Biostatistics 615/815 Lecture 5: Divide and Conquer Algorithms, Basic Data Structures

Hyun Min Kang

September 18th, 2012
Example submission of Homework 1

Subject: [BIOSTAT615] Homework 1 - John Doe

Dear Dr. Kang,

Attached please find the tarball source code (.tar.gz) of the problem 1 and problem 3 for the submission of homework 1. The google document containing the additional copy of source codes, screenshots, and the explanation of problem 2 can be found at https://docs.google.com/a/umich.edu/document/...

- Send the email both to hmkang@umich.edu and atks@umich.edu,
- Allow access to the google document both addresses
- Make sure (1) to use proper title, (2) to attach .tar.gz file, and (3) to include the link to google document in one submission.
- You will receive an email when the grading is done. If you did not submit your homework in an expected format, you will be notified from the instructor during the grading period.

Hyun Min Kang
Quick Poll

How many students did visit last Friday’s office hours?

- 521048 0
- 521049 1
- 521050 2
- 521051 3
- 521321 4
- 521342 5

Submit the code (in blue) to http://pollev.com.
STL strings

What is the expected output from the following code?

```cpp
#include <iostream>
#include <string>

int main (int argc, char** argv) {
    char* p = "Hello";
    char* q = p;
    std::string s = p;
    p[0] = 'h';
    std::cout << q << " " << s << std::endl;
    return 0;
}
```

Submit the code (in blue) to http://pollev.com.

523649 Hello Hello
523650 Hello hello
523651 hello Hello
523655 hello hello
Using Classes and Pointers

Which function(s) behave as expected? (i.e. creates a new point object and returns its address)

Point* createPoint1(double x, double y) {
 Point p(x,y);
 return &p;
}

Point* createPoint2(double x, double y) {
 Point* pp = new Point(x,y);
 return pp;
}

Submit the code (in blue) to http://pollev.com.

523672 createPoint1() only
523673 createPoint2() only
523674 Both
523675 None
Using STLs

sortedEcho.cpp from last week

```cpp
#include .... // assume all necessary headers are included

int main(int argc, char** argv) {
  std::vector<std::string> vArgs;
  for(int i=1; i < argc; ++i) { vArgs.push_back(argv[i]); }
  std::sort(vArgs.begin(), vArgs.end);
  for(int i=0; i < (int)vArgs.size(); ++i) { std::cout << " " << vArgs[i]; }
  std::cout << std::endl;
  return 0;
}
```

What is the expected output of the following run?

% ./sortedEcho hello 1 2 123

Passing STL objects as reference

```cpp
// print each element of array to the standard output
void printArray(std::vector<int>& A) {
  // call-by-reference to avoid copying large objects
  for(int i=0; i < (int)A.size(); ++i) {
    std::cout << " " << A[i];
  }
  std::cout << std::endl;
}
```

Hyun Min Kang
Biostatistics 615/815 - Lecture 5
September 18th, 2012
Divide-and-conquer algorithms

Solve a problem recursively, applying three steps at each level of recursion

Divide the problem into a number of subproblems that are smaller instances of the same problem

Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to subproblems into the solution for the original problem
Recap
Merge Sort
Quicksort
Array

Binary Search

// assuming a is sorted, return index of array containing the key,
// among a[start...end]. Return -1 if no key is found
int binarySearch(std::vector<int>& a, int key, int start, int end) {
 if (start > end) return -1; // search failed
 int mid = (start+end)/2;
 if (key == a[mid]) return mid; // terminate if match is found
 if (key < a[mid]) // divide the remaining problem into half
 return binarySearch(a, key, start, mid-1);
 else
 return binarySearch(a, key, mid+1, end);
}
Running time comparison: sorting algorithms

Running example with 200,000 elements

user@host:~$ time sh -c 'seq 1 200000 | ~hmkang/Public/bin/shuf | ./insertionSort \
 > /dev/null'
0:17.42 elapsed, 17.428 u, 0.017 s, cpu 100.0% ...
user@host:~$ time sh -c 'seq 1 200000 | ~hmkang/Public/bin/shuf | ./stdSort > /dev/null'
0:00.36 elapsed, 0.346 u, 0.042 s, cpu 105.5% ...
Running time comparison: sorting algorithms

