Biostatistics 615/815 Lecture 23: Using C++ code in R

Hyun Min Kang

December 6th, 2011
Recommended Skill Sets for Students

1. One or more of the high-level statistical language for fast and flexible implementation
 - R
 - SAS
 - Matlab

2. One or more of the scripting language for data pre/post processing
 - perl
 - python
 - ruby
 - php
 - sed/awk
 - bash/csh

3. One or more low-level languages for efficient computation
 - C/C++
 - Java
Factors to consider when developing a new method

- Personal software: Tradeoff between..
 - YOUR time cost for implementation and debugging
 - YOUR time cost for running the analysis (including number of repetitions)
 - COMPUTATIONAL cost for running the analysis

- Public software: Additional tradeoff between...
 - All three types of costs above
 - YOUR additional time cost for making your method available to others
 - YOUR time saving for letting others run the analysis on your behalf
 - Additional credit for having exposure of your method to others
Using high-level languages (such as R)

Benefits

- Implementation cost is usually small, and easy to modify
- Many built-in and third-party utilities reduces implementation burden
 - Most of the hypothesis testing procedure
 - `lm` and `glm` routines for fitting to (generalized) linear models
 - Plotting routines to visualize your outcomes
 - And many other third-party routines
- Good fit for running quick and non-repetitive jobs

Drawbacks

- R is not efficient in I/O and memory management
- Complex routines involving loops are extremely slow
- Likely slower and less user-friendly than C/C++ implementation
Interfacing your C++ code with R

- Use R for input and output handling (possibly including data visualization)
- For routines requiring computational efficiency, use C++ routines
- Load the C++ routine as a dynamically-linked library and use them inside C
- Fortran language interface is also available (will not be discussed here)
R 101

Install and run R

- Install/Download R package at http://www.r-project.org/
- Run R (64-bit version if available)
- Have a separate terminal available for compiling your code

Very basic commands

```r
> getwd()  ## print current working directory
[1] "~/Users/myid"
> setwd("~/absolute/path/to/where/i/want/to/be/at");  ## move your current working directory
> getwd()  ## print the new working directory
/absolute/path/to/where/i/wanted/to/be/at
> x <- rnorm(1000,5,1);    ## generate 1000 random normal variables from N(5,1)
> y <- runif(1000,0,1);   ## generate 1000 uniform random variables from (0,1)
> Z <- matrix(rnorm(1000,0,1),50,20);  ## create a 50 * 20 random matrix
> r <- as.integer(runif(1000,0,10));  ## 1000 uniform integer between 0 and 9
```
Interfacing C++ code with R

ex1.cpp

```cpp
#include <iostream> // May include C++ routines including STL
extern "C" { // R interface part should be written in C-style
  void hello () { // function name that R can load
    std::cout << "Hello, R" << std::endl; // print out message
  }
}
```

ex1.R

```r
## loadex1.so in UNIX/MacOS and load ex1.dll in Windows
dyn.load(paste("ex1", .Platform$dynlib.ext, sep="")) ##

## wrapper function to call the C/C++ function
hello <- function() {
  .C("hello")
}
```
Interfacing C++ code with R

Compile (output is dependent on the platform)

```bash
$ R CMD SHLIB ex1.cpp

g++-4.2 -arch x86_64 -I/Library/Frameworks/R.framework/Resources/include /
    -I/Library/Frameworks/R.framework/Resources/include/x86_64 /
    -I/usr/local/include -fPIC -g -O2 -c ex1.cpp -o ex1.o

g++-4.2 -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names /
    -undefined dynamic_lookup -single_module \\
    -multiply_defined suppress -L/usr/local/lib -o ex1.so ex1.o \\
    -F/Library/Frameworks/R.framework/.. \\
    -framework R -Wl,-framework -Wl,CoreFoundation
```

Run in your R console (use R64 if available)

```r
> source('ex1.R')
> hello()
list() # no return value is defined in the function

Hello, R
```
Argument passing

ex2.cpp

```cpp
extern "C" {
    void square (double* a, double* out) {
        *out = (*a) * (*a);
    }
}

Arguments must be passed as pointers, regardless whether it contains array values or not

**ex2.R**

```r
dyn.load(paste("ex2", .Platform$dynlib.ext, sep=""))
square <- function(a) {
 ## a is input, out is output
 return(.C("square",as.double(a),out=double(1))$out)
}
```
Argument passing

Running Example (after compiling)

