Practical Introduction

Variant Calling and Filtering for SNPs

December 9, 2014

Mary Kate Wing Hyun Min Kang

Goals of This Session

- Learn basics of Variant Call Format (VCF)
- Aligned sequences -> filtered snp calls
 - Many methods/pipelines, we cover 1
- Examine variants at particular genomic positions
- Evaluate quality of SNP calls

Variant Call Format (VCF)

- Describes variant positions
 - http://www.1000genomes.org/wiki/Analysis/Variant%20Call%
 20Format/vcf-variant-call-format-version-41

- Header
 - Each line starts with #
- Records
 - One for each variant position
 - Describes variant
 - Optional per sample genotype information

Variant Call Format: Header

```
##fileformat=VCFv4.1
##filedate=20140615
##source=qlfMultiples
                               Description of INFO, FILTER, &
##minDepth=1
##maxDepth=10000000
                                         FORMAT fields
##minMapQuality=0
|##minPosterior=0.5000
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth at Site">
##INFO=<ID=MQ,Number=1,Type=Integer,Description="Root Mean Squared Mapping Quality">
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Coverage">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Number of Alleles in Samples with Coverage">
##INFO=<ID=AC,Number=.,Type=Integer,Description="Alternate Allele Counts in Samples with Coverage">
##INFO=<ID=AF,Number=.,Type=Float,Description="Alternate Allele Frequencies">
##INFO=<ID=MQ30,Number=1,Type=Float,Description="Fraction of bases with mapQ<=30">
##FILTER=<ID=mg0,Description="Mapping Quality Below 0">
##FILTER=<ID=dp1,Description="Total Read Depth Below 1">
##FILTER=<ID=DP10000000,Description="Total Read Depth Above 10000000">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Most Likely Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Call Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=PL,Number=.,Type=Integer,Description="Genotype Likelihoods for Genotypes in Phred Scale, [fd
#CHROM POS
                ID
                        REF
                                        QUAL
                                                FILTER INFO
                                                                FORMAT
                                                                       HG00551 HG00553 HG00554 HG00637
                                ALT
```

Description of the records fields

Order of per samples genotypes

Variant Call Format: Records

#CHROM	P0S	ID	REF	ALT	QUAL	FILTER	INF0	FORMAT HG00551 HG00553
22	3599993	8		(1) A	G	100	PASS	DP=127; MQ=59; NS=53; AN=1
22	3600054	7		2) A	G	100	PASS	DP=485; MQ=59; NS=62; AN=12
22	3600071	1		3) G	T	24	PASS	DP=376;MQ=59;NS=61;AN=1
22	3670778	6		4) A	G,C	100	PASS	DP=373;MQ=59;NS=59;AN=1
				Δ.				

SNPs <u>A</u>: Reference <u>B</u>: Alternate

- 1) Alternate G 2) Alternate G
- 3) Alternate T 4) 2 Alternates bases: G & C

		(<u>A</u>	<u>B</u>			
22	16123409	1) G	GA	21	PASS	AC=1;AF=0.0
22	16136754	2) TG	T	26	PASS	AC=2; AF=0.0
22	16139950	3) G	GA	19	PASS	AC=88; AF=0.
22	16140022	4) AAAGG	A)	100	PASS	AC=40; AF=0.

INDELs A: Reference B: Alternate

- 1) Insertion of A 2) Deletion of G
- 3) Insertion of A 4) Deletion of AAGG

Variant Call Format: Records

Variant Call Format (VCF)

- It's a large file, how do I look at certain variants?
 - tabix
 - http://samtools.sourceforge.net/tabix.shtml
 - Generate tabix index (.tbi) file:
 - tabix -p vcf file.vcf.gz
 - View region:
 - tabix file.vcf.gz CHR:START-END

High Quality Variant Calls from BAMs

- Many tools & best practices to choose from
- Our solution:

Genomes on the Cloud (GotCloud)

- Sequence analysis pipelines
 - You don't need to know the details of individual components
 - Automates steps for you

Why GotCloud snpcall?

- Robust parallelization
 - Automatically partitions chromosomes by regions
 - Takes advantage of clusters
 - Supports MOSIX, slurm, SGE, pbs
 - Can setup a cluster on Amazon
 - via GNU make
 - Reliable and fault-tolerant
 - Restart where it stopped
- Analyzes many samples together
- Easy to add new samples to your study

Studies using GotCloud snpcall

Study	Genome	Exome N		Populations	# SNPs
1000 Genomes	~6x	~40x	2,535	Many	69.1M
Type 2 Diabetes	~5x	~80x	2,850	Europeans	26.7M
Exome Sequencing Project		~80x	6,916	EUR+AFR	1.92M
Sardinian Sequencing	~4x		3,520	Sardinians	23.1M
Bipolar Sequencing	~12x		2,825	Europeans	43.7N
Nephrotic Syndrome	~4x	•	464	Many	25.6M
Age-related Macular Degeneration	~6x		3,000	Europeans	36.2M
HUNT	~4x		1,200	Norwegians	23.0M