Running example with 200,000 elements

user@host:~$ time sh -c 'seq 1 200000 | ~hmkang/Public/bin/shuf | ./insertionSort \n > /dev/null'
0:17.42 elapsed, 17.428 u, 0.017 s, cpu 100.0% ...
user@host:~$ time sh -c 'seq 1 200000 | ~hmkang/Public/bin/shuf | ./stdSort > /dev/null'
0:00.36 elapsed, 0.346 u, 0.042 s, cpu 105.5% ...

Why is the speed so different?

- The time complexity of insertion sort is $\Theta(n^2)$
- But the time complexity of STL’s sorting algorithm is $\Theta(n \log n)$.
Merge Sort

Divide and conquer algorithm

Divide Divide the n element sequence to be sorted into two subsequences of $n/2$ elements each

Conquer Sort the two subsequences recursively using merge sort

Combine Merge the two sorted subsequences to produce the sorted answer
#mergeSort.cpp - main()

```cpp
#include <iostream>
#include <vector>
#include <climits>

void mergeSort(std::vector<int>& a, int p, int r); // defined later
void merge(std::vector<int>& a, int p, int q, int r); // defined later
void printArray(std::vector<int>& A); // same as insertionSort
// same to insertionSort.cpp except for one line

int main(int argc, char** argv) {
    std::vector<int> v;
    int tok;
    while ( std::cin >> tok ) { v.push_back(tok); }
    std::cout << "Before sorting: ";
    printArray(v);
    mergeSort(v, 0, v.size()-1); // differs from insertionSort.cpp
    std::cout << "After sorting: ";
    printArray(v);
    return 0;
}
```
void mergeSort(std::vector<int>& a, int p, int r) {
 if (p < r) {
 int q = (p+r)/2;
 mergeSort(a, p, q); // divide-and-conquer
 mergeSort(a, q+1, r); // divide-and-conquer
 merge(a, p, q, r); // combine the solutions
 }
}
mergeSort.cpp - merge() function

// merge piecewise sorted a[p..q] a[q+1..r] into a sorted a[p..r]
void merge(std::vector<int>& a, int p, int q, int r) {
 std::vector<int> aL, aR; // copy a[p..q] to aL and a[q+1..r] to aR
 for(int i=p; i <= q; ++i) aL.push_back(a[i]);
 for(int i=q+1; i <= r; ++i) aR.push_back(a[i]);
 aL.push_back(INT_MAX); // append additional value to avoid out-of-bound
 aR.push_back(INT_MAX); // pick smaller one first from aL and aR and copy to a[p..r]
 for(int k=p, i=0, j=0; k <= r; ++k) {
 if (aL[i] <= aR[j]) {
 a[k] = aL[i];
 ++i;
 }
 else {
 a[k] = aR[j];
 ++j;
 }
 }
}
Time Complexity of Merge Sort

If \(n = 2^m \)

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 2T(n/2) + cn & \text{if } n > 1
\end{cases}
\]

\[
T(n) = \sum_{i=1}^{m} cn = cmn = cn \log_2(n) = \Theta(n \log_2 n)
\]
Time Complexity of Merge Sort

If \(n = 2^m \)

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 2T(n/2) + cn & \text{if } n > 1
\end{cases}
\]

\[
T(n) = \sum_{i=1}^{m} cn = cmn = cn \log_2(n) = \Theta(n \log_2 n)
\]

For arbitrary \(n \)

\[
T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + cn & \text{if } n > 1
\end{cases}
\]

\[
T(n) = \Theta(n \log_2 n)
\]
Running time comparison

Running example with 200,000 elements

```
user@host:~$ time sh -c 'seq 1 200000 | ~hmkang/Public/bin/shuf | ./insertionSort \n    > /dev/null'
0:17.42 elapsed, 17.428 u, 0.017 s, cpu 100.0% ...

user@host:~$ time sh -c 'seq 1 200000 | ~hmkang/Public/bin/shuf | ./stdSort > /dev/null'
0:00.36 elapsed, 0.346 u, 0.042 s, cpu 105.5% ...

user@host:~$ time sh -c 'seq 1 200000 | ~hmkang/Public/bin/shuf | ./mergeSort \n    > /dev/null'
0:00.46 elapsed, 0.465 u, 0.019 s, cpu 102.1% ...
```
Summary: Merge Sort