```r
source('ex2.R')
>
square(10) ## does the right thing
[1] 100
>
square(c(10,20,30)) ## but only recognize the current value
[1] 100
```
Passing vector or matrix as argument

**ex2b.cpp**

```cpp
extern "C" {

 void square (double* a, int* na, double* out) {
 for(int i=0; i < *na; ++i) {
 out[i] = a[i] * a[i];
 }
 }
}
```

**ex2b.R**

```r
dyn.load(paste("ex2b", .Platform$dynlib.ext, sep=""))
square <- function(a) {
 n <- as.integer(length(a))
 r <- .C("square", as.double(a), n, out=double(n))$out
 if (is.matrix(a)) { return (matrix(r,nrow(a),ncol(a))); }
 else { return (r); }
}
```
Argument passing

Running Example (after compiling)

```r
> source('ex2b.R')
> square(10) ## takes a single input
[1] 100
> square(c(10,20,30)) ## takes a vector as input
[1] 100 400 900
> square(matrix(1:6,3,2)) ## takes a matrix as input
 [,1] [,2]
[1,] 1 16
[2,] 4 25
[3,] 9 36
```
Calculating cumulative sum of an array

**cumsum.R**

```r
cumsum.R <- function(a) {
 res <- a # copy the original matrix
 n <- length(a)
 for (i in 2:n) {
 res[i] = res[i-1] + res[i] # get cumulative sum
 }
 return(res)
}
```

**Running Example**

```r
> system.time(cumsum.R(as.double(1:1000000)))
 user system elapsed
 3.831 0.025 3.849
```
But built-in cumsum function is much faster

Running with built-in cumsum function

```r
> system.time(cumsum(as.double(1:1000000)))
user system elapsed
0.014 0.011 0.045
```

What’s inside in the cumsum function?

```r
> cumsum
function (x) .Primitive("cumsum")

- Uses internal implementation for the sake of efficiency
```
Making faster cumsum function

**cumsum.cpp**

```cpp
void cumsumC(double* x, int* nx, double* y) {
 y[0] = x[0];
 int n = *nx;
 for(int i=1; i < n; ++i) {
 y[i] = y[i-1] + x[i];
 }
}
```

**cumsum.R**

```r
cumsum.C <- function(a) {
 n <- length(a)
 .C("cumsumC",
 as.double(a),
 as.integer(length(a)),
 res = double(length(a)))$res
}
```
Running time is comparable with built-in cumsum function

```r
> system.time(cumsum.R(as.double(1:1000000)))
 user system elapsed
 3.831 0.025 3.849
> system.time(cumsum(as.double(1:1000000)))
 user system elapsed
 0.014 0.011 0.045
> system.time(cumsum2(as.double(1:1000000)))
 user system elapsed
 0.031 0.018 0.049
```
Many built-in routines use C implementation inside

```r
> fisher.test

function (x, y = NULL, workspace = 2e+05, hybrid = FALSE, control = list(),
o = 1, alternative = "two.sided", conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)
{
 DNAME <- deparse(substitute(x))
 METHOD <- "Fisher's Exact Test for Count Data"
 ## skipping some lines...
 STATISTIC <- -sum(lfactorial(x))
 tmp <- .C(C_fisher_sim, as.integer(nr), as.integer(nc),
 as.integer(sr), as.integer(sc), as.integer(n),
 as.integer(B), integer(nr * nc), double(n + 1),
 integer(nc), results = double(B), PACKAGE = "stats")$results
 almost.1 <- 1 + 64 * .Machine$double.eps
 PVAL <- (1 + sum(tmp <= STATISTIC/almost.1))/(B + 1)
 ## skipping the rest of them
```
R/C++ interface for Gibbs Sampler

- Gibbs Sampler is more efficient in C++ than R
  - Because a large number of iteration is involved
- Output from Gibbs sampler can be analyzed in various ways with R
  - Approximate the joint distribution of the parameters
  - Plot the distribution of parameters with respect to iteration
- R/C++ interface for efficient Gibbs sampling + flexible downstream analysis
mixGS.h : Very similar to the original Gibbs sampler

