Biostatistics 602 - Statistical Inference Lecture 20 Uniformly Most Powerful Test

Hyun Min Kang

March 28th, 2013

• What are the typical steps for constructing a likelihood ratio test?

- What are the typical steps for constructing a likelihood ratio test?
- Is LRT statistic based on sufficient statistic identical to the LRT based on the full data?

- What are the typical steps for constructing a likelihood ratio test?
- Is LRT statistic based on sufficient statistic identical to the LRT based on the full data?
- When multiple parameters need to be estimated, what is the difference in constructing LRT?

- What are the typical steps for constructing a likelihood ratio test?
- Is LRT statistic based on sufficient statistic identical to the LRT based on the full data?
- When multiple parameters need to be estimated, what is the difference in constructing LRT?
- What is unbiased test?

2 / 1

LRT based on sufficient statistics

Theorem 8.2.4

If $T(\mathbf{X})$ is a sufficient statistic for θ , $\lambda^*(t)$ is the LRT statistic based on T, and $\lambda(\mathbf{x})$ is the LRT statistic based on \mathbf{x} then

LRT based on sufficient statistics

Theorem 8.2.4

If $T(\mathbf{X})$ is a sufficient statistic for θ , $\lambda^*(t)$ is the LRT statistic based on T, and $\lambda(\mathbf{x})$ is the LRT statistic based on \mathbf{x} then

$$\lambda^*[T(\mathbf{x})] = \lambda(\mathbf{x})$$

LRT based on sufficient statistics

Theorem 8.2.4

If $T(\mathbf{X})$ is a sufficient statistic for θ , $\lambda^*(t)$ is the LRT statistic based on T, and $\lambda(\mathbf{x})$ is the LRT statistic based on \mathbf{x} then

$$\lambda^*[\mathit{T}(\mathbf{x})] = \lambda(\mathbf{x})$$

for every x in the sample space.

Definition

If a test always satisfies

 $\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true })$

Definition

If a test always satisfies

 $\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true })$

Then the test is said to be unbiased

Definition

If a test always satisfies

 $\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true })$

Then the test is said to be unbiased

Alternative Definition

Recall that $\beta(\theta) = \Pr(\text{reject } H_0)$. A test is unbiased if

Definition

If a test always satisfies

 $\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true })$

Then the test is said to be unbiased

Alternative Definition

Recall that $\beta(\theta) = \Pr(\text{reject } H_0)$. A test is unbiased if $\beta(\theta') \geq \beta(\theta)$

Definition

If a test always satisfies

 $\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true })$

Then the test is said to be unbiased

Alternative Definition

Recall that $\beta(\theta) = \Pr(\text{reject } H_0)$. A test is unbiased if $\beta(\theta') \geq \beta(\theta)$

for every $\theta' \in \Omega_0^c$ and $\theta \in \Omega_0$.

 $X_1,\cdots,X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta,\sigma^2)$ where σ^2 is known, testing $H_0:\theta \leq \theta_0$ vs $H_1:\theta>\theta_0$.

 $X_1,\cdots,X_n \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(\theta,\sigma^2)$ where σ^2 is known, testing $H_0:\theta \leq \theta_0$ vs $H_1:\theta > \theta_0$. LRT test rejects H_0 if $\frac{\overline{x}-\theta_0}{\sigma/\sqrt{n}} > c$.

 $X_1,\cdots,X_n \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(\theta,\sigma^2)$ where σ^2 is known, testing $H_0:\theta \leq \theta_0$ vs $H_1:\theta>\theta_0.$ LRT test rejects H_0 if $\frac{\overline{x}-\theta_0}{\sigma/\sqrt{n}}>c.$

$$\beta(\theta) = \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > c\right)$$

 $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. LRT test rejects H_0 if $\frac{\bar{x} - \theta_0}{\sigma / \sqrt{n}} > c$.

$$\beta(\theta) = \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > c\right)$$
$$= \Pr\left(\frac{\overline{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} > c\right)$$

 $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. LRT test rejects H_0 if $\frac{\bar{x} - \theta_0}{\sigma / \sqrt{n}} > c$.

$$\begin{split} \beta(\theta) &= & \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > c\right) \\ &= & \Pr\left(\frac{\overline{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} > c\right) \\ &= & \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} + \frac{\theta - \theta_0}{\sigma/\sqrt{n}} > c\right) \end{split}$$

 $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. LRT test rejects H_0 if $\frac{\bar{x} - \theta_0}{\sigma / \sqrt{n}} > c$.

 $\beta(\theta) = \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > c\right)$ $= \Pr\left(\frac{\overline{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} > c\right)$ $= \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} + \frac{\theta - \theta_0}{\sigma/\sqrt{n}} > c\right)$

$$= \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} > c - \frac{\theta - \theta_0}{\sigma/\sqrt{n}}\right)$$

 $X_1,\cdots,X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta,\sigma^2)$ where σ^2 is known, testing $H_0:\theta \leq \theta_0$ vs $H_1:\theta>\theta_0$.

