Uniformly Most Powerful Test

Hyun Min Kang

March 28th, 2013
What are the typical steps for constructing a likelihood ratio test?

Is LRT statistic based on sufficient statistic identical to the LRT based on the full data?

When multiple parameters need to be estimated, what is the difference in constructing LRT?

What is unbiased test?
What are the typical steps for constructing a likelihood ratio test?
What are the typical steps for constructing a likelihood ratio test?

Is LRT statistic based on sufficient statistic identical to the LRT based on the full data?
- What are the typical steps for constructing a likelihood ratio test?
- Is LRT statistic based on sufficient statistic identical to the LRT based on the full data?
- When multiple parameters need to be estimated, what is the difference in constructing LRT?
• What are the typical steps for constructing a likelihood ratio test?
• Is LRT statistic based on sufficient statistic identical to the LRT based on the full data?
• When multiple parameters need to be estimated, what is the difference in constructing LRT?
• What is unbiased test?
LRT based on sufficient statistics

Theorem 8.2.4

If $T(X)$ is a sufficient statistic for θ, $\lambda^*(t)$ is the LRT statistic based on T, and $\lambda(x)$ is the LRT statistic based on x then
LRT based on sufficient statistics

Theorem 8.2.4

If $T(X)$ is a sufficient statistic for θ, $\lambda^*(t)$ is the LRT statistic based on T, and $\lambda(x)$ is the LRT statistic based on x then

$$\lambda^*[T(x)] = \lambda(x)$$
LRT based on sufficient statistics

Theorem 8.2.4
If \(T(X) \) is a sufficient statistic for \(\theta \), \(\lambda^*(t) \) is the LRT statistic based on \(T \), and \(\lambda(x) \) is the LRT statistic based on \(x \) then
\[
\lambda^*[T(x)] = \lambda(x)
\]
for every \(x \) in the sample space.
Unbiased Test

Definition

If a test always satisfies

\[\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false}) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true}) \]

Then the test is said to be unbiased.

Alternative Definition

Recall that \((\cdot) = \Pr(\text{reject } H_0)\). A test is unbiased if \((\cdot) = (\cdot)\) for every \(\cdot \in \Omega_0, \cdot \in \Omega_{c0}\).
Unbiased Test

Definition

If a test always satisfies

\[\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true }) \]

Then the test is said to be unbiased.
Unbiased Test

Definition

If a test always satisfies
\[
\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true })
\]

Then the test is said to be unbiased

Alternative Definition

Recall that \(\beta(\theta) = \Pr(\text{reject } H_0) \). A test is unbiased if
Unbiased Test

Definition
If a test always satisfies
\[\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false}) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true}) \]

Then the test is said to be unbiased

Alternative Definition
Recall that \(\beta(\theta) = \Pr(\text{reject } H_0) \). A test is unbiased if
\[\beta(\theta') \geq \beta(\theta) \]
Unbiased Test

Definition
If a test always satisfies
\[\Pr(\text{reject } H_0 \text{ when } H_0 \text{ is false }) \geq \Pr(\text{reject } H_0 \text{ when } H_0 \text{ is true }) \]
Then the test is said to be unbiased

Alternative Definition
Recall that \(\beta(\theta) = \Pr(\text{reject } H_0) \). A test is unbiased if
\[\beta(\theta') \geq \beta(\theta) \]
for every \(\theta' \in \Omega^c_0 \) and \(\theta \in \Omega_0 \).
Example

\(X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)\) where \(\sigma^2\) is known, testing \(H_0 : \theta \leq \theta_0\) vs \(H_1 : \theta > \theta_0\).
Example

\[X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \text{ where } \sigma^2 \text{ is known, testing } H_0 : \theta \leq \theta_0 \text{ vs } H_1 : \theta > \theta_0. \]

LRT test rejects \(H_0 \) if

\[\frac{\bar{x} - \theta_0}{\sigma / \sqrt{n}} > c. \]
Example

\(X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)\) where \(\sigma^2\) is known, testing \(H_0 : \theta \leq \theta_0\) vs \(H_1 : \theta > \theta_0\).

LRT test rejects \(H_0\) if \(\frac{\bar{x} - \theta_0}{\sigma / \sqrt{n}} > c\).

\[
\beta(\theta) = \Pr \left(\frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}} > c \right)
\]
Example

\[X_1, \cdots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, \sigma^2) \text{ where } \sigma^2 \text{ is known, testing } H_0 : \theta \leq \theta_0 \text{ vs } H_1 : \theta > \theta_0. \]

LRT test rejects \(H_0 \) if \(\frac{\bar{x}-\theta_0}{\sigma/\sqrt{n}} > c. \)

\[
\beta(\theta) = \Pr \left(\frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} > c \right) \\
= \Pr \left(\frac{\bar{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} > c \right)
\]
Example

\(X_1, \cdots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, \sigma^2)\) where \(\sigma^2\) is known, testing \(H_0 : \theta \leq \theta_0\) vs \(H_1 : \theta > \theta_0\).

LRT test rejects \(H_0\) if \(\frac{\bar{x} - \theta_0}{\sigma/\sqrt{n}} > c\).

\[
\beta(\theta) = \Pr \left(\frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} > c \right)
\]

\[
= \Pr \left(\frac{\bar{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} > c \right)
\]

\[
= \Pr \left(\frac{\bar{X} - \theta}{\sigma/\sqrt{n}} + \frac{\theta - \theta_0}{\sigma/\sqrt{n}} > c \right)
\]
Example

\(X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)\) where \(\sigma^2\) is known, testing \(H_0 : \theta \leq \theta_0\) vs \(H_1 : \theta > \theta_0\).

LRT test rejects \(H_0\) if \(\frac{\bar{x} - \theta_0}{\sigma/\sqrt{n}} > c\).

\[
\beta(\theta) = \Pr \left(\frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} > c \right)
\]

\[
= \Pr \left(\frac{\bar{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} > c \right)
\]

\[
= \Pr \left(\frac{\bar{X} - \theta}{\sigma/\sqrt{n}} + \frac{\theta - \theta_0}{\sigma/\sqrt{n}} > c \right)
\]

\[
= \Pr \left(\frac{\bar{X} - \theta}{\sigma/\sqrt{n}} > c - \frac{\theta - \theta_0}{\sigma/\sqrt{n}} \right)
\]
Example

$X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, testing $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$.

LRT test rejects H_0 if \[
\frac{\bar{x} - \theta_0}{\sigma / \sqrt{n}} > c.
\]

\[
\beta(\theta) = \Pr \left(\frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}} > c \right) = \Pr \left(\frac{\bar{X} - \theta + \theta - \theta_0}{\sigma / \sqrt{n}} > c \right) = \Pr \left(\frac{\bar{X} - \theta}{\sigma / \sqrt{n}} + \frac{\theta - \theta_0}{\sigma / \sqrt{n}} > c \right) = \Pr \left(\frac{\bar{X} - \theta}{\sigma / \sqrt{n}} > c - \frac{\theta - \theta_0}{\sigma / \sqrt{n}} \right)
\]

Note that $X_i \sim \mathcal{N}(\theta, \sigma^2)$, $\bar{X} \sim \mathcal{N}(\theta, \sigma^2 / n)$, and $\frac{\bar{X} - \theta}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$.
Example (cont’d)

Therefore, for $Z \sim \mathcal{N}(0, 1)$

$$
\beta(\theta) = \Pr \left(Z > c + \frac{\theta_0 - \theta}{\sigma / \sqrt{n}} \right)
$$
Example (cont’d)

Therefore, for \(Z \sim \mathcal{N}(0, 1) \)

\[
\beta(\theta) = \Pr \left(Z > c + \frac{\theta_0 - \theta}{\sigma / \sqrt{n}} \right)
\]

Because the power function is increasing function of \(\theta \),

\[
\beta(\theta') \geq \beta(\theta)
\]
Example (cont’d)

Therefore, for $Z \sim \mathcal{N}(0, 1)$

$$\beta(\theta) = \Pr \left(Z > c + \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} \right)$$

Because the power function is increasing function of θ,

$$\beta(\theta') \geq \beta(\theta)$$

always holds when $\theta \leq \theta_0 < \theta'$. Therefore the LRTs are unbiased.
Uniformly Most Powerful Test (UMP)

Definition

Let \(C \) be a class of tests between \(H_0 : \theta \in \Omega \) vs \(H_1 : \theta \in \Omega_0^c \). A test in \(C \), with power function \(\beta(\theta) \) is uniformly most powerful (UMP) test in class \(C \) if \(\beta(\theta) \geq \beta'(\theta) \) for every \(\theta \in \Omega_0^c \) and every \(\beta'(\theta) \), which is a power function of another test in \(C \).
Consider \mathcal{C} be the set of all the level α test. The UMP test in this class is called a UMP level α test.
Consider \mathcal{C} be the set of all the level α test. The UMP test in this class is called a UMP level α test.

