Biostatistics 615/815 Lecture 14: Implementing Linear Regression

Hyun Min Kang

February 22th, 2011

Recap - slowPower and fastPower

Function slowPower()

double slowPower(double a, int n) {
 double x = a;
 for(int i=1; i < n; ++i)
 x *= a;
 return x;
}

Function fastPower()

double fastPower(double a, int n) {
 if (n == 1)
 return a;
 else {
 double x = fastPower(a,n/2);
 if (n % 2 == 0)
 return x * x;
 else
 return x * x * a;
 }
}

Recap - ways to matrix programming

- Implementing Matrix libraries on your own
 - Implementation can well fit to specific need
 - Need to pay for implementation overhead
 - Computational efficiency may not be excellent for large matrices

- Using BLAS/LAPACK library
 - Low-level Fortran/C API
 - ATLAS implementation for gcc, MKL library for intel compiler (with multithread support)
 - Used in many statistical packages including R
 - Not user-friendly interface use.
 - boost supports C++ interface for BLAS

- Using a third-party library, Eigen package
 - A convenient C++ interface
 - Reasonably fast performance
 - Supports most functions BLAS/LAPACK provides

Announcements

- Homework #4 due is March 8th
- Floyd-Warshall algorithm
 - Note that the problem has been changed
 - Read chapter 25.2 for the full algorithmic detail
- Fair/biased count HMM
 - Code skeleton has been updated using C++ class

Midterm

- Midterm is on Thursday, March 10th.
 - There will be a review session on March 8th.
Recap - matrix decomposition to solve linear systems

- LU decomposition
 - \(A = LU \), where \(L \) is lower-triangular and \(U \) is upper triangular matrix
- QR decomposition
 - \(A = QR \) where \(Q \) is unitary matrix \(QQ^T = I \), and \(R \) is upper-triangular matrix
 - \(Ax = b \) reduces to \(Rx = Q'b \).
- Cholesky decomposition
 - \(A = U'U \) for a symmetric matrix

Using R to solve linear model

```r
> y <- rnorm(100)
> x <- rnorm(100)
> system.time(print(summary(lm(y~x))))

Call:  
lm(formula = y ~ x)

Residuals:  
    Min      1Q  Median      3Q     Max
-2.15759 -0.69613  0.08565  0.70014  5.13100

Coefficients:  
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.02722   0.10541  0.258    0.797
x            0.0002359  0.0004473  0.527    0.598

Residual standard error: 1 on 98 degrees of freedom
Multiple R-squared: 0.02996, Adjusted R-squared: 0.02006
```

Dealing with large data with `lm`

```r
> y <- rnorm(5000000)
> x <- rnorm(5000000)
> system.time(print(summary(lm(y~x))))

Call:  
lm(formula = y ~ x)

Residuals:  
    Min      1Q  Median      3Q     Max
-5.13100 -0.67460  0.0004  0.67470  5.08600

Coefficients:  
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  -0.0005130  0.0004473 -1.147    0.251
x             0.0002359  0.0004473  0.527    0.598

Residual standard error: 1 on 4999998 degrees of freedom
Multiple R-squared: 5.564e-08, Adjusted R-squared: -1.444e-07
```

Linear Regression

- \(y = X\beta + \epsilon \), where \(X \) is \(n \times p \) matrix
- Under normality assumption, \(y_i \sim N(X_i\beta, \sigma^2) \).

Key inferences under linear model

- Effect size: \(\hat{\beta} = (X^TX)^{-1}X^Ty \)
- Residual variance: \(\hat{\sigma}^2 = (y - X\hat{\beta})^T(y - X\hat{\beta})/(n - p) \)
- Variance/SE of \(\hat{\beta} \): \(\text{Var}(\hat{\beta}) = \hat{\sigma}^2(X^TX)^{-1} \)
- p-value for testing \(H_0 : \beta_i = 0 \) or \(H_0 : R\beta = 0 \).
A case for simple linear regression

A faster inference with simple linear model

Ingredients for simplification

- $\sigma_y^2 = (y - \bar{y})^T(y - \bar{y})/(n - 1)$
- $\sigma_x^2 = (x - \bar{x})^T(x - \bar{x})/(n - 1)$
- $\sigma_{xy} = (x - \bar{x})^T(y - \bar{y})/(n - 1)$
- $\rho_{xy} = \sigma_{xy}/\sqrt{\sigma_x^2 \sigma_y^2}$

Making faster inferences

- $\hat{\beta}_1 = \rho_{xy} \sqrt{\sigma_y^2/\sigma_x^2}$
- $SE(\hat{\beta}_1) = \sqrt{(n - 1)\sigma_y^2(1 - \rho_{xy}^2)/(n - 2)}$
- $t = \rho_{xy} \sqrt{(n - 2)/(1 - \rho_{xy}^2)}$ follows t-distribution with d.f. $n - 2$

