Variance Component Models for Quantitative Traits

Biostatistics 666

Today

Analysis of quantitative traits

- Modeling covariance for pairs of individuals
 - estimating heritability
- Extending the model beyond pairs of individuals
- Uses kinship coefficients
 - Measure of genetic similarity between two individuals

Kinship Coefficients

• Summarize genetic similarity between pairs of individuals.

• In a variance components model, they predict the phenotypic similarity between individuals.

Variance-Covariance Matrix

$$\Omega = \begin{bmatrix} V(y_1) & Cov(y_1, y_2) \\ Cov(y_1, y_2) & V(y_2) \end{bmatrix}$$

Model must describe not only variance of each observation but also covariance for pairs of observations

Bivariate density function

Normal density function

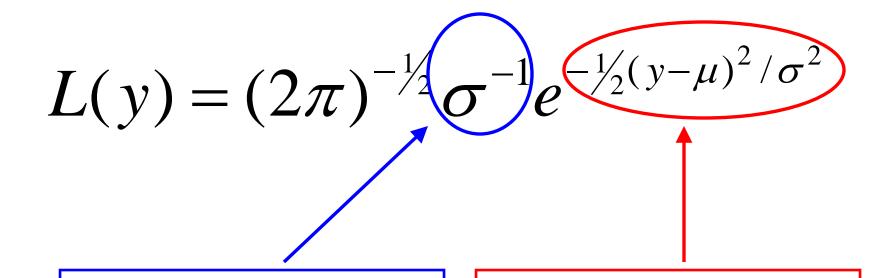
$$L(y) = \frac{1}{\sqrt{2\pi}} \sigma^{-1} e^{-\frac{1}{2}(y-\mu)^2/\sigma^2}$$

Bivariate normal density function

$$L(\mathbf{y}) = \frac{1}{2\pi} |\Omega|^{-1/2} e^{-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})'\Omega^{-1}(\mathbf{y} - \boldsymbol{\mu})}$$

• Extends univariate density function

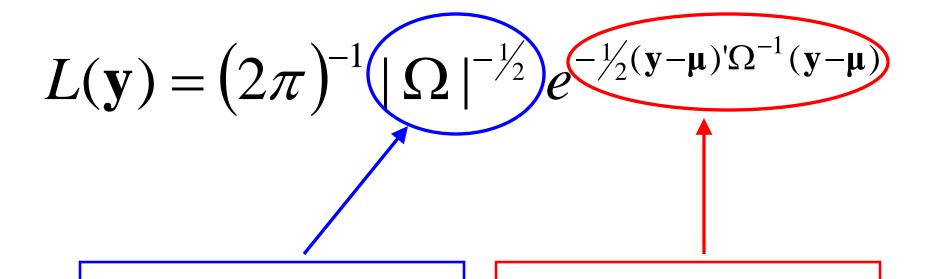
Intuition on Normal Densities



Scaling parameter, penalizes settings with large variances

Distance between observation and its expected value

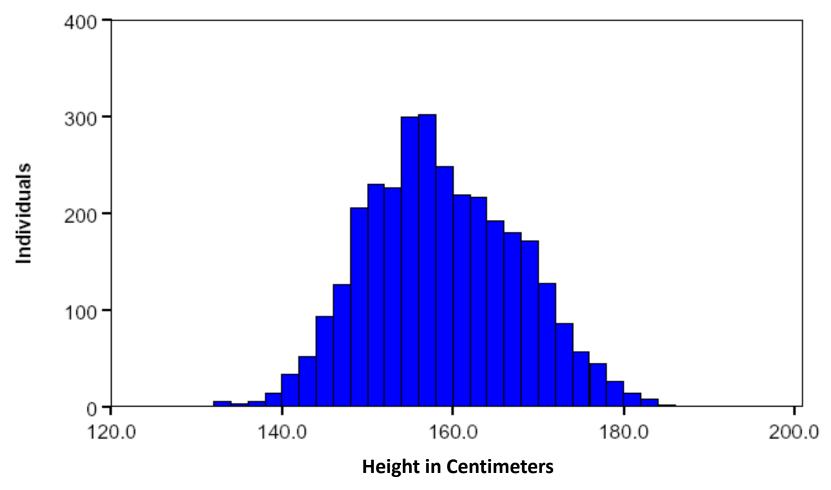
Bivariate Normal Densities



Scaling parameter, penalizes settings with large variances

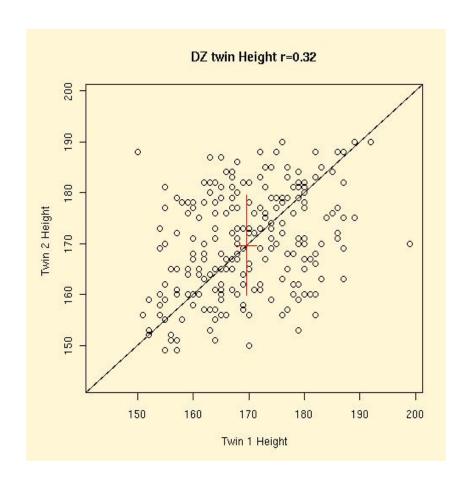
Distance between observation and its expected value