LRT test rejects
$$H_0$$
 if $\frac{\overline{x}-\theta_0}{\sigma/\sqrt{n}}>c$.
$$\beta(\theta) = \Pr\left(\frac{\overline{X}-\theta_0}{\sigma/\sqrt{n}}>c\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} > c\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} + \frac{\theta - \theta_0}{\sigma/\sqrt{n}} > c\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} > c - \frac{\theta - \theta_0}{\sigma/\sqrt{n}}\right)$$

Note that $X_i \sim \mathcal{N}(\theta, \sigma^2)$, $\overline{X} \sim \mathcal{N}(\theta, \sigma^2/n)$, and $\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$.

Example (cont'd)

Therefore, for $Z \sim \mathcal{N}(0,1)$

$$\beta(\theta) = \Pr\left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

Example (cont'd)

Therefore, for $Z \sim \mathcal{N}(0,1)$

$$\beta(\theta) = \Pr\left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

Because the power function is increasing function of θ ,

$$\beta(\theta') \ge \beta(\theta)$$

Example (cont'd)

Therefore, for $Z \sim \mathcal{N}(0,1)$

$$\beta(\theta) = \Pr\left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}}\right)$$

Because the power function is increasing function of θ ,

$$\beta(\theta') \ge \beta(\theta)$$

always holds when $\theta \leq \theta_0 < \theta'.$ Therefore the LRTs are unbiased.

Uniformly Most Powerful Test (UMP)

Definition

Let $\mathcal C$ be a class of tests between $H_0:\theta\in\Omega$ vs $H_1:\theta\in\Omega_0^c$. A test in C, with power function $\beta(\theta)$ is uniformly most powerful (UMP) test in class $\mathcal C$ if $\beta(\theta)\geq\beta'(\theta)$ for every $\theta\in\Omega_0^c$ and every $\beta'(\theta)$, which is a power function of another test in C.

Consider $\mathcal C$ be the set of all the level α test. The UMP test in this class is called a UMP level α test.

Consider $\mathcal C$ be the set of all the level α test. The UMP test in this class is called a UMP level α test.

UMP level α test has the smallest type II error probability for any $\theta \in \Omega_0^c$ in this class.

8 / 1

Consider $\mathcal C$ be the set of all the level α test. The UMP test in this class is called a UMP level α test.

UMP level α test has the smallest type II error probability for any $\theta \in \Omega_0^c$ in this class.

• A UMP test is "uniform" in the sense that it is most powerful for every $\theta \in \Omega_0^c$.

Consider $\mathcal C$ be the set of all the level α test. The UMP test in this class is called a UMP level α test.

UMP level α test has the smallest type II error probability for any $\theta\in\Omega_0^c$ in this class.

- A UMP test is "uniform" in the sense that it is most powerful for every $\theta \in \Omega_0^c$.
- For simple hypothesis such as $H_0: \theta=\theta_0$ and $H_1: \theta=\theta_1$, UMP level α test always exists.

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(\mathbf{x}|\theta_i)$, i=0,1, using a test with rejection region R that satisfies

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(\mathbf{x}|\theta_i)$, i=0,1, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$ (8.3.1) and

$$(8.3.1) \text{ and }$$

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(\mathbf{x}|\theta_i)$, i=0,1, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$ (8.3.1) and $\mathbf{x} \in R^c$ if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$ (8.3.2)

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(\mathbf{x}|\theta_i)$, i=0,1, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$ (8.3.1) and $\mathbf{x} \in R^c$ if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$ (8.3.2)

For some $k \geq 0$ and $\alpha = \Pr(\mathbf{X} \in R | \theta_0)$, Then,

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(\mathbf{x}|\theta_i)$, i=0,1, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$ (8.3.1) and $\mathbf{x} \in R^c$ if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$ (8.3.2)

For some $k \geq 0$ and $\alpha = \Pr(\mathbf{X} \in R | \theta_0)$, Then,

• (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α test

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(\mathbf{x}|\theta_i)$, i=0,1, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$ (8.3.1) and $\mathbf{x} \in R^c$ if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$ (8.3.2)

For some $k \geq 0$ and $\alpha = \Pr(\mathbf{X} \in R | \theta_0)$, Then,

- (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α test
- (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with k>0, then every UMP level α test is a size α test (satisfies 8.3.2), and every UMP level α test satisfies 8.3.1 except perhaps on a set A satisfying $\Pr(\mathbf{X} \in A | \theta_0) = \Pr(\mathbf{X} \in A | \theta_1) = 0$.