- Easy-to-understand divide and conquer algorithms
- $\Theta(n \log n)$ algorithm in worst case
- Need additional memory for array copy
- Slightly slower than other $\Theta(n \log n)$ algorithms due to overhead of array copy
Quicksort Overview

- Worst-case time complexity is $\Theta(n^2)$
- Expected running time is $\Theta(n \log_2 n)$.
- But in practice mostly performs the best
Quicksort Overview

- Worst-case time complexity is $\Theta(n^2)$
- Expected running time is $\Theta(n \log_2 n)$.
- But in practice mostly performs the best

Divide and conquer algorithm

Divide Partition (rearrange) the array $A[p..r]$ into two subarrays
- Each element of $A[p..q-1] \leq A[q]$
- Each element of $A[q+1..r] \geq A[q]$

Compute the index q as part of this partitioning procedure

Conquer Sort the two subarrays by recursively calling quicksort

Combine Because the subarrays are already sorted, no work is needed to combine them. The entire array $A[p..r]$ is now sorted
QuickSort Algorithm

Algorithm QUICKSORT

Data: array A and indices p and r

Result: $A[p..r]$ is sorted

if $p < r$ then

$q = \text{PARTITION}(A, p, r)$;

QUICKSORT($A, p, q - 1$);

QUICKSORT($A, q + 1, r$);

end
QuickSort Algorithm

Algorithm PARTITION

Data: array A and indices p and r

Result: Returns q such that $A[p..q-1] \leq A[q] \leq A[q+1..r]$

$x = A[r];$
$i = p - 1;$

for $j = p$ to $r - 1$ do

\[\text{if } A[j] \leq x \text{ then} \]
\[i = i + 1; \]
\[\text{EXCHANGE}(A[i], A[j]); \]

end

\[\text{EXCHANGE}(A[i+1], A[r]); \]

return $i + 1;$
How **Partition** Algorithm Works

![Diagram of partition algorithm](image)
Implementation of **QUICKSORT** Algorithm

```cpp
// quickSort function
// The main function is the same to mergeSort.cpp except for the function name
void quickSort(std::vector<int>& A, int p, int r) {
    if ( p < r ) { // immediately terminate if subarray size is 1
        int piv = A[r]; // take a pivot value
        int i = p-1; // p-i-1 is the # elements < piv among A[p..j]
        int tmp;
        for(int j=p; j < r; ++j) {
            if ( A[j] < piv ) { // if smaller value is found, increase q (=i+1)
                ++i;
            }
        }
        quickSort(A, p, i);
        quickSort(A, i+2, r);
    }
}
```
Running time comparison

Running example with 200,000 elements (in UNIX or MacOS)

```
user@host:~$ time sh -c 'seq 1 200000 | ~/hmkang/Public/bin/shuf | ./insertionSort \\
  > /dev/null'
0:17.42 elapsed, 17.428 u, 0.017 s, cpu 100.0% ...

user@host:~$ time sh -c 'seq 1 200000 | ~/hmkang/Public/bin/shuf | ./stdSort > /dev/null'
0:00.36 elapsed, 0.346 u, 0.042 s, cpu 105.5% ...

user@host:~$ time sh -c 'seq 1 200000 | ~/hmkang/Public/bin/shuf | ./mergeSort \\
  > /dev/null'
0:00.46 elapsed, 0.465 u, 0.019 s, cpu 102.1% ...

user@host:~$ time sh -c 'seq 1 200000 | ~/hmkang/Public/bin/shuf | ./quickSort \\
  > /dev/null'
0:00.35 elapsed, 0.353 u, 0.018 s, cpu 102.8%...
```
Summary: Quicksort