UMP level α test has the smallest type II error probability for any $\theta \in \Omega_0^c$ in this class.
Consider C be the set of all the level α test. The UMP test in this class is called a UMP level α test.

UMP level α test has the smallest type II error probability for any $\theta \in \Omega^c_0$ in this class.

- A UMP test is "uniform" in the sense that it is most powerful for every $\theta \in \Omega^c_0$.
Consider \mathcal{C} be the set of all the level α test. The UMP test in this class is called a UMP level α test.

UMP level α test has the smallest type II error probability for any $\theta \in \Omega_c^0$ in this class.

- A UMP test is "uniform" in the sense that it is most powerful for every $\theta \in \Omega_c^0$.
- For simple hypothesis such as $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, UMP level α test always exists.
Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0 : \theta = \theta_0$ vs. $H_1 : \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(x|\theta_i)$, $i = 0, 1$, using a test with rejection region R that satisfies

For some $k > 0$ and $\beta = \Pr(X^2 \in R | \theta = \theta_0)$, Then,

- (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level test
- (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with $k > 0$, then every UMP level test is a size test (satisfies 8.3.2), and every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying $\Pr(X^2 \in A | \theta = \theta_0) = \Pr(X^2 \in A | \theta = \theta_1) = 0$.
Neyman-Pearson Lemma

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where the pdf or pmf corresponding the \(\theta_i \) is \(f(x|\theta_i) \), \(i = 0, 1 \), using a test with rejection region \(R \) that satisfies

\[
x \in R \quad \text{if} \quad f(x|\theta_1) > kf(x|\theta_0)
\] \hspace{1cm} (8.3.1) and

For some \(k > 0 \) and \(\alpha = \Pr(X \in R| \theta_0) \), Then,

- **(Sufficiency)** Any test that satisfies 8.3.1 and 8.3.2 is a UMP level test
- **(Necessity)** if there exist a test satisfying 8.3.1 and 8.3.2 with \(k > 0 \), then every UMP level test is a size test (satisfies 8.3.2), and every UMP level test satisfies 8.3.1 except perhaps on a set \(A \) satisfying \(\Pr(X \in A| \theta_0) = \Pr(X \in A| \theta_1) = 0 \).
Neyman-Pearson Lemma

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where the pdf or pmf corresponding the \(\theta_i \) is \(f(x|\theta_i) \), \(i = 0, 1 \), using a test with rejection region \(R \) that satisfies

\[
\begin{align*}
x \in R & \quad \text{if } f(x|\theta_1) > kf(x|\theta_0) \\
x \in R^c & \quad \text{if } f(x|\theta_1) < kf(x|\theta_0)
\end{align*}
\]

(8.3.1) and (8.3.2)
Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0 : \theta = \theta_0$ vs. $H_1 : \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(x|\theta_i)$, $i = 0, 1$, using a test with rejection region R that satisfies

\[
x \in R \quad \text{if } f(x|\theta_1) > kf(x|\theta_0) \quad (8.3.1) \text{ and }
\]

\[
x \in R^c \quad \text{if } f(x|\theta_1) < kf(x|\theta_0) \quad (8.3.2)
\]

For some $k \geq 0$ and $\alpha = \Pr(X \in R|\theta_0)$, Then,
Neyman-Pearson Lemma

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0 : \theta = \theta_0$ vs. $H_1 : \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(x|\theta_i)$, $i = 0, 1$, using a test with rejection region R that satisfies

$$ x \in R \quad \text{if} \quad f(x|\theta_1) > kf(x|\theta_0) \quad (8.3.1) \quad \text{and} $$

$$ x \in R^c \quad \text{if} \quad f(x|\theta_1) < kf(x|\theta_0) \quad (8.3.2) $$

For some $k \geq 0$ and $\alpha = \Pr(X \in R|\theta_0)$, Then,

- (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α test.
Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0 : \theta = \theta_0$ vs. $H_1 : \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(x|\theta_i)$, $i = 0, 1$, using a test with rejection region R that satisfies

\[
\begin{align*}
x \in R & \quad \text{if } f(x|\theta_1) > kf(x|\theta_0) \quad (8.3.1) \text{ and } \\
x \in R^c & \quad \text{if } f(x|\theta_1) < kf(x|\theta_0) \quad (8.3.2)
\end{align*}
\]

For some $k \geq 0$ and $\alpha = \Pr(X \in R|\theta_0)$, Then,

- (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α test
- (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with $k > 0$, then every UMP level α test is a size α test (satisfies 8.3.2), and every UMP level α test satisfies 8.3.1 except perhaps on a set A satisfying $\Pr(X \in A|\theta_0) = \Pr(X \in A|\theta_1) = 0$.
Example of Neyman-Pearson Lemma

Let $X \in \text{Binomial}(2, \theta)$, and consider testing

$H_0: \theta = 0.5$ vs. $H_1: \theta = 0.75$.

Calculating the ratios of the pmfs given,

$f(0 \mid 1) / f(0 \mid 0) = 1/4$;

$f(1 \mid 1) / f(1 \mid 0) = 3/4$;

$f(2 \mid 1) / f(2 \mid 0) = 9/4$.

Suppose that $k < 1/4$, then the rejection region $R = \{0; 1; 2\}$, and UMP level test always rejects H_0. Therefore $\Pr(\text{reject} \mid \theta = 0.5) = 1$.

Suppose that $1/4 < k < 3/4$, then $R = \{1; 2\}$, and UMP level test rejects H_0 if $x = 1$ or $x = 2$. Therefore $\Pr(\text{reject} \mid \theta = 0.5) = \Pr(x = 1 \mid \theta = 0.5) + \Pr(x = 2 \mid \theta = 0.5) = 3/4$.
Example of Neyman-Pearson Lemma

Let $X \sim \text{Binomial}(2, \theta)$, and consider testing
$H_0 : \theta = \theta_0 = 1/2$ vs. $H_1 : \theta = \theta_1 = 3/4$.
Example of Neyman-Pearson Lemma

Let $X \sim \text{Binomial}(2, \theta)$, and consider testing $H_0 : \theta = \theta_0 = 1/2$ vs. $H_1 : \theta = \theta_1 = 3/4$. Calculating the ratios of the pmfs given,

\[
\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \quad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \quad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}
\]
Example of Neyman-Pearson Lemma

Let $X \sim \text{Binomial}(2, \theta)$, and consider testing

$H_0 : \theta = \theta_0 = 1/2 \text{ vs. } H_1 : \theta = \theta_1 = 3/4$.

Calculating the ratios of the pmfs given,

\[
\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \quad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \quad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}
\]

- Suppose that $k < 1/4$, then the rejection region $R = \{0, 1, 2\}$, and UMP level α test always rejects H_0. Therefore

$\alpha = \Pr(\text{reject } H_0|\theta = \theta_0 = 1/2) = 1$.