Example of Neyman-Pearson Lemma

Let $X \in \operatorname{Binomial}(2, \theta)$, and consider testing

Let $X \in \text{Binomial}(2, \theta)$, and consider testing $H_0: \theta = \theta_0 = 1/2 \text{ vs. } H_1: \theta = \theta_1 = 3/4.$

Let $X \in \operatorname{Binomial}(2, \theta)$, and consider testing $H_0: \theta = \theta_0 = 1/2$ vs. $H_1: \theta = \theta_1 = 3/4$. Calculating the ratios of the pmfs given,

$$\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \qquad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \qquad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}$$

Let $X \in \operatorname{Binomial}(2, \theta)$, and consider testing $H_0: \theta = \theta_0 = 1/2$ vs. $H_1: \theta = \theta_1 = 3/4$. Calculating the ratios of the pmfs given,

$$\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \qquad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \qquad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}$$

• Suppose that k<1/4, then the rejection region $R=\{0,1,2\}$, and UMP level α test always rejects H_0 . Therefore $\alpha=\Pr(\mathrm{reject}\ H_0|\theta=\theta_0=1/2)=1.$

Let $X \in \operatorname{Binomial}(2, \theta)$, and consider testing $H_0: \theta = \theta_0 = 1/2$ vs. $H_1: \theta = \theta_1 = 3/4$. Calculating the ratios of the pmfs given,

Hyun Min Kang

$$\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \qquad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \qquad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}$$

- Suppose that k < 1/4, then the rejection region $R = \{0, 1, 2\}$, and UMP level α test always rejects H_0 . Therefore $\alpha = \Pr(\text{reject } H_0 | \theta = \theta_0 = 1/2) = 1$.
- Suppose that 1/4 < k < 3/4, then $R = \{1, 2\}$, and UMP level α test rejects H_0 if x = 1 or x = 2.

Let $X \in \operatorname{Binomial}(2,\theta)$, and consider testing $H_0: \theta = \theta_0 = 1/2$ vs. $H_1: \theta = \theta_1 = 3/4$. Calculating the ratios of the pmfs given,

$$\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \qquad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \qquad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}$$

- Suppose that k < 1/4, then the rejection region $R = \{0, 1, 2\}$, and UMP level α test always rejects H_0 . Therefore $\alpha = \Pr(\text{reject } H_0 | \theta = \theta_0 = 1/2) = 1$.
- Suppose that 1/4 < k < 3/4, then $R = \{1, 2\}$, and UMP level α test rejects H_0 if x = 1 or x = 2.

$$\alpha = \Pr(\text{reject}|\theta = 1/2) = \Pr(x = 1|\theta = 1/2) + \Pr(x = 2|\theta = 1/2) = \frac{3}{4}$$

Example of Neyman-Pearson Lemma (cont'd)

• Suppose that 3/4 < k < 9/4, then UMP level α test rejects H_0 if x=2

Example of Neyman-Pearson Lemma (cont'd)

- Suppose that 3/4 < k < 9/4, then UMP level α test rejects H_0 if x=2

$$\alpha = \Pr(\text{reject}|\theta = 1/2) = \Pr(x = 2|\theta = 1/2) = \frac{1}{4}$$

Example of Neyman-Pearson Lemma (cont'd)

- Suppose that 3/4 < k < 9/4, then UMP level α test rejects H_0 if x=2

$$\alpha = \Pr(\text{reject}|\theta = 1/2) = \Pr(x = 2|\theta = 1/2) = \frac{1}{4}$$

• If k>9/4 the UMP level α test always not reject H_0 , and $\alpha=0$

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^2} \exp\left\{ -\frac{(x_i - \theta)^2}{2\sigma^2} \right\} \right]$$

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^2} \exp\left\{ -\frac{(x_i - \theta)^2}{2\sigma^2} \right\} \right]$$
$$\frac{f(\mathbf{x}|\theta_1)}{f(\mathbf{x}|\theta_0)} = \frac{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_i - \theta_1)^2}{2\sigma^2} \right\}}{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_i - \theta_0)^2}{2\sigma^2} \right\}}$$

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^{2}} \exp\left\{ -\frac{(x_{i} - \theta)^{2}}{2\sigma^{2}} \right\} \right]$$

$$\frac{f(\mathbf{x}|\theta_{1})}{f(\mathbf{x}|\theta_{0})} = \frac{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} \right\}}{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}}{2\sigma^{2}} \right\}}$$

$$= \exp\left[-\frac{\sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} + \frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}}{2\sigma^{2}} \right]$$

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^{2}} \exp\left\{ -\frac{(x_{i} - \theta)^{2}}{2\sigma^{2}} \right\} \right]$$

$$\frac{f(\mathbf{x}|\theta_{1})}{f(\mathbf{x}|\theta_{0})} = \frac{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} \right\}}{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}}{2\sigma^{2}} \right\}}$$

$$= \exp\left[-\frac{\sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} + \frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}}{2\sigma^{2}} \right]$$

$$= \exp\left[\frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2} - \sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} \right]$$