Variability in Height, Independent Observations



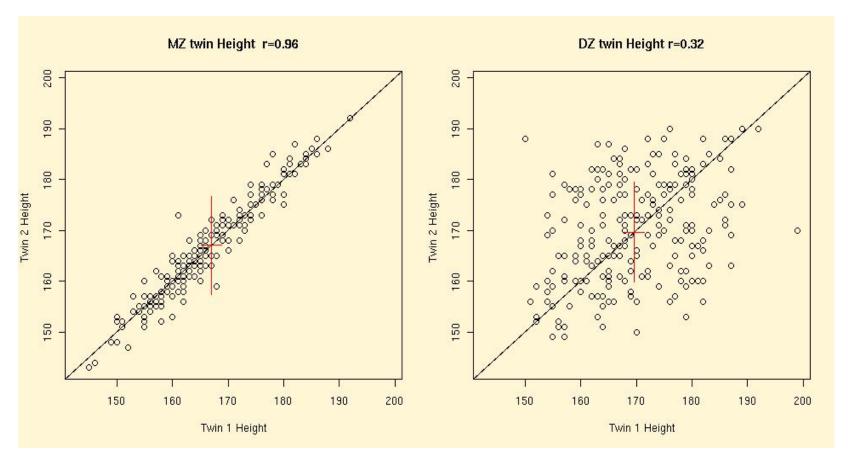
Variability in Height, Pairs of Observations

In a sample of twin or sibling pairs, we could use all the data to estimate means, variances and even covariances...



(Data from David Duffy)

Height in DZ and MZ twins



(How would you interpret these data from David Duffy?)

Incorporating Kinship Coefficients

- If genes influence trait ...
- Covariance will differ for each class of relative pair
- Instead of estimating covariance for each relationship, ...
- Impose genetic model that incorporates kinship and relates covariance between different classes of relative pair

A Simple Model for the Variance-Covariance Matrix

$$\Omega = egin{bmatrix} \sigma_g^2 + \sigma_e^2 & 2 arphi \sigma_g^2 \ 2 arphi \sigma_g^2 & \sigma_g^2 + \sigma_e^2 \end{bmatrix}$$

Where,

 φ is the kinship coefficient for the two individuals

	N	r
MZ males	292	.80
MZ females	380	.80
DZ males	179	.47
DZ females	184	.55
DZ male-female	284	.41

(Reading ability scores from Eaves et al., 1997)

Interpretation...

- Fitting a maximum likelihood model...
 - Eaves et. al estimated
 - $\sigma_g^2 = .81$
 - $\sigma_{e}^{2} = .19$
 - Found no evidence for sex differences
 - Saturated model did not improve fit

So far ...

 Model allows us to estimate the genetic contribution to the variation in any trait

• Incorporates different relative pairs ...

- But it doesn't always fit...
 - Fortunately, the model can be easily refined

Another Example...

	N	r
MZ males	271	.56
MZ females	353	.52
DZ males	167	.33
DZ females	165	.45
DZ male-female	260	.41

(Psychomotor retardation scores from Eaves et al., 1997)

Refined Matrix

$$\Omega = \begin{bmatrix} \sigma_g^2 + \sigma_c^2 + \sigma_e^2 & 2\varphi\sigma_g^2 + \sigma_c^2 \\ 2\varphi\sigma_g^2 + \sigma_c^2 & \sigma_g^2 + \sigma_c^2 + \sigma_e^2 \end{bmatrix}$$

Where,

 φ is the kinship coefficient for the two individuals

Interpretation...

- Fitting a maximum likelihood model...
 - Eaves et. al estimated (for males)
 - $\sigma_g^2 = .29$
 - $\sigma_{c}^{2} = .24$
 - $\sigma_{e}^{2} = .46$
 - Additive genetic effects could not explain similarities. Any idea why?