Example of Neyman-Pearson Lemma

Let $X \sim \text{Binomial}(2, \theta)$, and consider testing
$H_0 : \theta = \theta_0 = 1/2$ vs. $H_1 : \theta = \theta_1 = 3/4$.

Calculating the ratios of the pmfs given,

$$
\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \quad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \quad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}
$$

- Suppose that $k < 1/4$, then the rejection region $R = \{0, 1, 2\}$, and
 UMP level α test always rejects H_0. Therefore
 $\alpha = \Pr(\text{reject } H_0|\theta = \theta_0 = 1/2) = 1$.

- Suppose that $1/4 < k < 3/4$, then $R = \{1, 2\}$, and UMP level α test
 rejects H_0 if $x = 1$ or $x = 2$.
Example of Neyman-Pearson Lemma

Let $X \in \text{Binomial}(2, \theta)$, and consider testing

$H_0 : \theta = \theta_0 = 1/2$ vs. $H_1 : \theta = \theta_1 = 3/4$.

Calculating the ratios of the pmfs given,

\[
\frac{f(0|\theta_1)}{f(0|\theta_0)} = \frac{1}{4}, \quad \frac{f(1|\theta_1)}{f(1|\theta_0)} = \frac{3}{4}, \quad \frac{f(2|\theta_1)}{f(2|\theta_0)} = \frac{9}{4}.
\]

- Suppose that $k < 1/4$, then the rejection region $R = \{0, 1, 2\}$, and UMP level α test always rejects H_0. Therefore

 $\alpha = \Pr(\text{reject } H_0|\theta = \theta_0 = 1/2) = 1$.

- Suppose that $1/4 < k < 3/4$, then $R = \{1, 2\}$, and UMP level α test rejects H_0 if $x = 1$ or $x = 2$.

 $\alpha = \Pr(\text{reject }|\theta = 1/2) = \Pr(x = 1|\theta = 1/2) + \Pr(x = 2|\theta = 1/2) = \frac{3}{4}$.
Example of Neyman-Pearson Lemma (cont’d)

- Suppose that $3/4 < k < 9/4$, then UMP level α test rejects H_0 if $x = 2$
Example of Neyman-Pearson Lemma (cont’d)

- Suppose that $3/4 < k < 9/4$, then UMP level α test rejects H_0 if $x = 2$

\[\alpha = \Pr(\text{reject} | \theta = 1/2) = \Pr(x = 2 | \theta = 1/2) = \frac{1}{4} \]
Example of Neyman-Pearson Lemma (cont’d)

- Suppose that $3/4 < k < 9/4$, then UMP level α test rejects H_0 if $x = 2$

\[
\alpha = \Pr(\text{reject} | \theta = 1/2) = \Pr(x = 2 | \theta = 1/2) = \frac{1}{4}
\]

- If $k > 9/4$ the UMP level α test always not reject H_0, and $\alpha = 0$
Example - Normal Distribution

\(X_i \overset{i.i.d.}{\sim} \mathcal{N}(\theta, \sigma^2) \) where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).
Example - Normal Distribution

\(X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \) where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).

\[
f(x|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^2} \exp \left\{ -\frac{(x_i - \theta)^2}{2\sigma^2} \right\} \right]
\]
Example - Normal Distribution

\(X_i \overset{	ext{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \) where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).

\[
f(x|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^2} \exp \left\{ -\frac{(x_i - \theta)^2}{2\sigma^2} \right\} \right]
\]

\[
f(x|\theta_1) = \exp \left\{ -\frac{\sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} \right\}
\]

\[
\frac{f(x|\theta_1)}{f(x|\theta_0)} = \frac{\exp \left\{ -\sum_{i=1}^{n}(x_i - \theta_1)^2 \right\}}{\exp \left\{ -\sum_{i=1}^{n}(x_i - \theta_0)^2 \right\}}
\]
Example - Normal Distribution

\(X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \) where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).

\[
\begin{align*}
 f(x|\theta) &= \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^2} \exp \left\{ -\frac{(x_i - \theta)^2}{2\sigma^2} \right\} \right] \\
 \frac{f(x|\theta_1)}{f(x|\theta_0)} &= \frac{\exp \left\{ -\frac{\sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} \right\}}{\exp \left\{ -\frac{\sum_{i=1}^{n}(x_i - \theta_0)^2}{2\sigma^2} \right\}} \\
 &= \exp \left[-\frac{\sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} + \frac{\sum_{i=1}^{n}(x_i - \theta_0)^2}{2\sigma^2} \right]
\end{align*}
\]
Example - Normal Distribution

$X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider testing $H_0 : \theta = \theta_0$ vs. $H_1 : \theta = \theta_1$ where $\theta_1 > \theta_0$.

\[
f(x|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi \sigma^2} \exp \left\{ -\frac{(x_i - \theta)^2}{2\sigma^2} \right\} \right]
\]

\[
\frac{f(x|\theta_1)}{f(x|\theta_0)} = \frac{\exp \left\{ -\frac{\sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} \right\}}{\exp \left\{ -\frac{\sum_{i=1}^{n}(x_i - \theta_0)^2}{2\sigma^2} \right\}}
\]

\[
= \exp \left[-\frac{\sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} + \frac{\sum_{i=1}^{n}(x_i - \theta_0)^2}{2\sigma^2} \right]
\]

\[
= \exp \left[\frac{\sum_{i=1}^{n}(x_i - \theta_0)^2 - \sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} \right]
\]
Example - Normal Distribution

$X_i \overset{i.i.d.}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider testing $H_0 : \theta = \theta_0$ vs. $H_1 : \theta = \theta_1$ where $\theta_1 > \theta_0$.

$$f(x|\theta) = \prod_{i=1}^{n} \left[\frac{1}{2\pi\sigma^2} \exp \left\{ -\frac{(x_i - \theta)^2}{2\sigma^2} \right\} \right]$$

$$\frac{f(x|\theta_1)}{f(x|\theta_0)} = \frac{\exp \left\{ -\frac{\sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} \right\}}{\exp \left\{ -\frac{\sum_{i=1}^{n}(x_i - \theta_0)^2}{2\sigma^2} \right\}}$$

$$= \exp \left[-\frac{\sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} + \frac{\sum_{i=1}^{n}(x_i - \theta_0)^2}{2\sigma^2} \right]$$

$$= \exp \left[\frac{\sum_{i=1}^{n}(x_i - \theta_0)^2 - \sum_{i=1}^{n}(x_i - \theta_1)^2}{2\sigma^2} \right]$$

$$= \exp \left[\frac{n(\theta_0^2 - \theta_1^2) + 2\sum_{i=1}^{n}x_i(\theta_1 - \theta_0)}{2\sigma^2} \right]$$
Example (cont’d)

UMP level α test rejects if

$$\exp \left[\frac{n(\theta_0^2 - \theta_1)^2 + 2 \sum_{i=1}^{n} x_i(\theta_1 - \theta_0)}{2\sigma^2} \right] > k$$
Example (cont’d)

UMP level α test rejects if

$$\exp \left[\frac{n(\theta_0^2 - \theta_1)^2 + 2 \sum_{i=1}^{n} x_i(\theta_1 - \theta_0)}{2\sigma^2} \right] > k$$

$$\iff \frac{n(\theta_0^2 - \theta_1)^2 + 2 \sum_{i=1}^{n} x_i(\theta_1 - \theta_0)}{2\sigma^2} > \log k$$
Example (cont’d)