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^{2}} \exp\left\{ -\frac{(x_{i} - \theta)^{2}}{2\sigma^{2}} \right\} \right]$$

$$\frac{f(\mathbf{x}|\theta_{1})}{f(\mathbf{x}|\theta_{0})} = \frac{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} \right\}}{\exp\left\{ -\frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}}{2\sigma^{2}} \right\}}$$

$$= \exp\left[-\frac{\sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} + \frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2}}{2\sigma^{2}} \right]$$

$$= \exp\left[\frac{\sum_{i=1}^{n} (x_{i} - \theta_{0})^{2} - \sum_{i=1}^{n} (x_{i} - \theta_{1})^{2}}{2\sigma^{2}} \right]$$

$$= \exp\left[\frac{n(\theta_{0}^{2} - \theta_{1})^{2} + 2\sum_{i=1}^{n} x_{i}(\theta_{1} - \theta_{0})}{2\sigma^{2}} \right]$$

$$\exp\left[\frac{n(\theta_0^2 - \theta_1)^2 + 2\sum_{i=1}^{n} x_i(\theta_1 - \theta_0)}{2\sigma^2}\right] > k$$

$$\exp\left[\frac{n(\theta_0^2 - \theta_1)^2 + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2}\right] > k$$

$$\iff \frac{n(\theta_0^2 - \theta_1)^2 + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2} > \log k$$

$$\exp\left[\frac{n(\theta_0^2 - \theta_1)^2 + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2}\right] > k$$

$$\iff \frac{n(\theta_0^2 - \theta_1)^2 + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2} > \log k$$

$$\iff \sum_{i=1}^n x_i > k^*$$

$$\exp\left[\frac{n(\theta_0^2 - \theta_1)^2 + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2}\right] > k$$

$$\iff \frac{n(\theta_0^2 - \theta_1)^2 + 2\sum_{i=1}^n x_i(\theta_1 - \theta_0)}{2\sigma^2} > \log k$$

$$\iff \sum_{i=1}^n x_i > k^*$$

$$\alpha = \Pr\left(\sum_{i=1}^{n} X_i > k^* | \theta_0\right)$$

Under H_0 ,

$$X_i \sim \mathcal{N}(\theta_0, \sigma^2)$$

Under H_0 ,

$$X_i \sim \mathcal{N}(\theta_0, \sigma^2)$$
 $\overline{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$

Under H_0 ,

$$\begin{array}{ccc} X_i & \sim & \mathcal{N}(\theta_0, \sigma^2) \\ \overline{X} & \sim & \mathcal{N}(\theta_0, \sigma^2/n) \\ \\ \overline{X} - \theta_0 \\ \overline{\sigma/\sqrt{n}} & \sim & \mathcal{N}(0, 1) \end{array}$$

Under H_0 ,

$$\begin{array}{ccc} X_i & \sim & \mathcal{N}(\theta_0, \sigma^2) \\ \overline{X} & \sim & \mathcal{N}(\theta_0, \sigma^2/n) \\ \\ \overline{X} - \theta_0 \\ \overline{\sigma/\sqrt{n}} & \sim & \mathcal{N}(0, 1) \end{array}$$

$$\alpha = \Pr\left(\sum_{i=1}^{n} X_i > k^* | \theta_0\right)$$
$$= \Pr\left(Z > \frac{k^*/n - \theta_0}{\sigma/\sqrt{n}}\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

$$\frac{k^*/n - \theta_0}{\sigma/\sqrt{n}} = z_\alpha$$

$$\frac{k^*/n - \theta_0}{\sigma/\sqrt{n}} = z_{\alpha}$$

$$k^* = n\left(\theta_0 + z_{\alpha}\frac{\sigma}{\sqrt{n}}\right)$$

$$\frac{k^*/n - \theta_0}{\sigma/\sqrt{n}} = z_{\alpha}$$

$$k^* = n\left(\theta_0 + z_{\alpha}\frac{\sigma}{\sqrt{n}}\right)$$

Thus, the UMP level α test reject if $\sum X_i > k^*$, or equivalently, reject H_0 if $\overline{X} > k^*/n = \theta_0 + z_\alpha \sigma/\sqrt{n}$

Corollary 8.3.13

Consider $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0,1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies

Corollary 8.3.13

Consider $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0,1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies

$$t \in S$$
 if $g(t|\theta_1) > k \cdot g(t|\theta_0)$ and

Corollary 8.3.13

Consider $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0,1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies

$$t \in S$$
 if $g(t|\theta_1) > k \cdot g(t|\theta_0)$ and $t \in S^c$ if $g(t|\theta_1) < k \cdot g(t|\theta_0)$

Corollary 8.3.13

Consider $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$. Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0,1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies

$$\begin{aligned} &t \in S & & \text{if } g(t|\theta_1) > k \cdot g(t|\theta_0) \text{ and} \\ &t \in S^c & & \text{if } g(t|\theta_1) < k \cdot g(t|\theta_0) \end{aligned}$$

For some k > 0 and $\alpha = \Pr(T \in S | \theta_0)$

The rejection region in the sample space is

$$R = \{\mathbf{x} : T(\mathbf{x}) = t \in S\}$$

The rejection region in the sample space is

$$\begin{array}{lcl} R & = & \{\mathbf{x}: T(\mathbf{x}) = t \in S\} \\ & = & \{\mathbf{x}: g(T(\mathbf{x})|\theta_1) > kg(T(\mathbf{x})|\theta_0)\} \end{array}$$

The rejection region in the sample space is

$$\begin{array}{lcl} R & = & \{\mathbf{x}: T(\mathbf{x}) = t \in S\} \\ & = & \{\mathbf{x}: g(T(\mathbf{x})|\theta_1) > kg(T(\mathbf{x})|\theta_0)\} \end{array}$$