A faster R implementation

```r
# note that this is an R function, not C++
fastSimpleLinearRegression <- function(y, x) {
  y <- y - mean(y)
  x <- x - mean(x)
  n <- length(y)
  stopifnot(length(x) == n)  # for error handling
  s2y <- sum( y * y ) / ( n - 1 )  # \sigma_y^2
  s2x <- sum( x * x ) / ( n - 1 )  # \sigma_x^2
  sxy <- sum( x * y ) / ( n - 1 )  # \sigma_{xy}
  rxy <- sxy / sqrt( s2y * s2x )  # \rho_{xy}
  b <- rxy * sqrt( s2y / s2x )
  se.b <- sqrt( ( n - 1 ) * s2y * ( 1 - rxy * rxy ) / (n-2) )
  tstat <- rxy * sqrt( ( n - 2 ) / ( 1 - rxy * rxy ) )
  p <- pt( abs(tstat) , n - 2 , lower.tail=FALSE )*2
  return(list( beta = b , se.beta = se.b , t.stat = tstat , p.value = p ))
}
```

Now it became must faster

```r
> system.time(print(fastSimpleLinearRegression(y,x)))

$beta
 [1] 0.0002358472

$se.beta
 [1] 0.000036

$t.stat
 [1] 0.5274646

$p.value
 [1] 0.597871

user system elapsed
 0.382 1.849 3.042
```
Dealing with even larger data

Problem

- Supposed that we now have 5 billion input data points
- The issue is how to load the data
- Storing 10 billion double will require 80GB or larger memory

What we want

- As fast performance as before
- But do not store all the data into memory
- R cannot be the solution in such cases - use C++ instead

Implementation : Streamed simple linear regression

```cpp
#include <iostream>
#include <fstream>
#include <boost/math/distributions/students_t.hpp>

using namespace boost::math; // for calculating p-values from t-statistic

int main(int argc, char** argv) {
  std::ifstream ifs(argv[1]); // read file from the file arguments
  double x, y; // temporay values to store the input
  double sumx = 0, sumsqx = 0, sumy = 0, sumsqy = 0, sumxy = 0;
  int n = 0;

  // extract a set of sufficient statistics
  while(ifs >> y >> x) { // assuming each input line feeds y and x
    sumx += x;
    sumy += y;
    sumxy += (x*y);
    sumsqx += (x*x);
    sumsqy += (y*y);
    ++n;
  }

  // calculate beta, SE(beta), and p-values
  double beta = rxy * s2y / s2x;
  double seBeta = s2x * sqrt( (n-1) * (1 - rxy*rxy) / (n-2) );
  double t = rxy * sqrt((n-2)/(1-rxy*rxy)); // t-statistics

  students_t dist(n-2); // use student's t-distribution to compute p-value
  double pvalue = 2.0*cdf(complement(dist, t > 0 ? t : (0-t )));
}
```

Streaming the inputs to extract sufficient statistics

Sufficient statistics for simple linear regression

1. \(n \)
2. \(\sigma_x^2 = \text{Var}(x) = (x - \bar{x})^T(x - \bar{x})/(n - 1) \)
3. \(\sigma_y^2 = \text{Var}(y) = (y - \bar{y})^T(y - \bar{y})/(n - 1) \)
4. \(\sigma_{xy} = \text{Cov}(x, y) = (x - \bar{x})(y - \bar{y})/(n - 1) \)

Extracting sufficient statistics from stream

- \(\sum_{i=1}^n x = n\bar{x} \)
- \(\sum_{i=1}^n y = n\bar{y} \)
- \(\sum_{i=1}^n x^2 = \sigma_x^2(n - 1) + n\bar{x}^2 \)
- \(\sum_{i=1}^n y^2 = \sigma_y^2(n - 1) + n\bar{y}^2 \)
- \(\sum_{i=1}^n xy = \sigma_{xy}(n - 1) + n\bar{x}\bar{y} \)
Summary - Simple Linear Regression

- A linear regression with one predictor and intercept
- `lm()` function in R may be computationally slow for large input
- Faster inference is possible by computing a set of summary statistics in linear time
- Streaming via C++ programming further resolves the memory overhead
- The idea can be applied in more sophisticated, large-scale analyses.

Multiple regression - a general form of linear regression

Recap - Linear model

- \(y = X\beta + \epsilon \), where \(X \) is \(n \times p \) matrix
- Under normality assumption, \(y_i \sim N(X_i\beta, \sigma^2) \).

