Biostatistics 615/815 Lecture 10: Hidden Markov Models

Hyun Min Kang

October 4th, 2012

Manhattan Tourist Problem

- Let \(C(r, c) \) be the optimal cost from \((0, 0)\) to \((r, c)\)
- Let \(h(r, c) \) be the weight from \((r, c)\) to \((r, c+1)\)
- Let \(v(r, c) \) be the weight from \((r, c)\) to \((r+1, c)\)
- We can recursively define the optimal cost as

\[
C(r, c) = \begin{cases}
 \min \left\{ \begin{array}{ll}
 C(r-1, c) + v(r-1, c) & r > 0, c > 0 \\
 C(r, c-1) + h(r, c-1) & r = 0, c > 0 \\
 C(r-1, c) + v(r-1, c) & r > 0, c = 0 \\
 0 & r = 0, c = 0
 \end{array} \right.
\end{cases}
\]

- Once \(C(r, c) \) is evaluated, it must be stored to avoid redundant computation.

Dynamic Programming for Edit Distance Problem

- Input strings are \(x[1, \ldots, m] \) and \(y[1, \ldots, n] \).
- Let \(x_i = x[1, \ldots, i] \) and \(y_j = y[1, \ldots, j] \) be substrings of \(x \) and \(y \).
- Edit distance \(d(x, y) \) can be recursively defined as follows

\[
d(x_i, y_j) = \begin{cases}
 i & j = 0 \\
 j & i = 0 \\
 \min \left\{ \begin{array}{ll}
 d(x_{i-1}, y_j) + 1 & \text{otherwise} \\
 d(x_i, y_{j-1}) + 1 & \\
 d(x_{i-1}, y_{j-1}) + I(x[i] \neq y[j]) &
 \end{array} \right.
\end{cases}
\]

- Similar to the Manhattan tourist problem, but with 3-way choice.
- Time complexity is \(\Theta(mn) \).
Hidden Markov Models (HMMs)

- A Markov model where actual state is unobserved
 - Transition between states are probabilistically modeled just like the Markov process
- Typically there are observable outputs associated with hidden states
 - The probability distribution of observable outputs given an hidden states can be obtained.

Mathematical representation of the HMM example

States \(S = \{S_1, S_2\} = \) (HIGH, LOW)

Outcomes \(O = \{O_1, O_2, O_3\} = \) (SUNNY, CLOUDY, RAINY)

Initial States \(\pi_i = \Pr(q_1 = S_i), \pi = \{0.7, 0.3\} \)

Transition \(A_{ij} = \Pr(q_{t+1} = S_j | q_t = S_i) \)

\[
A = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix}
\]

Emission \(B_{ij} = b_{q_i}(a_t) = b_{S_j}(O_i) = \Pr(a_t = O_j | q_t = S_i) \)

\[
B = \begin{pmatrix} 0.88 & 0.10 & 0.02 \\ 0.10 & 0.60 & 0.30 \end{pmatrix}
\]

An example of HMM

Unconditional marginal probabilities

What is the chance of rain in the day 4?

\[
f(q_4) = \begin{pmatrix} \Pr(q_4 = S_1) \\ \Pr(q_4 = S_2) \end{pmatrix} = (A^T)^3 \pi = \begin{pmatrix} 0.669 \\ 0.331 \end{pmatrix}
\]

\[
g(o_4) = \begin{pmatrix} \Pr(o_4 = O_1) \\ \Pr(o_4 = O_2) \\ \Pr(o_4 = O_3) \end{pmatrix} = B^T f(q_4) = \begin{pmatrix} 0.621 \\ 0.266 \\ 0.233 \end{pmatrix}
\]

The chance of rain in day 4 is 23.3%
Marginal likelihood of data in HMM

- Let $\lambda = (A, B, \pi)$
- For a sequence of observation $\mathbf{o} = \{o_1, \ldots, o_t\}$,
 \[
 \Pr(\mathbf{o}|\lambda) = \sum_{\mathbf{q}} \Pr(\mathbf{o}|\mathbf{q}, \lambda) \Pr(\mathbf{q}|\lambda)
 \]
 \[
 \Pr(\mathbf{o}|\mathbf{q}, \lambda) = \prod_{i=1}^{t} \Pr(o_i|q_i, \lambda) = \prod_{i=1}^{t} b_{q_i}(o_i)
 \]
 \[
 \Pr(\mathbf{q}|\lambda) = \pi_{q_1} \prod_{i=2}^{t} a_{q_{i-1}q_i}
 \]
 \[
 \Pr(\mathbf{o}|\lambda) = \sum_{\mathbf{q}} \pi_{q_1} b_{q_1}(o_1) \prod_{i=2}^{t} a_{q_{i-1}q_i} b_{q_i}(o_i)
 \]