By Factorization Theorem:

$$f(\mathbf{x}|\theta_i) = h(\mathbf{x})g(T(\mathbf{x})|\theta_i)$$

The rejection region in the sample space is

$$\begin{array}{lcl} R & = & \{\mathbf{x}: \, T(\mathbf{x}) = t \in S\} \\ & = & \{\mathbf{x}: \, g(\, T(\mathbf{x})|\theta_1) > kg(\, T(\mathbf{x})|\theta_0)\} \end{array}$$

By Factorization Theorem:

$$\begin{array}{lcl} f(\mathbf{x}|\theta_i) & = & h(\mathbf{x}) \, g(\, T(\mathbf{x})|\theta_i) \\ R & = & \left\{ \mathbf{x} : g(\, T(\mathbf{x})|\theta_1) h(x) > k g(\, T(\mathbf{x})|\theta_0) h(x) \right\} \end{array}$$

The rejection region in the sample space is

$$\begin{array}{lcl} R & = & \{\mathbf{x}: \, T(\mathbf{x}) = t \in S\} \\ & = & \{\mathbf{x}: \, g(\, T(\mathbf{x})|\theta_1) > kg(\, T(\mathbf{x})|\theta_0)\} \end{array}$$

By Factorization Theorem:

$$\begin{split} f(\mathbf{x}|\theta_i) &= h(\mathbf{x})g(T(\mathbf{x})|\theta_i) \\ R &= \{\mathbf{x}: g(T(\mathbf{x})|\theta_1)h(x) > kg(T(\mathbf{x})|\theta_0)h(x)\} \\ &= \{\mathbf{x}: f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)\} \end{split}$$

The rejection region in the sample space is

$$\begin{split} R &=& \{\mathbf{x}: T(\mathbf{x}) = t \in S\} \\ &=& \{\mathbf{x}: g(T(\mathbf{x})|\theta_1) > kg(T(\mathbf{x})|\theta_0)\} \end{split}$$

By Factorization Theorem:

$$\begin{split} f(\mathbf{x}|\theta_i) &= h(\mathbf{x})g(T(\mathbf{x})|\theta_i) \\ R &= \{\mathbf{x}: g(T(\mathbf{x})|\theta_1)h(x) > kg(T(\mathbf{x})|\theta_0)h(x)\} \\ &= \{\mathbf{x}: f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)\} \end{split}$$

By Neyman-Pearson Lemma, this test is the UMP level lpha test, and

$$\alpha = \Pr(\mathbf{X} \in R) = \Pr(T(\mathbf{X}) \in S | \theta_0)$$

Revisiting the Example of Normal Distribution

$$g(t|\theta_i) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{(t-\theta_i)^2}{2\sigma^2/n}\right\}$$

$$g(t|\theta_i) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{(t-\theta_i)^2}{2\sigma^2/n}\right\}$$

$$\frac{g(t|\theta_1)}{g(t|\theta_0)} = \frac{\exp\left\{-\frac{(t-\theta_1)^2}{2\sigma^2/n}\right\}}{\exp\left\{-\frac{(t-\theta_0)^2}{2\sigma^2/n}\right\}}$$

$$g(t|\theta_i) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{(t-\theta_i)^2}{2\sigma^2/n}\right\}$$

$$\frac{g(t|\theta_1)}{g(t|\theta_0)} = \frac{\exp\left\{-\frac{(t-\theta_1)^2}{2\sigma^2/n}\right\}}{\exp\left\{-\frac{(t-\theta_0)^2}{2\sigma^2/n}\right\}}$$

$$= \exp\left\{-\frac{1}{2\sigma^2/n}\left[(t-\theta_1)^2 - (t-\theta_0)^2\right]\right\}$$

$$g(t|\theta_{i}) = \frac{1}{\sqrt{2\pi\sigma^{2}/n}} \exp\left\{-\frac{(t-\theta_{i})^{2}}{2\sigma^{2}/n}\right\}$$

$$\frac{g(t|\theta_{1})}{g(t|\theta_{0})} = \frac{\exp\left\{-\frac{(t-\theta_{1})^{2}}{2\sigma^{2}/n}\right\}}{\exp\left\{-\frac{(t-\theta_{0})^{2}}{2\sigma^{2}/n}\right\}}$$

$$= \exp\left\{-\frac{1}{2\sigma^{2}/n}\left[(t-\theta_{1})^{2} - (t-\theta_{0})^{2}\right]\right\}$$

$$= \exp\left\{-\frac{1}{2\sigma^{2}/n}\left[\theta_{1}^{2} - \theta_{0}^{2} - 2t(\theta_{1} - \theta_{0})\right]\right\}$$

UMP level α test reject if

$$\exp\left\{-\frac{1}{2\sigma^2/n}\left[\theta_1^2 - \theta_0^2 - 2t(\theta_1 - \theta_0)\right]\right\} > k$$

