When the memory efficiency is more important than the search efficiency
- When many input key values are not unique
- When querying by ranges or trying to find closest value.
Recap: Divide and conquer algorithms

Good examples of divide and conquer algorithms

- **TowerOfHanoi**
- **MergeSort**
- **QuickSort**
- **BinarySearchTree** algorithms

These algorithms divide a problem into smaller and disjoint subproblems until they become trivial.
A divide-and-conquer algorithms for Fibonacci numbers

Fibonacci numbers

\[F_n = \begin{cases}
F_{n-1} + F_{n-2} & n > 1 \\
1 & n = 1 \\
0 & n = 0
\end{cases} \]
A divide-and-conquer algorithms for Fibonacci numbers

Fibonacci numbers

\[
F_n = \begin{cases}
F_{n-1} + F_{n-2} & n > 1 \\
1 & n = 1 \\
0 & n = 0
\end{cases}
\]

A recursive implementation of fibonacci numbers

```c
int fibonacci(int n) {
    if ( n < 2 ) return n;
    else return fibonacci(n-1)+fibonacci(n-2);
}
```
Performance of recursive FIBONACCI

Computational time

- 4.4 seconds for calculating F_{40}
- 49 seconds for calculating F_{45}
- ∞ seconds for calculating F_{100}!
What is happening is the recursive **Fibonacci**
Introduction

Introduction to Hash Tables

Chained Hashing

Open Hashing

Fibonacci

Summary

Time complexity of redundant Fibonacci

\[
T(n) = T(n-1) + T(n-2) \\
T(1) = 1 \\
T(0) = 1 \\
T(n) = F_{n+1}
\]

The time complexity is exponential
A non-redundant **FIBONACCI**

```c
int fibonacci(int n) {
    int* fibs = new int[n+1];
    fibs[0] = 0;
    fibs[1] = 1;
    for(int i=2; i <= n; ++i) {
        fibs[i] = fibs[i-1]+fibs[i-2];
    }
    int ret = fibs[n];
    delete [] fibs;
    return ret;
}
```
Key idea in non-redundant **Fibonacci**

- Each F_n will be reused to calculate F_{n+1} and F_{n+2}
- Store F_n into an array so that we don’t have to recalculate it
A recursive, but non-redundant **Fibonacci**

```c
int fibonacci(int* fibs, int n) {
    if ( fibs[n] > 0 ) {
        return fibs[n]; // reuse stored solution if available
    }
    else if ( n < 2 ) {
        return n; // terminal condition
    }
    fibs[n] = fibonacci(n-1) + fibonacci(n-2); // store the solution once computed
    return fibs[n];
}
```
Summary

Today

- Hashing
- Dynamic programming

Next Lecture

- More on dynamic programming
- Graph algorithms

Reading materials

- CLRS Chapter 15