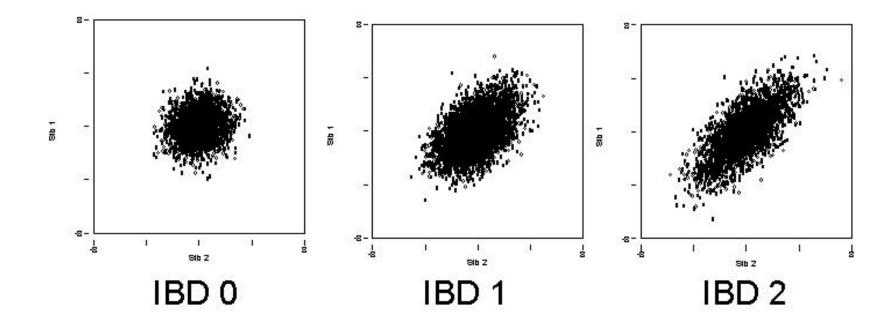
Incorporating IBD Coefficients

- IBD coefficients measure genetic similarity at a specific locus
 - Related individuals might share 0, 1 or 2 alleles

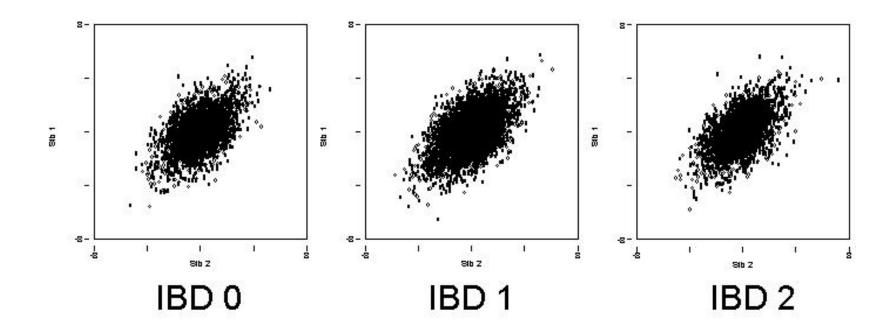
- Covariance might differ according to sharing at a particular locus
 - If locus contains genes that influence the trait

Again, impose a genetic model and estimate model parameters

Linkage



No Linkage



Relationship to IBD probabilities

• For non-inbred pair of relatives, marker or locus-specific kinship coefficients can be derived from IBD probabilities:

$$\varphi_{marker} = \frac{1}{4}P(IBD_{marker} = 1) + \frac{1}{2}P(IBD_{marker} = 2)$$

Variance-Covariance Matrix

$$\Omega = \begin{bmatrix} \sigma_a^2 + \sigma_g^2 + \sigma_e^2 & 2\varphi_{marker}\sigma_a^2 + 2\varphi\sigma_g^2 \\ 2\varphi_{marker}\sigma_a^2 + 2\varphi\sigma_g^2 & \sigma_a^2 + \sigma_g^2 + \sigma_e^2 \end{bmatrix}$$

Where,

 φ is the kinship coefficient for the two individuals φ_{marker} depends on the number of alleles shared IBD

How it works ...

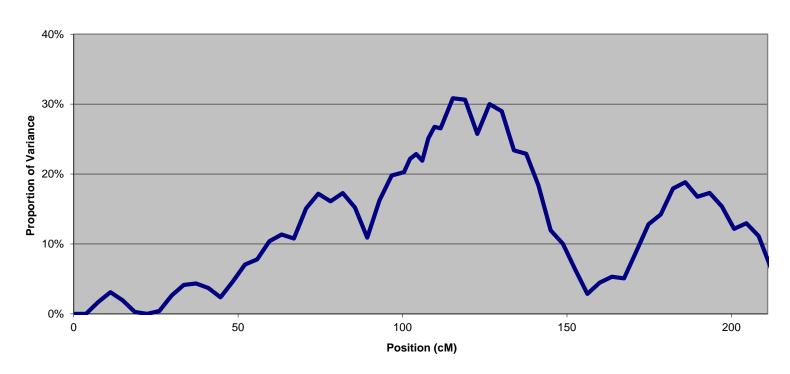
To find linkage to a particular trait...

Collect sibling pair sample

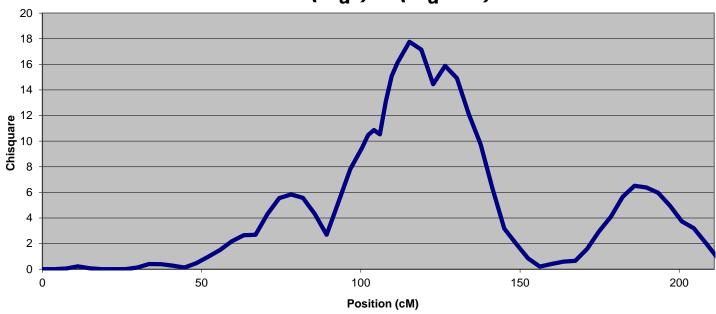
Calculate IBD for multiple points along genome