UMP level α test reject if

$$\exp\left\{-\frac{1}{2\sigma^2/n}\left[\theta_1^2 - \theta_0^2 - 2t(\theta_1 - \theta_0)\right]\right\} > k$$

$$\iff \frac{1}{2\sigma^2/n}\left[-(\theta_1^2 - \theta_0^2) + 2t(\theta_1 - \theta_0)\right] > \log k$$

UMP level α test reject if

$$\exp\left\{-\frac{1}{2\sigma^2/n}\left[\theta_1^2 - \theta_0^2 - 2t(\theta_1 - \theta_0)\right]\right\} > k$$

$$\iff \frac{1}{2\sigma^2/n}\left[-(\theta_1^2 - \theta_0^2) + 2t(\theta_1 - \theta_0)\right] > \log k$$

$$\iff \overline{X} = t > k^*$$

Under
$$H_0$$
, $\overline{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$. k^* satisfies

$$Pr(reject H_0|\theta_0) = \alpha$$

Under
$$H_0$$
, $\overline{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$. k^* satisfies

$$Pr(reject H_0|\theta_0) = \alpha$$

$$\alpha = Pr(\overline{X} > k^*|\theta_0)$$

Pr(reject
$$H_0|\theta_0$$
) = α
 α = Pr($\overline{X} > k^*|\theta_0$)
= Pr $\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$

Pr(reject
$$H_0|\theta_0) = \alpha$$

 $\alpha = \Pr(\overline{X} > k^*|\theta_0)$
 $= \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$
 $= \Pr\left(Z > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$

Pr(reject
$$H_0|\theta_0) = \alpha$$

 $\alpha = \Pr(\overline{X} > k^*|\theta_0)$
 $= \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$
 $= \Pr\left(Z > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$
 $\frac{k^* - \theta_0}{\sigma/\sqrt{n}} = z_{\alpha}$

Pr(reject
$$H_0|\theta_0$$
) = α
 α = Pr($\overline{X} > k^*|\theta_0$)
= Pr $\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$
= Pr $\left(Z > \frac{k^* - \theta_0}{\sigma/\sqrt{n}}\right)$
 $\frac{k^* - \theta_0}{\sigma/\sqrt{n}}$ = z_{α}
 k^* = $\theta_0 + z_{\alpha} \frac{\sigma}{n}$

Monotone Likelihood Ratio

Definition

A family of pdfs or pmfs $\{g(t|\theta):\theta\in\Omega\}$ for a univariate random variable T with real-valued parameter θ have a monotone likelihood ratio if $\frac{g(t|\theta_2)}{g(t|\theta_1)}$ is an increasing (or non-decreasing) function of t for every $\theta_2>\theta_1$ on $\{t:g(t|\theta_1)>0 \text{ or } g(t|\theta_2)>0\}.$

Monotone Likelihood Ratio

Definition

A family of pdfs or pmfs $\{g(t|\theta):\theta\in\Omega\}$ for a univariate random variable T with real-valued parameter θ have a monotone likelihood ratio if $\frac{g(t|\theta_2)}{g(t|\theta_1)}$ is an increasing (or non-decreasing) function of t for every $\theta_2>\theta_1$ on $\{t:g(t|\theta_1)>0 \text{ or } g(t|\theta_2)>0\}.$

Note: we may define MLR using decreasing function of $\it t$. But all following theorems are stated according to the definition.

Example of Monotone Likelihood Ratio

Normal, Poisson, Binomial have the MLR Property (Exercise 8.25)

Example of Monotone Likelihood Ratio

- Normal, Poisson, Binomial have the MLR Property (Exercise 8.25)
- If T is from an exponential family with the pdf or pmf

$$g(t|\theta) = h(t)c(\theta)\exp[w(\theta) \cdot t]$$

Then T has an MLR if $w(\theta)$ is a non-decreasing function of θ .

Suppose that $\theta_2 > \theta_1$.

Suppose that $\theta_2 > \theta_1$.

$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{h(t)c(\theta_2)\exp[w(\theta_2)t]}{h(t)c(\theta_1)\exp[w(\theta_1)t]}$$

Suppose that $\theta_2 > \theta_1$.

$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{h(t)c(\theta_2)\exp[w(\theta_2)t]}{h(t)c(\theta_1)\exp[w(\theta_1)t]}$$
$$= \frac{c(\theta_2)}{c(\theta_1)}\exp[\{w(\theta_2) - w(\theta_1)\}t]$$

Suppose that $\theta_2 > \theta_1$.

$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{h(t)c(\theta_2)\exp[w(\theta_2)t]}{h(t)c(\theta_1)\exp[w(\theta_1)t]}$$
$$= \frac{c(\theta_2)}{c(\theta_1)}\exp[\{w(\theta_2) - w(\theta_1)\}t]$$

If $w(\theta)$ is a non-decreasing function of θ , then $w(\theta_2)-w(\theta_1)\geq 0$ and

Suppose that $\theta_2 > \theta_1$.