UMP level α test rejects if

$$\exp \left[\frac{n(\theta_0^2 - \theta_1)^2 + 2 \sum_{i=1}^{n} x_i(\theta_1 - \theta_0)}{2\sigma^2} \right] > k$$

$$\iff \frac{n(\theta_0^2 - \theta_1)^2 + 2 \sum_{i=1}^{n} x_i(\theta_1 - \theta_0)}{2\sigma^2} > \log k$$

$$\iff \sum_{i=1}^{n} x_i > k^*$$
UMP level α test rejects if

$$\exp \left[\frac{n(\theta_0^2 - \theta_1)^2 + 2 \sum_{i=1}^{n} x_i(\theta_1 - \theta_0)}{2\sigma^2} \right] > k$$

$$\Leftrightarrow \frac{n(\theta_0^2 - \theta_1)^2 + 2 \sum_{i=1}^{n} x_i(\theta_1 - \theta_0)}{2\sigma^2} > \log k$$

$$\Leftrightarrow \sum_{i=1}^{n} x_i > k^*$$

$$\alpha = \Pr \left(\sum_{i=1}^{n} X_i > k^* | \theta_0 \right)$$
Example (cont’d)

Under H_0,

$$X_i \sim \mathcal{N}(\theta_0, \sigma^2)$$
Example (cont’d)

Under H_0,

$$X_i \sim \mathcal{N}(\theta_0, \sigma^2)$$

$$\bar{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$$
Example (cont’d)

Under H_0,

\[X_i \sim \mathcal{N}(\theta_0, \sigma^2) \]
\[\bar{X} \sim \mathcal{N}(\theta_0, \sigma^2/n) \]
\[\frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1) \]
Example (cont’d)

Under H_0,

\[
X_i \sim \mathcal{N}(\theta_0, \sigma^2) \\
\bar{X} \sim \mathcal{N}(\theta_0, \sigma^2 / n) \\
\frac{\bar{X} - \theta_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)
\]

\[
\alpha = \Pr \left(\sum_{i=1}^{n} X_i > k^* | \theta_0 \right) \\
= \Pr \left(Z > \frac{k^* / n - \theta_0}{\sigma / \sqrt{n}} \right)
\]

where $Z \sim \mathcal{N}(0, 1)$.

Example (cont’d)

\[
\frac{k^* / n - \theta_0}{\sigma / \sqrt{n}} = z_\alpha
\]
Example (cont’d)

\[\frac{k^*/n - \theta_0}{\sigma/\sqrt{n}} = z_\alpha \]

\[k^* = n \left(\theta_0 + z_\alpha \frac{\sigma}{\sqrt{n}} \right) \]
Example (cont’d)

\[
\frac{k^*/n - \theta_0}{\sigma/\sqrt{n}} = z_\alpha
\]

\[k^* = n \left(\theta_0 + z_\alpha \frac{\sigma}{\sqrt{n}} \right)\]

Thus, the UMP level \(\alpha \) test reject if \(\sum X_i > k^* \), or equivalently, reject \(H_0 \) if \(\bar{X} > k^*/n = \theta_0 + z_\alpha \sigma/\sqrt{n} \)
Corollary 8.3.13

Consider $H_0 : \theta = \theta_0$ vs $H_1 : \theta = \theta_1$. Suppose $T(X)$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0, 1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies
Corollary 8.3.13

Consider $H_0 : \theta = \theta_0$ vs $H_1 : \theta = \theta_1$. Suppose $T(X)$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0, 1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies

$$t \in S \text{ if } g(t|\theta_1) > k \cdot g(t|\theta_0)$$

and

$$t \not\in S \text{ if } g(t|\theta_1) < k \cdot g(t|\theta_0)$$
Corollary 8.3.13

Consider $H_0 : \theta = \theta_0$ vs $H_1 : \theta = \theta_1$. Suppose $T(X)$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0, 1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies

$$
t \in S \quad \text{if} \quad g(t|\theta_1) > k \cdot g(t|\theta_0) \quad \text{and}
$$
$$
t \in S^c \quad \text{if} \quad g(t|\theta_1) < k \cdot g(t|\theta_0)
$$

For some $k > 0$ and $\alpha = \Pr(T \in S | \theta_0)$.
Corollary 8.3.13

Consider $H_0 : \theta = \theta_0$ vs $H_1 : \theta = \theta_1$. Suppose $T(X)$ is a sufficient statistic for θ and $g(t|\theta_i)$ is the pdf or pmf of T. Corresponding $\theta_i, i \in \{0, 1\}$. Then any test based on T with rejection region S is a UMP level α test if it satisfies

\[
\begin{align*}
 t &\in S & \text{if } g(t|\theta_1) > k \cdot g(t|\theta_0) \text{ and } \\
 t &\in S^c & \text{if } g(t|\theta_1) < k \cdot g(t|\theta_0)
\end{align*}
\]

For some $k > 0$ and $\alpha = \Pr(T \in S|\theta_0)$
Proof

The rejection region in the sample space is

\[R = \{ \mathbf{x} : T(\mathbf{x}) = t \in S \} \]
Proof

The rejection region in the sample space is

\[R = \{ \mathbf{x} : T(\mathbf{x}) = t \in S \} \]

\[= \{ \mathbf{x} : g(T(\mathbf{x})|\theta_1) > k g(T(\mathbf{x})|\theta_0) \} \]
Proof

The rejection region in the sample space is

\[R = \{ \mathbf{x} : T(\mathbf{x}) = t \in S \} \]

\[= \{ \mathbf{x} : g(T(\mathbf{x})|\theta_1) > kg(T(\mathbf{x})|\theta_0) \} \]

By Factorization Theorem:

\[f(\mathbf{x}|\theta_i) = h(\mathbf{x})g(T(\mathbf{x})|\theta_i) \]
Proof

The rejection region in the sample space is

\[R = \{ \mathbf{x} : T(\mathbf{x}) = t \in S \} \]
\[= \{ \mathbf{x} : g(T(\mathbf{x})|\theta_1) > k g(T(\mathbf{x})|\theta_0) \} \]

By Factorization Theorem:

\[f(\mathbf{x}|\theta_i) = h(\mathbf{x}) g(T(\mathbf{x})|\theta_i) \]
\[R = \{ \mathbf{x} : g(T(\mathbf{x})|\theta_1) h(x) > k g(T(\mathbf{x})|\theta_0) h(x) \} \]
Proof

The rejection region in the sample space is

\[R = \{ \mathbf{x} : T(\mathbf{x}) = t \in S \} \]
\[= \{ \mathbf{x} : g(T(\mathbf{x})|\theta_1) > k g(T(\mathbf{x})|\theta_0) \} \]

By Factorization Theorem:

\[f(\mathbf{x}|\theta_i) = h(\mathbf{x}) g(T(\mathbf{x})|\theta_i) \]
\[R = \{ \mathbf{x} : g(T(\mathbf{x})|\theta_1) h(x) > k g(T(\mathbf{x})|\theta_0) h(x) \} \]
\[= \{ \mathbf{x} : f(\mathbf{x}|\theta_1) > k f(\mathbf{x}|\theta_0) \} \]
Proof

The rejection region in the sample space is

\[R = \{ \mathbf{x} : T(\mathbf{x}) = t \in S \} \]
\[= \{ \mathbf{x} : g(T(\mathbf{x})|\theta_1) > kg(T(\mathbf{x})|\theta_0) \} \]

By Factorization Theorem:

\[f(\mathbf{x}|\theta_i) = h(\mathbf{x})g(T(\mathbf{x})|\theta_i) \]
\[R = \{ \mathbf{x} : g(T(\mathbf{x})|\theta_1)h(x) > kg(T(\mathbf{x})|\theta_0)h(x) \} \]
\[= \{ \mathbf{x} : f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0) \} \]

By Neyman-Pearson Lemma, this test is the UMP level \(\alpha \) test, and

\[\alpha = \Pr(\mathbf{X} \in R) = \Pr(T(\mathbf{X}) \in S|\theta_0) \]
Revisiting the Example of Normal Distribution

\[X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \] where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).
Revisiting the Example of Normal Distribution

\[X_i \sim \text{i.i.d. } N(\theta, \sigma^2) \] where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).