Naive computation of the likelihood

\[
\Pr(\mathbf{o}|\lambda) = \sum_{\mathbf{q}} \pi_{q_1} b_{q_1}(o_1) \prod_{i=2}^{t} a_{q_{i-1}q_i} b_{q_i}(o_i)
\]

- Number of possible $q = 2^t$ are exponentially growing with the number of observations
- Computational would be infeasible for large number of observations
- Algorithmic solution required for efficient computation.

More Markov Chain Question

- If the observation was (SUNNY,SUNNY,CLOUDY,RAINY,RAINY) from day 1 through day 5, what is the distribution of hidden states for each day?
- Need to know $\Pr(q_i|\mathbf{o}, \lambda)$

Forward and backward probabilities

\[
q^-_T = (q_1, \ldots, q_{t-1}), \quad q^+_T = (q_{t+1}, \ldots, q_T)
\]
\[
o^-_T = (o_1, \ldots, o_{t-1}), \quad o^+_T = (o_{t+1}, \ldots, o_T)
\]
\[
\Pr(q_t = i|\mathbf{o}, \lambda) = \frac{\Pr(q_t = i, \mathbf{o}|\lambda)}{\Pr(\mathbf{o}|\lambda)} = \frac{\Pr(q_t = i, \mathbf{o}|\lambda)}{\sum_{j=1}^{n} \Pr(q_t = j, \mathbf{o}|\lambda)}
\]
\[
\Pr(q_t, \mathbf{o}|\lambda) = \Pr(q_t, o^-_T, o^+_T|\lambda) = \Pr(o^-_T|q_t, \lambda) \Pr(\mathbf{o}^-_T|q_t, \lambda) \Pr(q_t|\lambda) \Pr(\mathbf{o}^-_T|q_t, \lambda) \Pr(\mathbf{o}^-_T, o^+_T|\lambda)
\]
\[
= \beta_t(q_t) \alpha_t(q_t)
\]

If $\alpha_t(q_t)$ and $\beta_t(q_t)$ is known, $\Pr(q_t|\mathbf{o}, \lambda)$ can be computed in a linear time.
DP algorithm for calculating forward probability

- Key idea is to use \((q_t, o_t) \perp o_t^- | q_{t-1}\).
- Each of \(q_{t-1}, q_t,\) and \(q_{t+1}\) is a Markov blanket.

\[
\alpha_t(i) = \Pr(o_1, \cdots, o_t, q_t = i | \lambda) \\
= \sum_{j=1}^n \Pr(o_t, q_{t-1} = j, q_t = i | \lambda) \\
= \sum_{j=1}^n \Pr(o_t^- q_{t-1} = j | \lambda) \Pr(q_t = i | q_{t-1} = j, \lambda) \Pr(o_t | q_t = i, \lambda) \\
= \sum_{j=1}^n \alpha_{t-1}(j) a_{ji} b_t(o_t) \\
\alpha_1(i) = \pi_i b_1(o_1)
\]

Conditional dependency in forward-backward algorithms

- Forward: \((q_t, o_t) \perp o_t^- | q_{t-1}\).
- Backward: \(o_{t+1} \perp o_{t+1}^+ | q_{t+1}\).