$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{h(t)c(\theta_2)\exp[w(\theta_2)t]}{h(t)c(\theta_1)\exp[w(\theta_1)t]}$$
$$= \frac{c(\theta_2)}{c(\theta_1)}\exp[\{w(\theta_2) - w(\theta_1)\}t]$$

If $w(\theta)$ is a non-decreasing function of θ , then $w(\theta_2)-w(\theta_1)\geq 0$ and $\exp[\{w(\theta_2)-w(\theta_1)\}t]$ is an increasing function of t. Therefore, $\frac{g(t|\theta_2)}{g(t|\theta_1)}$ is a non-decreasing function of t, and T has MLR if $w(\theta)$ is a non-decreasing function of θ .

Karlin-Rabin Theorem

Theorem 8.1.17

Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and the family $\{g(t|\theta):\theta\in\Omega\}$ is an MLR family. Then

Karlin-Rabin Theorem

Theorem 8.1.17

Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and the family $\{g(t|\theta):\theta\in\Omega\}$ is an MLR family. Then

• For testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, the UMP level α test is given by rejecting H_0 is and only if $T > t_0$ where $\alpha = \Pr(T > t_0 | \theta_0)$.

Karlin-Rabin Theorem

Theorem 8.1.17

Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and the family $\{g(t|\theta):\theta\in\Omega\}$ is an MLR family. Then

- **1** For testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, the UMP level α test is given by rejecting H_0 is and only if $T > t_0$ where $\alpha = \Pr(T > t_0 | \theta_0)$.
- 2 For testing $H_0: \theta \geq \theta_0$ vs $H_1: \theta < \theta_0$, the UMP level α test is given by rejecting H_0 if and only if $T < t_0$ where $\alpha = \Pr(T < t_0 | \theta_0)$.

Let $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$.

25 / 1

Let $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. $T(\mathbf{X}) = \overline{X}$ is a sufficient statistic for θ , and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

Let $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. $T(\mathbf{X}) = \overline{X}$ is a sufficient statistic for θ , and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{(t-\theta)^2}{2\sigma^2/n}\right\}$$

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. $T(\mathbf{X}) = \overline{X}$ is a sufficient statistic for θ , and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{(t-\theta)^2}{2\sigma^2/n}\right\}$$
$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{t^2+\theta^2-2t\theta}{2\sigma^2/n}\right\}$$

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$. $T(\mathbf{X}) = \overline{X}$ is a sufficient statistic for θ , and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$\begin{split} g(t|\theta) &= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{(t-\theta)^2}{2\sigma^2/n}\right\} \\ &= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{t^2+\theta^2-2t\theta}{2\sigma^2/n}\right\} \\ &= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{t^2}{2\sigma^2/n}\right\} \exp\left\{-\frac{\theta^2}{2\sigma^2/n}\right\} \exp\left\{\frac{t\theta}{\sigma^2/n}\right\} \end{split}$$

25 / 1

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0: \theta \leq \underline{\theta}_0$ vs $H_1: \theta > \theta_0$.

 $T(\mathbf{X}) = \overline{X}$ is a sufficient statistic for θ , and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{(t-\theta)^2}{2\sigma^2/n}\right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{t^2+\theta^2-2t\theta}{2\sigma^2/n}\right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{-\frac{t^2}{2\sigma^2/n}\right\} \exp\left\{-\frac{\theta^2}{2\sigma^2/n}\right\} \exp\left\{\frac{t\theta}{\sigma^2/n}\right\}$$

$$= h(t)c(\theta) \exp[w(\theta)t]$$

where $w(\theta)=\frac{\theta}{\sigma^2/n}$ is an increasing function in θ . Therefore T is MLR property.

Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T>t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

26 / 1

Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T>t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$

Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T>t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$

$$= \Pr\left(Z > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T>t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$

$$= \Pr\left(Z > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

$$\frac{t_0 - \theta_0}{\sigma / \sqrt{n}} = z_\alpha$$

Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T > t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$

$$= \Pr\left(Z > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

$$\frac{t_0 - \theta_0}{\sigma / \sqrt{n}} = z_{\alpha}$$

$$\Rightarrow t_0 = \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$$

Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T>t_0$ where

$$\begin{array}{lcl} \alpha & = & \Pr(T > t_0 | \theta_0) \\ & = & \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right) \\ & = & \Pr\left(Z > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right) \end{array}$$

where $Z \sim \mathcal{N}(0, 1)$.

$$\frac{t_0 - \theta_0}{\sigma / \sqrt{n}} = z_{\alpha}$$

$$\Rightarrow t_0 = \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$$

UMP level α test rejects H_0 if $T = \overline{X} > \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$.

UMP level α test rejects H_0 if $T < t_0$ where

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$
$$= \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

27 / 1

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$

$$= \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$1 - \alpha = \Pr\left(Z \ge \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$= \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$1 - \alpha = \Pr\left(Z \ge \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$\frac{t_0 - \theta_0}{\sigma / \sqrt{n}} = z_{1-\alpha}$$

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \middle| \theta_0\right)$$

$$= \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$1 - \alpha = \Pr\left(Z \ge \frac{t_0 - \theta_0}{\sigma / \sqrt{n}}\right)$$

$$\frac{t_0 - \theta_0}{\sigma / \sqrt{n}} = z_{1-\alpha}$$

$$t_0 = \theta_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} = \theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha}$$

Therefore, the test rejects H_0 if $T < t_0 = \theta - \frac{\sigma}{\sqrt{n}} z_{\alpha}$

 $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^n (X_i - \mu_0)^2$ is sufficient for σ^2 .