Key inferences under linear model

- Effect size: \(\hat{\beta} = (X^TX)^{-1}X^Ty \)
- Residual variance: \(\hat{\sigma}^2 = (y - X\hat{\beta})^T(y - X\hat{\beta})/(n - p) \)
- Variance/SE of \(\hat{\beta} \): \(\text{Var}(\hat{\beta}) = \hat{\sigma}^2(X^TX)^{-1} \)
- p-value for testing \(H_0: \beta_i = 0 \) or \(H_o: R\beta = 0 \).
Implementing in C++: Using SVD for increasing reliability

\[X = UDV^T \]
\[\beta = (X^TX)^{-1}X^Ty = (VDU^TUDV)^{-1}VDU^Ty = (VD^2V)^{-1}VDU^Ty = VD^{-2}VDU^Ty = VD^{-1}u^Ty \]
\[\text{Cov}(\beta) = \hat{\sigma}^2(X'X)^{-1} = \hat{\sigma}^2(VD^{-2}V) = \frac{(y - X\hat{\beta})^T(y - X\hat{\beta})}{n-p} = \frac{(VD^{-1}(VD^{-1})^T)}{n-p} \]

Using Eigen library to implement multiple regression

```cpp
#include "Matrix615.h" // The class is posted at the web page
#include <iostream>
#include <Eigen/Core>
#include <Eigen/SVD>

using namespace Eigen;

int main(int argc, char** argv) {
    Matrix615<double> tmpy(argv[1]); // read n * 1 matrix y
    Matrix615<double> tmpx(argv[2]); // read n * p matrix X
    int n = tmpX.numRows();
    int p = tmp.X.numCols();

    MatrixXd y, X; // copy the matrices into Eigen::Matrix objects
    tmpy.copyTo(y);
    tmpX.copyTo(X);
}
```

Implementing multiple regression (cont’d)

```cpp
JacobiSVD<MatrixXd> svd(X, ComputeThinU | ComputeThinV); // compute SVD
MatrixXd betasSvd = svd.solve(y); // solve linear model for computing beta
MatrixXd ViD = svd.matrixV() * svd.singularValues().asDiagonal().inverse();
MatrixXd varBetasSvd = sigmaSvd * ViD * ViD.transpose(); // Cov(\hat{\beta})

// formatting the display of matrix.
IOFormat CleanFmt(8, 0, "", ",", ",n", "[", "]");

// print \hat{\beta}
std::cout << "----- beta -----\n" << betasSvd.format(CleanFmt) << std::endl;
// print SE(\hat{beta}) -- diagonals of Cov(\hat{\beta})
std::cout << "----- SE(beta) -----\n" << varBetasSvd.diagonal().array().sqrt().format(CleanFmt) << std::endl;
return 0;
```

Working examples with \(n = 1,000,000, p = 6 \)

Using R and `lm()` routines

```r
> system.time(y <- read.table('y.txt'))
user system elapsed
4.249  0.079  4.345

> system.time(X <- read.table('X.txt'))
user system elapsed
62.013  0.658  62.314

> system.time(summary(lm(y~X)))
user system elapsed
5.849  1.228  7.073
```

Using C++ implementations

Elapsed time for matrix reading is 23.802
Elapsed time for computation is 1.19252
Alternative implementations: speed-reliability tradeoffs

<table>
<thead>
<tr>
<th>Decomposition</th>
<th>Method</th>
<th>Requirements on the matrix</th>
<th>Speed</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PartialPivLU</td>
<td>partialPivLu()</td>
<td>Invertible</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>FullPivLU</td>
<td>fullPivLu()</td>
<td>None</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>HouseholderQR</td>
<td>householderQr()</td>
<td>None</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Col/PivHouseholderQR</td>
<td>colPivHouseholderQr()</td>
<td>None</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>FullPivHouseholderQR</td>
<td>fullPivHouseholderQr()</td>
<td>None</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>LLLT</td>
<td>llt()</td>
<td>Positive definite</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>LDLT</td>
<td>ldlt()</td>
<td>Positive or negative semidefinite</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

Summary - Multiple regression

- Multiple predictor variables, and a single response variable.
- A reliable C++ implementation of linear model inference using SVD
- Eigen library provides a convenient and reasonably fast way to implement sophisticated matrix operations in C++
- C++ implementations may have advantages in both speed and memory in large-scale data analyses.

Summary: Part 2 - Matrix Computation

- Understanding the time complexity of matrix computations
- Practical usage of Eigen matrix library
- Brief overview on Matrix decomposition strategies
- C++ implementations of simple and multiple linear regression

Upcoming lectures

Next lecture
- Midterm review session - prepare your questions
- Homework #5 will be announced (due March 15th)

Tuesday March 8th
- More midterm reviews
- Random number generation
- Random sampling from a distribution

Thursday March 10th
- Midterm exam