```cpp
#include <vector>
#include <cmath>
#include <ctime>

#define ZEPS 1e-10
#define MIN_COUNTS 20

#include "NormMix615.h"

class normMixGibbs {
public:
 int k; // # of components
 int n; // # of data
 std::vector<double> data; // observed data
 std::vector<double> pis; // pis
 std::vector<double> means; // means
 std::vector<double> sigmas; // sds
 std::vector<double> labels; // label assignment
 std::vector<int> counts;
 std::vector<double> sums;
 std::vector<double> sumsqs;
 // ...
```
mixGS.h (cont’d)

// ...
normMixGibbs(std::vector<double>& _data, int _k);

void initParams();
void updateParams(int numObs);
void remove(int i);
void add(int i, int label);
int sampleLabel(double x);
// only the function below has been changed from previous code
double runGibbs(int iter, int burnin, int thin, double* tllks,
                 double* tpis, double* tmeans, double* tsigmas);
static double randu(double min, double max);
static int randn(int min, int max);
};
mixGS.h (cont'd)

double normMixGibbs::runGibbs(int iter, int burnin, int thin,
     double* tllks, double* tpis, double* tmeans, double* tsigmas) {
    initParams();
    for(int i=0, is = 0; i < iter; ++i) {
        int id = randn(0,n);
        if ( counts[labels[id]] < MIN_COUNTS ) continue;
        remove(id); updateParams(n-1);
        int label = sampleLabel(data[id]);
        add(id, label);
        if ( ( i >= burnin ) && ( i % thin == 0 ) ) {
            double llk = NormMix615::mixLLK(data,pis,means,sigmas);
            tllks[is] = llk;
            for(int j=0; j < k; ++j) {
                tpis[is*k+j] = pis[j];
                tmeans[is*k+j] = means[j];
                tsigmas[is*k+j] = sigmas[j];
            }
            ++is;
        }
    }
    return minllk;
}
#include "mixGS.h"

eextern "C" {

    void gibbs(double* a, int* na, int* nk, int* iter, int* burnin, int* thin,
                double* llks, double *pis, double* means, double* sigmas) {
        std::vector<double> data;
        int n = *na;
        for(int i=0; i < n; ++i) {
            data.push_back(a[i]);
        }

        srand(std::time(0));
        int k = *nk;

        normMixGibbs gs(data,k);
        double llk = gs.runGibbs(*iter, *burnin, *thin, llks, pis, means, sigmas);
    }
}
```r
dyn.load(paste("ex4", .Platform$dynlib.ext, sep=""))

gibbs <- function(x, k, iter, burnin, thin) {
 r <- as.integer(ceiling(iter-burnin)/thin)
 res <- .C("gibbs",
 as.double(x),
 as.integer(length(x)),
 as.integer(k),
 as.integer(iter),
 as.integer(burnin),
 as.integer(thin),
 llks = double(r), # return thinned parameters
 pis = double(k*r),
 means = double(k*r),
 sigmas = double(k*r))
 return (list(llks=res$llks,pis=matrix(res$pis,r,k,byrow=T),
 means=matrix(res$means,r,k,byrow=T),
 sigmas=matrix(res$sigmas,r,k,byrow=T)))
}
```
gibbsTest.R

```
source('gibbs.R')
test.gibbs <- function() {
x <- c(rnorm(2000,0,1),rnorm(1000,5,4))
ni <- 1e7; nb <- 0; nt <- 1000;
nr <- as.integer(ceiling((ni-nb)/nt))
r <- gibbs(x,2,ni,nb,nt)
1x <- (1:nr)*nt
pdf("test-gibbs-llks.pdf")
plot(1x,r$llks,xlab='Iterations',ylab='Log Likelihood')
dev.off()
pdf("test-gibbs-pis.pdf")
plot(1x,r$pis[,1],xlab='Iterations',ylab='Pis',xlim=c(0,ni),ylim=c(0,1),col="blue")
points(1x,r$pis[,2],col="red")
dev.off()
pdf("test-gibbs-means.pdf")
plot(1x,r$means[,1],xlab='Iterations',ylab='Means',xlim=c(0,ni),ylim=c(-1,6),col="blue")
points(1x,r$means[,2],col="red")
dev.off()
pdf("test-gibbs-sigmas.pdf")
plot(1x,r$sigmas[,1],xlab='Iterations',ylab='Means',xlim=c(0,ni),ylim=c(0,7),col="blue")
points(1x,r$sigmas[,2],col="red")
dev.off()
}
```
> source('gibbsTest.R')

> system.time(test.gibbs())

user  system elapsed
6.180   0.038  6.490
Log-likelihoods
Priors
Means

![Graph showing means over iterations](image-url)
Standard deviations
Today

- Combining C++ code base with R extension
- C++ implementation more efficiently handles loops and complex algorithms than R
- R is efficient in matrix operation and convenient in data visualization and statistical tools
- R/C++ interface increases your flexibility and efficiency at the same time.