DP algorithm for calculating backward probability

- Key idea is to use \(o_{t+1}^+ \perp o_{t+1}^- | q_{t+1}\).

\[
b_t(i) = \Pr(o_{t+1}, \cdots, o_T | q_t = i, \lambda) \\
= \sum_{j=1}^n \Pr(o_{t+1}, o_t^+, q_{t+1} = j | q_t = i, \lambda) \\
= \sum_{j=1}^n \Pr(o_{t+1} | q_{t+1}, \lambda) \Pr(o_t^+ | q_{t+1} = j, \lambda) \Pr(q_{t+1} = j | q_t = i, \lambda) \\
= \sum_{j=1}^n \beta_{t+1}(j) a_{ji} b_t(o_{t+1}) \\
b_T(i) = 1
\]

Putting forward and backward probabilities together

- Conditional probability of states given data

\[
\Pr(q_t = i | o, \lambda) = \frac{\Pr(o, q_t = S_i | \lambda)}{\sum_{j=1}^n \Pr(o, q_t = S_j | \lambda)} = \frac{\alpha_t(i) \beta_t(i)}{\sum_{j=1}^n \alpha_t(j) \beta_t(j)}
\]

- Time complexity is \(\Theta(n^2 T)\).
Finding the most likely trajectory of hidden states

- Given a series of observations, we want to compute
 \[\arg \max_q \Pr(q|o, \lambda) \]
- Define \(\delta_t(i) \) as
 \[\delta_t(i) = \max_q \Pr(q, o|\lambda) \]
- Use dynamic programming algorithm to find the 'most likely' path

The Viterbi algorithm

Initialization \(\delta_1(i) = \pi b_i(o_1) \) for \(1 \leq i \leq n \).

Maintenance \(\delta_t(i) = \max_j \delta_{t-1}(j) a_{ji} b_i(o_t) \)

\(\phi_t(i) = \arg \max_j \delta_{t-1}(j) a_{ji} \)

Termination Max likelihood is \(\max_i \delta_T(i) \)

Optimal path can be backtracked using \(\phi_T(i) \)

An example Viterbi path

- When observations were (walk, shop, clean)
- Similar to Manhattan tourist problem.
A working example: Occasionally biased coin

A generative HMM

- Observations: \(O = \{1(\text{Head}), 2(\text{Tail})\} \)
- Hidden states: \(S = \{1(\text{Fair}), 2(\text{Biased})\} \)
- Initial states: \(\pi = \{0.5, 0.5\} \)
- Transition probability: \(A(i, j) = a_{ij} = \begin{pmatrix} 0.95 & 0.05 \\ 0.2 & 0.8 \end{pmatrix} \)
- Emission probability: \(B(i, j) = b_i(j) = \begin{pmatrix} 0.5 & 0.5 \\ 0.9 & 0.1 \end{pmatrix} \)

Questions

- Given coin toss observations, estimate the probability of each state
- Given coin toss observations, what is the most likely series of states?

Implementing HMM - Matrix615.h

```c
#include <vector>

template <class T>
class Matrix615 {
public:
    std::vector<T> data;
    Matrix615(int nrow, int ncol, T val = 0) {
        data.resize(nrow);
        for(int i = 0; i < nrow; ++i) {
            data[i].resize(ncol, val);
        }
    }
    int rowNums() { return data.size(); }
    int colNums() { return data[0].size(); }
};
```

HMM Implementations - HMM615.h

```c
#include "Matrix615.h"
class HMM615 {
public:
    // parameters
    int nStates; // n : number of possible states
    int nObs; // m : number of possible output values
    int nTimes; // t : number of time slots with observations
    std::vector<double> pis; // initial states
    std::vector<int> outs; // observed outcomes
    Matrix615<double> trans; // trans[i][j] corresponds to A_{ij}
    Matrix615<double> emis;

    // storages for dynamic programming
    Matrix615<double> alphas, betas, gammas, deltas;
    Matrix615<int> phis;
    std::vector<int> path;
```
HMM Implementations - HMM615::forward()

```cpp
void HMM615::forward()
{
    for(int i=0; i < nStates; ++i) {
        alphas.data[i][i] = pis[i] * emit.data[i][outs[0]];
    }
    for(int t=1; t < nTimes; ++t) {
        for(int i=0; i < nStates; ++i) {
            alphas.data[t][i] = 0;
            for(int j=0; j < nStates; ++j) {
                alphas.data[t][i] += (alphas.data[t-1][j] * trans.data[j][i] * emit.data[i][outs[t]]);
            }
        }
    }
}
```

HMM Implementations - HMM615::backward()

```cpp
void HMM615::backward()
{
    for(int i=0; i < nStates; ++i) {
        betas.data[nTimes-1][i] = 1;
    }
    for(int t=nTimes-2; t >=0; --t) {
        for(int i=0; i < nStates; ++i) {
            betas.data[t][i] = 0;
            for(int j=0; j < nStates; ++j) {
                betas.data[t][i] += (betas.data[t+1][j] * trans.data[j][i] * emit.data[j][outs[t+1]]);
            }
        }
    }
}
```