- $\Theta(n \log n)$ algorithm on average (and most case)
- $\Theta(n^2)$ algorithm in worst case
- Divide conquer algorithms based on partitioning
- Slightly faster than other $\Theta(n \log n)$ algorithms
Lower bounds for comparison sorting

CLRS Theorem 8.1

Any comparison-based sort algorithm requires \(\Omega(n \log n) \) comparisons in the worst case
Lower bounds for comparison sorting

CLRS Theorem 8.1

Any comparison-based sort algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

An informal proof

- Any comparison sort algorithm can be represented as a binary decision tree, where each node represents a comparison. Each path from the root to leaf represents possible series of comparisons to sort a sequence.
Lower bounds for comparison sorting

CLRS Theorem 8.1

Any comparison-based sort algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

An informal proof

- Any comparison sort algorithm can be represented as a binary decision tree, where each node represents a comparison. Each path from the root to leaf represents possible series of comparisons to sort a sequence.
- Each leaf of the decision tree represents one of $n!$ possible permutations of input sequences.
Lower bounds for comparison sorting

CLRS Theorem 8.1

Any comparison-based sort algorithm requires \(\Omega(n \log n) \) comparisons in the worst case

An informal proof

- Any comparison sort algorithm can be represented as a binary decision tree, where each node represents a comparison. Each path from the root to leaf represents possible series of comparisons to sort a sequence.
- Each leaf of the decision tree represents one of \(n! \) possible permutations of input sequences.
- We have \(n! \leq l \leq 2^h \), where \(l \) is the number of leaf nodes, and \(h \) is the height of the tree, equivalent to the \(\# \) of comparisons.
Lower bounds for comparison sorting

CLRS Theorem 8.1

Any comparison-based sort algorithm requires $\Omega(n \log n)$ comparisons in the worst case

An informal proof

- Any comparison sort algorithm can be represented as a binary decision tree, where each node represents a comparison. Each path from the root to leaf represents possible series of comparisons to sort a sequence.

- Each leaf of the decision tree represents one of $n!$ possible permutations of input sequences

- We have $n! \leq l \leq 2^h$, where l is the number of leaf nodes, and h is the height of the tree, equivalent to the number of comparisons.

- Then it implies $h \geq \log(n!) = \Theta(n \log n)$
Example decision-tree representing **InsertionSort**
Elementary data structure

Container

A container T is a generic data structure which supports the following three operation for an object x.

- $\text{Search}(T, x)$
- $\text{Insert}(T, x)$
- $\text{Delete}(T, x)$

Possible types of container

- Arrays
- Linked lists
- Trees
- Hashes
Average time complexity of container operations

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>SortedArray</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>List</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Tree</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
</tr>
<tr>
<td>Hash</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
</tr>
</tbody>
</table>

- Array or list is simple and fast enough for small-sized data
- Tree is easier to scale up to moderate to large-sized data
- Hash is the most robust for very large datasets
Arrays

Key features

- Stores the data in a consecutive memory space
- Fastest when the data size is small due to locality of data

Using std::vector as array

```cpp
std::vector<int> v; // creates an empty vector
// INSERT : append at the end, O(1)
v.push_back(10);
// SEARCH : find a value scanning from begin to end, O(n)
std::vector<int>::iterator i = std::find(v.begin(), v.end(), 10);
if (i != v.end()) { std::cout << "Found " << (*i) << std::endl; }
// DELETE : search first, and delete, O(n)
if (i != v.end()) { v.erase(i); } // delete an element
```
Implementing data structure as a header file

myArray.h

class myArray {
 int* data;
 int size;
 void insert(int x) { ... }
 ...
};

myArrayTest.cpp

#include <iostream>
#include "myArray.h"
int main(int argc, char** argv) {
 ...
}
Designing a simple array - myArray.h

```cpp
#include <iostream>
define DEFAULT_ALLOC 1024

template <class T> // template supporting a generic type
class myArray {
  protected: // member variables hidden from outside
    T *data; // array of the generic type
    int size; // number of elements in the container
    int nalloc; // # of objects allocated in the memory
  public:
    myArray(); // default constructor
    ~myArray(); // destructor
    void insert(const T& x); // insert an element x, const means read-only
    bool search(const T& x); // search for an element x and return its location
    bool remove(const T& x); // delete a particular element
    void print(); // print the content of array to the screen
};
```
protected and public

```cpp
#include <iostream>

class myClass {
protected:
    int x;
public:
    int getX() { return x; }
    void setX(int _x) { x = _x; }
};

int main(int argc, char** argv) {
    myClass c;
    c.x = 1; // invalid, accessing protected member
    c.setX(1); // valid, accessing public member
    std::cout << c.x << std::end; // invalid
    std::cout << c.getX() << std::end; // valid
}
```