Model covariance as a function of IBD sharing at each point

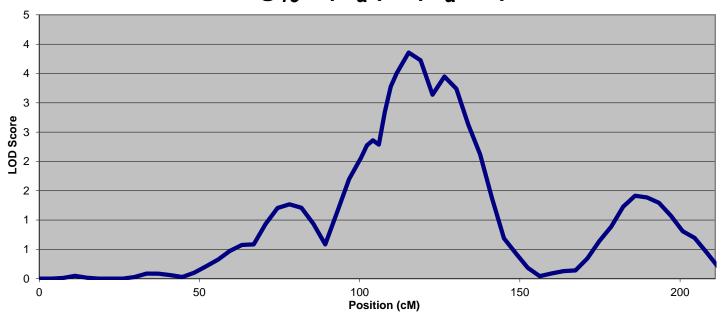
Estimated Major Gene Component σ_a^2



Likelihood Ratio Chisquared 2 In $L(\sigma_a^2)/L(\sigma_a^2=0)$



LOD Score $log_{10} L(\sigma_a^2)/L(\sigma_a^2=0)$



So far ...

Models for similarity between relative pairs

Kinship coefficient used to estimate overall genetic effect

Locus-specific coefficients used to detect genetic linkage

Useful Extensions...

- Applications extend naturally beyond pairs of individuals
 - All we need to do is to enlarge the matrix to describe all pairwise covariances

 A modern, and very useful application, is to use kinship matrices estimated using genotypes to model population structure...

 ... when we pair these with a refined model for the expected phenotype of each individual, we can have very versatile association tests.

Larger Pedigrees...

$$\Omega_{jk} = \begin{cases} \sigma_a^2 + \sigma_g^2 + \sigma_e^2 & \text{if } j = k \\ 2\varphi_{marker}\sigma_a^2 + 2\varphi\sigma_g^2 & \text{if } j \neq k \end{cases}$$

Where,

 φ is the kinship coefficient for the two individuals φ_{marker} depends on the number of alleles shared IBD j and k index different individuals in the family

Multivariate density function

Normal density function

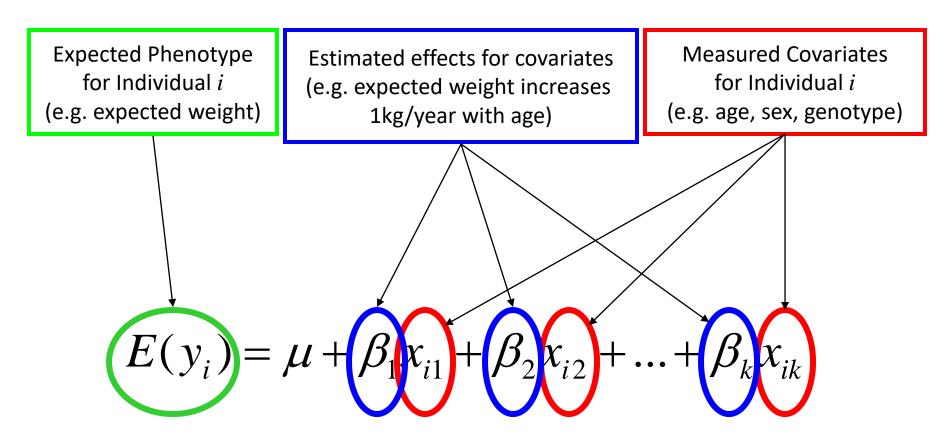
$$L(y) = (2\pi)^{-\frac{1}{2}} \sigma^{-1} e^{-\frac{1}{2}(y-\mu)^2/\sigma^2}$$

Multivariate normal density function

$$L(\mathbf{y}) = 2\pi^{-n/2} |\Omega|^{-1/2} e^{-1/2(\mathbf{y} - \mathbf{\mu})'\Omega^{-1}(\mathbf{y} - \mathbf{\mu})}$$

• Extends univariate density function

Covariate and Genotype effects



In addition to modeling variances and covariances, can model fixed effects

Simple Association Model

- Each copy of allele changes trait by a fixed amount
 - Include covariate counting copies for allele of interest
- Evidence for association when a $\neq 0$

 g_i = number of copies of allele of interest in individual i

$$E(y_i) = \mu + \beta_g g_i$$

 β_{α} is effect of each allele (the additive genetic value).

Relatedness in Populations

• Although we have focused on individuals of known relationship, ...

Marker data can also be used to estimate relatedness.

• For example, Kang et al (2010) use:

$$\hat{\phi}_{ij} = \frac{1}{M} \sum_{m=1}^{M} \frac{(g_{im} - 2p_m)(g_{jm} - 2p_m)}{4p_m(1 - p_m)}$$

Today

- Analysis of quantitative traits
- Kinship coefficients
 - Measure of genetic similarity between two individuals
- Modeling covariance for pairs of individuals
 - estimating heritability
 - estimating locus-specific heritability
- Extending the model to larger pedigrees

Useful References

Amos (1994)
Am J Hum Genet **54:**535-543

Hopper and Matthews (1982)
Ann Hum Genet 46:373–383

Lange and Boehnke (1983)
Am J Med Genet 14:513-24