\(T = \bar{X} \) is a sufficient statistic for \(\theta \), where \(T \sim N(\theta, \sigma^2/n) \).
Revisiting the Example of Normal Distribution

\(X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \) where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).

\(T = \bar{X} \) is a sufficient statistic for \(\theta \), where \(T \sim \mathcal{N}(\theta, \sigma^2/n) \).

\[
g(t|\theta_i) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{(t - \theta_i)^2}{2\sigma^2/n} \right\}
\]
Revisiting the Example of Normal Distribution

\(X_i \sim_{i.i.d.} \mathcal{N}(\theta, \sigma^2)\) where \(\sigma^2\) is known. Consider testing \(H_0 : \theta = \theta_0\) vs. \(H_1 : \theta = \theta_1\) where \(\theta_1 > \theta_0\).

\(T = \bar{X}\) is a sufficient statistic for \(\theta\), where \(T \sim \mathcal{N}(\theta, \sigma^2/n)\).

\[
g(t|\theta_i) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{(t - \theta_i)^2}{2\sigma^2/n} \right\}
\]

\[
g(t|\theta_1) = \frac{\exp \left\{ -\frac{(t - \theta_1)^2}{2\sigma^2/n} \right\}}{\exp \left\{ -\frac{(t - \theta_0)^2}{2\sigma^2/n} \right\}}
\]
Revisiting the Example of Normal Distribution

\(X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \) where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).

\(T = \overline{X} \) is a sufficient statistic for \(\theta \), where \(T \sim \mathcal{N}(\theta, \sigma^2/n) \).

\[
\begin{align*}
g(t|\theta_i) &= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{(t - \theta_i)^2}{2\sigma^2/n} \right\} \\
g(t|\theta_1) &= \exp \left\{ -\frac{(t - \theta_1)^2}{2\sigma^2/n} \right\} \\
g(t|\theta_0) &= \exp \left\{ -\frac{(t - \theta_0)^2}{2\sigma^2/n} \right\} \\
n &= \exp \left\{ -\frac{1}{2\sigma^2/n} \left[(t - \theta_1)^2 - (t - \theta_0)^2 \right] \right\}
\end{align*}
\]
Revisiting the Example of Normal Distribution

\(X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \) where \(\sigma^2 \) is known. Consider testing \(H_0 : \theta = \theta_0 \) vs. \(H_1 : \theta = \theta_1 \) where \(\theta_1 > \theta_0 \).

\(T = \overline{X} \) is a sufficient statistic for \(\theta \), where \(T \sim \mathcal{N}(\theta, \sigma^2/n) \).

\[
\begin{align*}
g(t|\theta_i) &= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left\{ -\frac{(t - \theta_i)^2}{2\sigma^2/n} \right\} \\
g(t|\theta_1) &= \frac{\exp\left\{ -\frac{(t - \theta_1)^2}{2\sigma^2/n} \right\}}{\exp\left\{ -\frac{(t - \theta_0)^2}{2\sigma^2/n} \right\}} \\
&= \exp\left\{ -\frac{1}{2\sigma^2/n} \left[(t - \theta_1)^2 - (t - \theta_0)^2 \right] \right\} \\
&= \exp\left\{ -\frac{1}{2\sigma^2/n} \left[\theta_1^2 - \theta_0^2 - 2t(\theta_1 - \theta_0) \right] \right\}
\end{align*}
\]
Revisiting the Example (cont’d)

UMP level α test reject if

$$\exp \left\{ -\frac{1}{2\sigma^2/n} \left[\theta_1^2 - \theta_0^2 - 2t(\theta_1 - \theta_0) \right] \right\} > k$$
Revisiting the Example (cont’d)

UMP level \(\alpha \) test reject if

\[
\exp \left\{ -\frac{1}{2\sigma^2/n} \left[\theta_1^2 - \theta_0^2 - 2t(\theta_1 - \theta_0) \right] \right\} > k
\]

\[\iff \frac{1}{2\sigma^2/n} \left[-\left(\theta_1^2 - \theta_0^2 \right) + 2t(\theta_1 - \theta_0) \right] > \log k\]
Revisiting the Example (cont’d)

UMP level α test reject if

$$
\exp \left\{ -\frac{1}{2\sigma^2/n} \left[\theta_1^2 - \theta_0^2 - 2t(\theta_1 - \theta_0) \right] \right\} > k
$$

$$
\iff \quad \frac{1}{2\sigma^2/n} \left[-(\theta_1^2 - \theta_0^2) + 2t(\theta_1 - \theta_0) \right] > \log k
$$

$$
\iff \quad \bar{X} = t > k^*
$$
Under H_0, $\bar{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$. k^* satisfies
Revisiting the Example (cont’d)

Under H_0, $\bar{X} \sim N(\theta_0, \sigma^2/n)$. k^* satisfies

$$\Pr(\text{reject } H_0 | \theta_0) = \alpha$$
Revisiting the Example (cont’d)

Under H_0, $\bar{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$. k^* satisfies

$$\Pr(\text{reject } H_0|\theta_0) = \alpha$$

$$\alpha = \Pr(\bar{X} > k^*|\theta_0)$$
Under H_0, $\bar{X} \sim N(\theta_0, \sigma^2/n)$. k^* satisfies

$$
\Pr(\text{reject } H_0 | \theta_0) = \alpha \\
\alpha = \Pr(\bar{X} > k^* | \theta_0) \\
= \Pr \left(\frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}} \right)
$$
Revisiting the Example (cont’d)

Under \(H_0, \bar{X} \sim \mathcal{N}(\theta_0, \sigma^2/n) \). \(k^* \) satisfies

\[
\begin{align*}
\Pr(\text{reject } H_0|\theta_0) &= \alpha \\
\alpha &= \Pr(\bar{X} > k^*|\theta_0) \\
&= \Pr \left(\frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}} \right) \\
&= \Pr \left(Z > \frac{k^* - \theta_0}{\sigma/\sqrt{n}} \right)
\end{align*}
\]
Under H_0, $\overline{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$. k^* satisfies

$$\Pr(\text{reject } H_0 | \theta_0) = \alpha$$

$$\alpha = \Pr(\overline{X} > k^* | \theta_0)$$

$$= \Pr \left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}} \right)$$

$$= \Pr \left(Z > \frac{k^* - \theta_0}{\sigma/\sqrt{n}} \right)$$

$$\frac{k^* - \theta_0}{\sigma/\sqrt{n}} = z_\alpha$$
Revisiting the Example (cont’d)

Under H_0, $\overline{X} \sim \mathcal{N}(\theta_0, \sigma^2/n)$. k^* satisfies

$$
\Pr(\text{reject } H_0 | \theta_0) = \alpha \\
\alpha = \Pr(\overline{X} > k^* | \theta_0) \\
= \Pr \left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} > \frac{k^* - \theta_0}{\sigma/\sqrt{n}} \right) \\
= \Pr \left(Z > \frac{k^* - \theta_0}{\sigma/\sqrt{n}} \right) \\
\frac{k^* - \theta_0}{\sigma/\sqrt{n}} = z_\alpha \\
k^* = \theta_0 + z_\alpha \frac{\sigma}{n}$$
Monotone Likelihood Ratio

Definition

A family of pdfs or pmfs \(\{g(t|\theta) : \theta \in \Omega\} \) for a univariate random variable \(T \) with real-valued parameter \(\theta \) have a monotone likelihood ratio if

\[
\frac{g(t|\theta_2)}{g(t|\theta_1)}
\]

is an increasing (or non-decreasing) function of \(t \) for every \(\theta_2 > \theta_1 \) on \(\{t : g(t|\theta_1) > 0 \text{ or } g(t|\theta_2) > 0\} \).
Monotone Likelihood Ratio

Definition

A family of pdfs or pmfs \(\{ g(t|\theta) : \theta \in \Omega \} \) for a univariate random variable \(T \) with real-valued parameter \(\theta \) have a monotone likelihood ratio if

\[
\frac{g(t|\theta_2)}{g(t|\theta_1)}
\]

is an increasing (or non-decreasing) function of \(t \) for every \(\theta_2 > \theta_1 \) on \(\{ t : g(t|\theta_1) > 0 \text{ or } g(t|\theta_2) > 0 \} \).