GotCloud SnpCall Pipeline Overview

Reference Files

- GotCloud snpcall uses:
 - Reference genome FASTA file
 - To identify differences (SNPs) between bases in sequence reads & the reference positions they mapped to
- VCF files
 - indel contains known insertions & deletions to help with filtering
 - omni used as likely true positives for SVM filtering
 - hapmap used as likely true positives for SVM filtering and for generating summary statistics
 - dbsnp used for generating summary statistics

User Created Input: BAM List File

- Points GotCloud to the BAMs
 - Alignment pipeline generates for you
 - For our tutorial: update it to include more BAMs
- Tab delimited

1) Sample name one row per sample 2.. N) BAM - typically only 1 BAM for sample, but if more than one, separate with tabs

HG00641 /net/seqshop-server/home/mktrost/out/bams/HG00641.recal.bam HG00640 /net/seqshop-server/home/mktrost/out/bams/HG00640.recal.bam HG00551 /net/seqshop-server/home/mktrost/out/bams/HG00551.recal.bam HG00553 /net/seqshop-server/home/mktrost/out/bams/HG00553.recal.bam

User Constructed Input: GotCloud Configuration

```
############ -- #'s are comments
# References
REF DIR = ref22
                                        Use $(KEY) to refer to other KEYs
                                                                            Path to chr22
REF = \$(REF DIR)/Human.g1k.v37.chr22.fa
                                                                            reference files
DBSNP_VCF = \$(REF_DIR)/dbsnp_135.b37.chr22.vcf.gz
HM3_VCF = $(REF_DIR)/hapmap_3.3.b37.sites.chr22.vcf.gz
INDEL_PREFIX = $(REF_DIR)/1kg.pilot_release.merged.indels.sites.hg19
OMNI VCF = $(REF DIR)/1000G omni2.5.b37.sites.PASS.chr22.vcf.gz
######## ALIGNMENT #######
MAP TYPE = BWA MEM
                                              Use bwa mem instead of just regular BWA
FASTO LIST = fastq.list

    Path to fastq index file

####### Variant Calling #######
CHRS = 22
                   For snpcall & indel -> chr22 only
```

User Constructed Input: GotCloud Configuration

###################################

GENOMESTRIP_MASK_FASTA = \$(REF_DIR)/human_g1k_v37.chr22.mask.100.fasta GENOMESTRIP_PLOIDY_MAP = \$(REF_DIR)/humgen_g1k_v37_ploidy.chr22.map

What will I need to configure in GotCloud for my own research?

Exome/Targeted set in your configuration:

```
# When all individuals have the same target
UNIFORM_TARGET_BED = path/to/file.bed
# When each individual has different targets
# Each line of file.txt contains [SM_ID] [TARGET_BED]
MULTIPLE TARGET MAP = path/to/file.txt
# Extend target by given # of bases
OFFSET_OFF_TARGET = 0
# If a single chromosome is too small for SVM,
# set this to run SVM on all chromosomes combined.
# Only for very small targeted projects.
# Exome does not require this.
WGS SVM = TRUE
```

What will I need to configure in GotCloud for my own research?

- Cluster support
 - Via configuration
 - BATCH_TYPE =
 - mosix, pbs, slurm, pbs, sge, slurmi, sgei
 - BATCH_OPTS =
 - Set to any options you would normally pass to your cluster
 - Via command line
 - --batchtype & --batchopts

How good are the results?

\${OUT}/vcfs/chr*.filtered.sites.vcf.summary

FILTER	#SNPs	#dbSNP	%dbSNP	%CpG Known	%CpG Novel	%Known Ts/Tv	%Novel Ts/Tv	%nCpG-K Ts/Tv	•	%HM3 sens	%HM3 /SNP
INDEL5 INDEL5;SVM PASS SVM	9 3870	50 9 3741 112	89.3 100.0 96.7 86.8	10.0 0.0 21.9 16.1	0.0 NA 17.1 17.6	1.78 0.80 2.36 3.31	1.00 NA 2.23 1.83	1.50 0.80 1.94 2.92	1.00 NA 1.82 1.80	0.005 0.000 2.325 0.000	1.786 0.000 12.403 0.000
FILTER	#SNPs	#dbSNP	%dbSNP	%CpG Known	%CpG Novel	%Known Ts/Tv	%Novel Ts/Tv	%nCpG-K Ts/Tv		%HM3 sens	%HM3 /SNP
INDEL5 PASS SVM	3870	59 3741 121	90.8 96.7 87.7	8.5 21.9 14.9	0.0 17.1 17.6	1.57 2.36 2.90	1.00 2.23 1.83	1.35 1.94 2.55	1.00 1.82 1.80	0.005 2.325 0.000	1.538 12.403 0.000
PASS FAIL TOTAL	194	3741 171 3912	96.7 88.1 96.3	21.9 13.5 21.5	17.1 13.0 16.4	2.36 2.49 2.37	2.23 1.56 2.10	1.94 2.15 1.95	1.82 1.50 1.76	2.325 0.005 2.330	12.403 0.515 11.836

MultiAllele Ref/Alt Repeated Positions

TOTAL SKIDDEN 1

Genotype Refinement

- After snpcall, we run genotype refinement
 - improves the genotypes higher quality
 - Beagle & thunder
- Outputs are VCFs
 - thunder breaks up by population

Try it yourself

http://genome.sph.umich.edu/wiki/SeqShop:
_Variant_Calling_and_Filtering_for_SNPs_Practical