There is also a private keyword, but we won’t handle it in the class.
Using friend

class mySignature {
protected:
 std::string message;
 friend class myManager;
};

class myManager {
public:
 mySignature s;
 bool verifySignature(std::string& m) {
 return s.message == m; // valid access
 }
};

class myGuest {
public:
 mySignature s;
 bool verifySignature(std::string& m) {
 return s.message == m; // invalid access
 }
};
Using templates for generic class

Allowing generic type for member variables or functions

```cpp
class Point {
    double x, y; // what if I want to use int instead?
    ...
};
```

Using template

```cpp
template <class T>
class Point {
    T x, y; // T can be int, double, or any other type
    ...
};
```

Point<int> intPoint(3,4);
Point<double> doublePoint(3.5,4.5);
Caveat of call-by-reference

```cpp
#include <iostream>

int squareVal(int x) { return x*x; }

int squareRef(int& x) { return x*x; }

int main(int argc, char** argv) {
    int a = 2;
    std::cout << squareVal(a) << std::endl; // valid
    std::cout << squareRef(a) << std::endl; // valid
    std::cout << squareVal(2) << std::endl; // valid
    std::cout << squareRef(2) << std::endl; // invalid
    return 0;
}
```
Using `const T &` instead of call-by-value

```cpp
#include <iostream>

int squareVal(int x) { return x*x; }

int squareConstRef(const int& x) { return x*x; }

int main(int argc, char** argv) {
    int a = 2;
    std::cout << squareVal(a) << std::endl;     // valid
    std::cout << squareConstRef(a) << std::endl; // valid
    std::cout << squareVal(2) << std::endl;     // valid
    std::cout << squareConstRef(2) << std::endl; // valid
    return 0;
}
```

Passing by const reference should be always compatible to passing by value and avoids unnecessary copying of the object. However, its value cannot be updated.
#include <iostream>
#define DEFAULT_ALLOC 1024

template <class T> // template supporting a generic type
class myArray {
protected: // member variables hidden from outside
 T *data; // array of the generic type
 int size; // number of elements in the container
 int nalloc; // # of objects allocated in the memory
public:
 myArray(); // default constructor
 ~myArray(); // destructor
 void insert(const T& x); // insert an element x, const means read-only
 bool search(const T& x); // return true if searched an element x
 bool remove(const T& x); // delete a particular element
 void print(); // print the content of array to the screen
};
Using a simple array - myArrayTest.cpp

```cpp
#include <iostream>
#include "myArray.h"

int main(int argc, char** argv) {
    myArray<int> A;
    A.insert(10); // {10}
    A.insert(5); // {10,5}
    A.insert(20); // {10,5,20}
    A.insert(7); // {10,5,20,7}
    A.print();
    std::cout << "A.search(7) = " << A.search(7) << std::endl; // true
    std::cout << "A.remove(10) = " << A.remove(10) << std::endl; // {5,20,7}
    A.print();
    std::cout << "A.search(10) = " << A.search(10) << std::endl; // false
    return 0;
}
```

Hyun Min Kang
Biostatistics 615/815 - Lecture 5
September 18th, 2012
38 / 40
Summary: Array

- Simplest container
- Constant time for insertion
- $\Theta(n)$ for search
- $\Theta(n)$ for remove
- Elements are clustered in memory, so faster than list in practice.
- Limited by the allocation size. $\Theta(n)$ needed for expansion
Summary

Today

- Merge Sort
- Quicksort
- Array

Next Lectures

- Sorted Array
- Linked list
- Binary search tree
- Hash tables
- Dynamic Programming