Note: we may define MLR using decreasing function of \(t \). But all following theorems are stated according to the definition.
Example of Monotone Likelihood Ratio

- Normal, Poisson, Binomial have the MLR Property (Exercise 8.25)
Example of Monotone Likelihood Ratio

- Normal, Poisson, Binomial have the MLR Property (Exercise 8.25)
- If T is from an exponential family with the pdf or pmf

$$g(t|\theta) = h(t)c(\theta) \exp[w(\theta) \cdot t]$$

Then T has an MLR if $w(\theta)$ is a non-decreasing function of θ.
Proof

Suppose that $\theta_2 > \theta_1$.
Proof

Suppose that $\theta_2 > \theta_1$.

\[
\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{h(t)c(\theta_2) \exp[w(\theta_2)t]}{h(t)c(\theta_1) \exp[w(\theta_1)t]}
\]
Proof

Suppose that $\theta_2 > \theta_1$.

\[
\begin{align*}
\frac{g(t|\theta_2)}{g(t|\theta_1)} &= \frac{h(t) c(\theta_2) \exp[w(\theta_2) t]}{h(t) c(\theta_1) \exp[w(\theta_1) t]} \\
&= \frac{c(\theta_2)}{c(\theta_1)} \exp[\{w(\theta_2) - w(\theta_1)\} t]
\end{align*}
\]
Proof

Suppose that $\theta_2 > \theta_1$.

$$\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{h(t) c(\theta_2) \exp[w(\theta_2)t]}{h(t) c(\theta_1) \exp[w(\theta_1)t]}$$

$$= \frac{c(\theta_2)}{c(\theta_1)} \exp[\{w(\theta_2) - w(\theta_1)\}t]$$

If $w(\theta)$ is a non-decreasing function of θ, then $w(\theta_2) - w(\theta_1) \geq 0$ and
Proof

Suppose that \(\theta_2 > \theta_1 \).

\[
\frac{g(t|\theta_2)}{g(t|\theta_1)} = \frac{h(t) c(\theta_2) \exp[w(\theta_2) t]}{h(t) c(\theta_1) \exp[w(\theta_1) t]}
= \frac{c(\theta_2)}{c(\theta_1)} \exp[\{w(\theta_2) - w(\theta_1)\} t]
\]

If \(w(\theta) \) is a non-decreasing function of \(\theta \), then \(w(\theta_2) - w(\theta_1) \geq 0 \) and \(\exp[\{w(\theta_2) - w(\theta_1)\} t] \) is an increasing function of \(t \). Therefore, \(\frac{g(t|\theta_2)}{g(t|\theta_1)} \) is a non-decreasing function of \(t \), and \(T \) has MLR if \(w(\theta) \) is a non-decreasing function of \(\theta \).
Theorem 8.1.17

Suppose $T(X)$ is a sufficient statistic for θ and the family $\{g(t|\theta) : \theta \in \Omega\}$ is an MLR family. Then
Karlin-Rabin Theorem

Theorem 8.1.17

Suppose $T(X)$ is a sufficient statistic for θ and the family $\{g(t|\theta) : \theta \in \Omega\}$ is an MLR family. Then

1. For testing $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$, the UMP level α test is given by rejecting H_0 if and only if $T > t_0$ where $\alpha = \Pr(T > t_0|\theta_0)$.

Hyun Min Kang

Biostatistics 602 - Lecture 20

March 28th, 2013
Karlin-Rabin Theorem

Theorem 8.1.17

Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and the family $\{g(t|\theta) : \theta \in \Omega\}$ is an MLR family. Then

1. For testing $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$, the UMP level α test is given by rejecting H_0 if and only if $T > t_0$ where $\alpha = \Pr(T > t_0|\theta_0)$.

2. For testing $H_0 : \theta \geq \theta_0$ vs $H_1 : \theta < \theta_0$, the UMP level α test is given by rejecting H_0 if and only if $T < t_0$ where $\alpha = \Pr(T < t_0|\theta_0)$.

Example Application of Karlin-Rabin Theorem

Let $X_i \sim \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$.

$T(X) = \overline{X}$ is a sufficient statistic for θ, and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$g(t_j) = \frac{1}{\sqrt{2\pi \sigma^2/n}} \exp \left\{ \frac{(t_j - \theta)^2}{2\sigma^2/n} \right\} \frac{1}{\sqrt{2\pi \sigma^2/n}} \exp \left\{ \frac{t_j^2}{2\sigma^2/n} \right\} \exp \left\{ \frac{\theta^2}{2\sigma^2/n} \right\} = h(t_j)c(\theta) \exp [w(\theta)t_j]$$

where $w(\theta) = \frac{\theta^2}{2\sigma^2/n}$ is an increasing function in θ. Therefore T is MLR property.
Example Application of Karlin-Rabin Theorem

Let $X_i \overset{i.i.d.}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$.

$T(X) = \bar{X}$ is a sufficient statistic for θ, and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$\sqrt{2 \sigma^2 / n} \exp\left\{ -\frac{1}{2} \frac{\theta^2}{\sigma^2} \right\} = h(t) c \left(\frac{\theta}{\sigma} \right) \exp\left[w(t) \frac{\theta}{\sigma} \right]$ where $w(t) = \frac{\theta}{\sigma}$ is an increasing function in θ. Therefore T is MLR property.
Example Application of Karlin-Rabin Theorem

Let \(X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2) \) where \(\sigma^2 \) is known, Find the UMP level \(\alpha \) test for \(H_0 : \theta \leq \theta_0 \) vs \(H_1 : \theta > \theta_0 \).

\[T(X) = \bar{X} \] is a sufficient statistic for \(\theta \), and \(T \sim \mathcal{N}(\theta, \sigma^2/n) \).

\[g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{(t - \theta)^2}{2\sigma^2/n} \right\} \]
Example Application of Karlin-Rabin Theorem

Let $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$.

$T(X) = \bar{X}$ is a sufficient statistic for θ, and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$g(t|\theta) = \frac{1}{\sqrt{2\pi \sigma^2/n}} \exp \left\{ -\frac{(t-\theta)^2}{2\sigma^2/n} \right\}$$

$$= \frac{1}{\sqrt{2\pi \sigma^2/n}} \exp \left\{ -\frac{t^2 + \theta^2 - 2t\theta}{2\sigma^2/n} \right\}$$
Example Application of Karlin-Rabin Theorem

Let $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known, Find the UMP level α test for $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$.

$T(X) = \bar{X}$ is a sufficient statistic for θ, and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{(t - \theta)^2}{2\sigma^2/n} \right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{t^2 + \theta^2 - 2t\theta}{2\sigma^2/n} \right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{t^2}{2\sigma^2/n} \right\} \exp \left\{ -\frac{\theta^2}{2\sigma^2/n} \right\} \exp \left\{ \frac{t\theta}{\sigma^2/n} \right\}$$
Example Application of Karlin-Rabin Theorem

Let $X_i \overset{	ext{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Find the UMP level α test for $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$.