28 / 1

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^n (X_i - \mu_0)^2$ is sufficient for σ^2 . To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

28 / 1

 $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^n (X_i - \mu_0)^2$ is sufficient for σ^2 . To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

$$\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$

 $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^n (X_i - \mu_0)^2$ is sufficient for σ^2 . To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

$$\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$
$$\left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_1^2$$

28 / 1

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^n (X_i - \mu_0)^2$ is sufficient for σ^2 . To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

$$\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$

$$\left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_1^2$$

$$Y = T/\sigma^2 = \sum_{i=1}^n \left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_n^2$$

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^n (X_i - \mu_0)^2$ is sufficient for σ^2 . To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

$$\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$

$$\left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_1^2$$

$$Y = T/\sigma^2 = \sum_{i=1}^n \left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_n^2$$

$$f_Y(y) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} y^{\frac{n}{2} - 1} e^{-\frac{y}{2}}$$

$$f_T(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right|$$

$$f_T(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right|$$
$$= \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2}$$

$$f_T(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right|$$

$$= \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2}$$

$$= \frac{t^{\frac{n}{2}-1}}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} e^{-\frac{t}{2\sigma^2}}$$

$$f_T(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right|$$

$$= \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2}$$

$$= \frac{t^{\frac{n}{2}-1}}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} e^{-\frac{t}{2\sigma^2}}$$

$$= h(t) c(\sigma^2) \exp[w(\sigma^2)t]$$

where $w(\sigma^2) = -\frac{1}{2\sigma^2}$ is an increasing function in σ^2 .

29 / 1

$$f_T(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right|$$

$$= \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2}$$

$$= \frac{t^{\frac{n}{2}-1}}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} e^{-\frac{t}{2\sigma^2}}$$

$$= h(t) c(\sigma^2) \exp[w(\sigma^2)t]$$

where $w(\sigma^2)=-\frac{1}{2\sigma^2}$ is an increasing function in σ^2 . Therefore, $T=\sum_{i=1}^n(X_i-\mu_0)^2$ has the MLR property.

By Karlin-Rabin Theorem, UMP level α rejects s H_0 if and only if $T > t_0$ where t_0 is chosen such that $\alpha = \Pr(T > t_0 | \sigma_0^2)$.

$$\Pr(T > t_0 | \sigma_0^2) = \Pr\left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} | \sigma_0^2\right)$$

$$\Pr(T > t_0 | \sigma_0^2) = \Pr\left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} \middle| \sigma_0^2\right)$$

$$\frac{T}{\sigma_0^2} \sim \chi_n^2$$

$$\Pr(T > t_0 | \sigma_0^2) = \Pr\left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} | \sigma_0^2\right)$$

$$\frac{T}{\sigma_0^2} \sim \chi_n^2$$

$$\Pr\left(\chi_n^2 > \frac{t_0}{\sigma_0^2}\right) = \alpha$$

$$\Pr(T > t_0 | \sigma_0^2) = \Pr\left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} \middle| \sigma_0^2\right)$$

$$\frac{T}{\sigma_0^2} \sim \chi_n^2$$

$$\Pr\left(\chi_n^2 > \frac{t_0}{\sigma_0^2}\right) = \alpha$$

$$\frac{t_0}{\sigma_0^2} = \chi_{n,\alpha}^2$$

By Karlin-Rabin Theorem, UMP level α rejects s H_0 if and only if $T>t_0$ where t_0 is chosen such that $\alpha=\Pr(T>t_0|\sigma_0^2)$. Note that $\frac{T}{\sigma^2}\sim\chi_n^2$

$$\Pr(T > t_0 | \sigma_0^2) = \Pr\left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} \middle| \sigma_0^2\right)$$

$$\frac{T}{\sigma_0^2} \sim \chi_n^2$$

$$\Pr\left(\chi_n^2 > \frac{t_0}{\sigma_0^2}\right) = \alpha$$

$$\frac{t_0}{\sigma_0^2} = \chi_{n,\alpha}^2$$

$$t_0 = \sigma_0^2 \chi_{n,\alpha}^2$$

where $\chi_{n,\alpha}^2$ satisfies $\int_{\chi_n^2}^{\infty} f_{\chi_n^2}(x) dx = \alpha$.

Remarks

For many problems, UMP level α test does not exist (Example 8.3.19).

Remarks

- For many problems, UMP level α test does not exist (Example 8.3.19).
- In such cases, we can restrict our search among a subset of tests, for example, all unbiased tests.

Summary

Today

- Uniformly Most Powerful Test
- Neyman-Pearson Lemma
- Monotone Likelihood Ratio
- Karlin-Rabin Theorem

Summary

Today

- Uniformly Most Powerful Test
- Neyman-Pearson Lemma
- Monotone Likelihood Ratio
- Karlin-Rabin Theorem

Next Lecture

- Asymptotics of LRT
- Wald Test