HMM Implementations - HMM615::forwardBackward()

```cpp
void HMM615::forwardBackward()
{
    forward();
    backward();
    for(int t=0; t < nTimes; ++t) {
        double sum = 0;
        for(int i=0; i < nStates; ++i) {
            sum += (alphas.data[t][i] * betas.data[t][i]);
        }
        for(int i=0; i < nStates; ++i) {
            gammas.data[t][i] = (alphas.data[t][i] * betas.data[t][i])/sum;
        }
    }
}
```

HMM Implementations - HMM615::viterbi()

```cpp
void HMM615::viterbi()
{
    for(int i=0; i < nStates; ++i) {
        deltas.data[0][i] = pis[i] * emit.data[i][outs[0]];
    }
    for(int t=1; t < nTimes; ++t) {
        for(int i=0; i < nStates; ++i) {
            int maxIdx = 0;
            double maxVal = deltas.data[t-1][0] * trans.data[0][i] * emit.data[i][outs[t]];
            for(int j=1; j < nStates; ++j) {
                double val = deltas.data[t-1][j] * trans.data[j][i] * emit.data[i][outs[t]];
                if(val > maxVal) {
                    maxIdx = j;
                    maxVal = val;
                }
            }
            deltas.data[t][i] = maxVal;
            phis.data[t][i] = maxIdx;
        }
    }
}
```
HMM Implementations - HMM615::viterbi() (cont’d)

```cpp
// backtracking viterbi path
double maxDelta = delta.data[nTimes-1][0];
path[nTimes-1] = 0;
for(int i=1; i < nStates; ++i) {
  if (maxDelta < delta.data[nTimes-1][i]) {
    maxDelta = delta.data[nTimes-1][i];
    path[nTimes-1] = i;
  }
}
for(int t=nTimes-2; t >= 0; --t) {
  path[t] = phis.data[t+1][ path[t+1] ];
}
```

HMM Implementations - biasedCoin.cpp

```cpp
#include <iostream>
#include <iomanip>

int main(int argc, char** argv) {
    std::vector<int> toss;
    std::string tok;
    while( std::cin >> tok ) {
        if ( tok == "H" ) toss.push_back(0);
        else if ( tok == "T" ) toss.push_back(1);
        else {
            std::cerr << "Cannot recognize input " << tok << std::endl;
            return -1;
        }
    }
    int T = toss.size();
    HMM615 hmm(2, 2, T);
    hmm.trans.data[0][0] = 0.95; hmm.trans.data[0][1] = 0.05;
    hmm.trans.data[1][0] = 0.2; hmm.trans.data[1][1] = 0.8;
}
```

Example runs

```
$ cat ~hnkang/Public615/data/toss.20.txt | ~hnkang/Public615/bin/biasedCoin
TIME TOSS P(FAIR) P(BIAS) MLSTATE
1 H 0.5950 0.4050 FAIR
2 T 0.8118 0.1882 FAIR
3 H 0.8871 0.1129 FAIR
4 T 0.8584 0.1416 FAIR
5 H 0.7613 0.2387 FAIR
6 H 0.7276 0.2724 FAIR
7 T 0.7495 0.2505 FAIR
8 H 0.5413 0.4587 FAIR
9 H 0.4195 0.5805 FAIR
10 H 0.3533 0.6467 FAIR
11 H 0.3301 0.6699 FAIR
12 H 0.3436 0.6564 FAIR
13 H 0.3971 0.6029 FAIR
14 T 0.5828 0.4172 FAIR
15 H 0.3725 0.6275 FAIR
16 H 0.2985 0.7015 FAIR
17 H 0.2630 0.7365 FAIR
18 H 0.2596 0.7404 FAIR
19 H 0.2858 0.7142 FAIR
20 H 0.3482 0.6518 FAIR
```
Summary

Today - Hidden Markov Models
- Forward-backward algorithm
- Viterbi algorithm
- Biased Coin Example

Next Week
- Basic Usage of STL containers
- Using Eigen Library
- Interfacing between R and C++