$T(X) = \bar{X}$ is a sufficient statistic for θ, and $T \sim \mathcal{N}(\theta, \sigma^2/n)$.

$$g(t|\theta) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{(t - \theta)^2}{2\sigma^2/n} \right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{t^2 + \theta^2 - 2t\theta}{2\sigma^2/n} \right\}$$

$$= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left\{ -\frac{t^2}{2\sigma^2/n} \right\} \exp \left\{ -\frac{\theta^2}{2\sigma^2/n} \right\} \exp \left\{ \frac{t\theta}{\sigma^2/n} \right\}$$

$$= h(t)c(\theta) \exp[w(\theta)t]$$

where $w(\theta) = \frac{\theta}{\sigma^2/n}$ is an increasing function in θ. Therefore T is MLR property.
Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T > t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$
Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff.

$$T > t_0$$

where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr \left(\frac{T - \theta_0}{\sigma/\sqrt{n}} > \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} \bigg| \theta_0 \right)$$
Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T > t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr\left(\frac{T - \theta_0}{\sigma/\sqrt{n}} > \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} | \theta_0 \right)$$

$$= \Pr\left(Z > \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} \right)$$

where $Z \sim \mathcal{N}(0, 1)$.
Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T > t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr\left(\frac{T - \theta_0}{\sigma / \sqrt{n}} > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \Bigg| \theta_0 \right)$$

$$= \Pr\left(Z > \frac{t_0 - \theta_0}{\sigma / \sqrt{n}} \right)$$

where $Z \sim N(0, 1)$.

$$\frac{t_0 - \theta_0}{\sigma / \sqrt{n}} = z_\alpha$$
Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T > t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr\left(\frac{T - \theta_0}{\sigma/\sqrt{n}} > \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} \bigg| \theta_0\right)$$

$$= \Pr\left(Z > \frac{t_0 - \theta_0}{\sigma/\sqrt{n}}\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

$$\frac{t_0 - \theta_0}{\sigma/\sqrt{n}} = z_\alpha$$

$$\Rightarrow t_0 = \theta_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$$
Finding a UMP level α test

By Karlin-Rabin, UMP level α test rejects H_0 iff. $T > t_0$ where

$$\alpha = \Pr(T > t_0 | \theta_0)$$

$$= \Pr \left(\frac{T - \theta_0}{\sigma/\sqrt{n}} > \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} | \theta_0 \right)$$

$$= \Pr \left(Z > \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} \right)$$

where $Z \sim \mathcal{N}(0,1)$.

$$\frac{t_0 - \theta_0}{\sigma/\sqrt{n}} = z_\alpha$$

$$\Rightarrow t_0 = \theta_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$$

UMP level α test rejects H_0 if $T = \bar{X} > \theta_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$.
Testing $H_0 : \theta \geq \theta_0$ vs. $H_1 : \theta < \theta_0$

UMP level α test rejects H_0 if $T < t_0$ where
Testing $H_0 : \theta \geq \theta_0$ vs. $H_1 : \theta < \theta_0$

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0|\theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma/\sqrt{n}} < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} \bigg| \theta_0\right)$$
Testing $H_0 : \theta \geq \theta_0$ vs. $H_1 : \theta < \theta_0$

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma/\sqrt{n}} < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} \bigg| \theta_0\right)$$

$$= \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}}\right)$$
Testing $H_0 : \theta \geq \theta_0$ vs. $H_1 : \theta < \theta_0$

UMP level α test rejects H_0 if $T < t_0$ where

\[
\alpha = \Pr(T < t_0|\theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma/\sqrt{n}} < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} \bigg| \theta_0\right) = \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}}\right)
\]

\[
1 - \alpha = \Pr\left(Z \geq \frac{t_0 - \theta_0}{\sigma/\sqrt{n}}\right)
\]
Testing $H_0 : \theta \geq \theta_0$ vs. $H_1 : \theta < \theta_0$

UMP level α test rejects H_0 if $T < t_0$ where

$$
\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma/\sqrt{n}} < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} | \theta_0\right)
$$

$$
= \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}}\right)
$$

$$
1 - \alpha = \Pr\left(Z \geq \frac{t_0 - \theta_0}{\sigma/\sqrt{n}}\right)
$$

$$
\frac{t_0 - \theta_0}{\sigma/\sqrt{n}} = z_{1-\alpha}
$$
Testing $H_0 : \theta \geq \theta_0$ vs. $H_1 : \theta < \theta_0$

UMP level α test rejects H_0 if $T < t_0$ where

$$\alpha = \Pr(T < t_0 | \theta_0) = \Pr\left(\frac{T - \theta_0}{\sigma/\sqrt{n}} < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}} \bigg| \theta_0\right)$$

$$= \Pr\left(Z < \frac{t_0 - \theta_0}{\sigma/\sqrt{n}}\right)$$

$$1 - \alpha = \Pr\left(Z \geq \frac{t_0 - \theta_0}{\sigma/\sqrt{n}}\right)$$

$$\frac{t_0 - \theta_0}{\sigma/\sqrt{n}} = z_{1-\alpha}$$

$$t_0 = \theta_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} = \theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha}$$

Therefore, the test rejects H_0 if $T < t_0 = \theta - \frac{\sigma}{\sqrt{n}} z_{\alpha}$
Normal Example with Known Mean

\(X_i \text{i.i.d. } \mathcal{N}(\mu_0, \sigma^2) \) where \(\sigma^2 \) is unknown and \(\mu_0 \) is known. Find the UMP level \(\alpha \) test for testing \(H_0 : \sigma^2 \leq \sigma_0^2 \) vs. \(H_1 : \sigma^2 > \sigma_0^2 \). Let \(T = \sum_{i=1}^{n}(X_i - \mu_0)^2 \) is sufficient for \(\sigma^2 \).
Normal Example with Known Mean

\(X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_0, \sigma^2) \) where \(\sigma^2 \) is unknown and \(\mu_0 \) is known. Find the UMP level \(\alpha \) test for testing \(H_0 : \sigma^2 \leq \sigma_0^2 \) vs. \(H_1 : \sigma^2 > \sigma_0^2 \). Let \(T = \sum_{i=1}^{n} (X_i - \mu_0)^2 \) is sufficient for \(\sigma^2 \). To check whether \(T \) has MLR property, we need to find \(g(t|\sigma^2) \).
Normal Example with Known Mean

$X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0 : \sigma^2 \leq \sigma_0^2$ vs. $H_1 : \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^{n} (X_i - \mu_0)^2$ is sufficient for σ^2. To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

$$\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$
Normal Example with Known Mean

\(X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_0, \sigma^2) \) where \(\sigma^2 \) is unknown and \(\mu_0 \) is known. Find the UMP level \(\alpha \) test for testing \(H_0 : \sigma^2 \leq \sigma_0^2 \) vs. \(H_1 : \sigma^2 > \sigma_0^2 \). Let \(T = \sum_{i=1}^{n} (X_i - \mu_0)^2 \) is sufficient for \(\sigma^2 \). To check whether \(T \) has MLR property, we need to find \(g(t|\sigma^2) \).

\[
\begin{align*}
\frac{X_i - \mu_0}{\sigma} & \sim \mathcal{N}(0, 1) \\
\left(\frac{X_i - \mu_0}{\sigma} \right)^2 & \sim \chi_1^2
\end{align*}
\]
Normal Example with Known Mean

\(X_i \sim \text{i.i.d. } \mathcal{N}(\mu_0, \sigma^2) \) where \(\sigma^2 \) is unknown and \(\mu_0 \) is known. Find the UMP level \(\alpha \) test for testing \(H_0 : \sigma^2 \leq \sigma_0^2 \) vs. \(H_1 : \sigma^2 > \sigma_0^2 \). Let \(T = \sum_{i=1}^{n} (X_i - \mu_0)^2 \) is sufficient for \(\sigma^2 \). To check whether \(T \) has MLR property, we need to find \(g(t|\sigma^2) \).

\[
\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)
\]
\[
\left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_1^2
\]

\[
Y = \frac{T}{\sigma^2} = \sum_{i=1}^{n} \left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_n^2
\]
Normal Example with Known Mean

$X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0 : \sigma^2 \leq \sigma^2_0$ vs. $H_1 : \sigma^2 > \sigma^2_0$. Let $T = \sum_{i=1}^{n} (X_i - \mu_0)^2$ is sufficient for σ^2. To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

\[
\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)
\]

\[
\left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_1^2
\]

\[
Y = T/\sigma^2 = \sum_{i=1}^{n} \left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_n^2
\]

\[
f_Y(y) = \frac{1}{\Gamma\left(\frac{n}{2}\right)2^{n/2}} y^{n/2-1} e^{-\frac{y}{2}}
\]
Normal Example with Known Mean (cont’d)

\[f_T(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{n/2 - 1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right| \]
Normal Example with Known Mean (cont’d)

\[f_T(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{n/2 - 1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right| \]

\[= \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^2}\right)^{n/2 - 1} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2} \]
Normal Example with Known Mean (cont’d)

\[f_T(t) = \frac{1}{\Gamma \left(\frac{n}{2} \right) 2^{n/2} \left(\frac{t}{\sigma^2} \right)^{n/2 - 1}} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right| \]

\[= \frac{1}{\Gamma \left(\frac{n}{2} \right) 2^{n/2} \left(\frac{t}{\sigma^2} \right)^{n/2 - 1}} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2} \]

\[= \frac{\frac{t^n}{2^{n/2} \left(\frac{1}{\sigma^2} \right)^{n/2}}}{\Gamma \left(\frac{n}{2} \right) 2^{n/2} \left(\frac{1}{\sigma^2} \right)^{n/2}} e^{-\frac{t}{2\sigma^2}} \]
Normal Example with Known Mean (cont’d)

\[
f_T(t) = \frac{1}{\Gamma \left(\frac{n}{2} \right) 2^{n/2}} \left(\frac{t}{\sigma^2} \right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right|
\]

\[
= \frac{1}{\Gamma \left(\frac{n}{2} \right) 2^{n/2}} \left(\frac{t}{\sigma^2} \right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2}
\]

\[
= \frac{t^{\frac{n}{2}-1}}{\Gamma \left(\frac{n}{2} \right) 2^{n/2}} \left(\frac{1}{\sigma^2} \right)^{\frac{n}{2}} e^{-\frac{t}{2\sigma^2}}
\]

\[
= h(t) c(\sigma^2) \exp[w(\sigma^2) t]
\]

where \(w(\sigma^2) = -\frac{1}{2\sigma^2} \) is an increasing function in \(\sigma^2 \).
Normal Example with Known Mean (cont’d)

\[f_T(t) = \frac{1}{\Gamma \left(\frac{n}{2} \right) 2^{n/2}} \left(\frac{t}{\sigma^2} \right)^{n/2-1} e^{-\frac{t}{2\sigma^2}} \left| \frac{dy}{dt} \right| \]

\[= \frac{1}{\Gamma \left(\frac{n}{2} \right) 2^{n/2}} \left(\frac{t}{\sigma^2} \right)^{n/2-1} e^{-\frac{t}{2\sigma^2}} \frac{1}{\sigma^2} \]

\[= \frac{t^{n/2-1}}{\Gamma \left(\frac{n}{2} \right) 2^{n/2}} \left(\frac{1}{\sigma^2} \right)^{n/2} e^{-\frac{t}{2\sigma^2}} \]

\[= h(t) c(\sigma^2) \exp[w(\sigma^2)t] \]

where \(w(\sigma^2) = -\frac{1}{2\sigma^2} \) is an increasing function in \(\sigma^2 \). Therefore, \(T = \sum_{i=1}^{n} (X_i - \mu_0)^2 \) has the MLR property.
Normal Example with Known Mean (cont’d)

By Karlin-Rabin Theorem, UMP level α rejects $s H_0$ if and only if $T > t_0$ where t_0 is chosen such that $\alpha = \Pr(T > t_0 | \sigma_0^2)$.
Normal Example with Known Mean (cont’d)

By Karlin-Rabin Theorem, UMP level α rejects $s \; H_0$ if and only if $T > t_0$ where t_0 is chosen such that $\alpha = \Pr(T > t_0 | \sigma_0^2)$. Note that $\frac{T}{\sigma^2} \sim \chi^2_n$

$$\Pr(T > t_0 | \sigma_0^2) = \Pr \left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} \Bigg| \sigma_0^2 \right)$$
Normal Example with Known Mean (cont’d)

By Karlin-Rabin Theorem, UMP level α rejects $s \ H_0$ if and only if $T > t_0$ where t_0 is chosen such that $\alpha = \Pr(T > t_0 | \sigma^2_0)$.

Note that $\frac{T}{\sigma^2} \sim \chi^2_n$

$$\Pr(T > t_0 | \sigma^2_0) = \Pr \left(\frac{T}{\sigma^2_0} > \frac{t_0}{\sigma^2_0} \bigg| \sigma^2_0 \right)$$

$$\frac{T}{\sigma^2} \sim \chi^2_n$$
Normal Example with Known Mean (cont’d)

By Karlin-Rabin Theorem, UMP level α rejects $s H_0$ if and only if $T > t_0$ where t_0 is chosen such that $\alpha = \Pr(T > t_0|\sigma_0^2)$.

Note that $\frac{T}{\sigma^2} \sim \chi_n^2$

$$\Pr(T > t_0|\sigma_0^2) = \Pr\left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} \mid \sigma_0^2\right)$$

$$\frac{T}{\sigma_0^2} \sim \chi_n^2$$

$$\Pr\left(\chi_n^2 > \frac{t_0}{\sigma_0^2}\right) = \alpha$$
Normal Example with Known Mean (cont’d)

By Karlin-Rabin Theorem, UMP level α rejects $s H_0$ if and only if $T > t_0$ where t_0 is chosen such that $\alpha = Pr(T > t_0|\sigma^2_0)$.

Note that $\frac{T}{\sigma^2} \sim \chi^2_n$

$$Pr(T > t_0|\sigma^2_0) = Pr\left(\frac{T}{\sigma^2_0} > \frac{t_0}{\sigma^2_0}\right|\sigma^2_0)$$

$$\frac{T}{\sigma^2_0} \sim \chi^2_n$$

$$Pr\left(\chi^2_n > \frac{t_0}{\sigma^2_0}\right) = \alpha$$

$$\frac{t_0}{\sigma^2_0} = \chi^2_{n,\alpha}$$
Normal Example with Known Mean (cont’d)

By Karlin-Rabin Theorem, UMP level α rejects $s \, H_0$ if and only if $T > t_0$
where t_0 is chosen such that $\alpha = \Pr(T > t_0|\sigma_0^2)$.

Note that $\frac{T}{\sigma^2} \sim \chi^2_n$

\[
\Pr(T > t_0|\sigma_0^2) = \Pr \left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} \mid \sigma_0^2 \right)
\]

\[
\frac{T}{\sigma_0^2} \sim \chi^2_n
\]

\[
\Pr \left(\chi^2_n > \frac{t_0}{\sigma_0^2} \right) = \alpha
\]

\[
\frac{t_0}{\sigma_0^2} = \chi^2_{n, \alpha}
\]

\[
t_0 = \sigma_0^2 \chi^2_{n, \alpha}
\]

where $\chi^2_{n, \alpha}$ satisfies $\int_{\chi^2_{n, \alpha}}^{\infty} f_{\chi^2_n}(x) \, dx = \alpha$.
Remarks

- For many problems, UMP level α test does not exist (Example 8.3.19).
For many problems, UMP level α test does not exist (Example 8.3.19).

In such cases, we can restrict our search among a subset of tests, for example, all unbiased tests.
Summary

Today

- Uniformly Most Powerful Test
- Neyman-Pearson Lemma
- Monotone Likelihood Ratio
- Karlin-Rabin Theorem
Summary

Today

- Uniformly Most Powerful Test
- Neyman-Pearson Lemma
- Monotone Likelihood Ratio
- Karlin-Rabin Theorem

Next Lecture

- Asymptotics of LRT
- Wald Test