Recap: Simple vs smart recursion

Simple recursion of fibonacci numbers

```
int fibonacci(int n) {
    if ( n < 2 ) return n;
    else return fibonacci(n-1)+fibonacci(n-2);
}
```

Top-down dynamic programming

```
int fibonacci(int n) {
    int* fibs = new int[n+1];
    fibs[0] = 0;
    fibs[1] = 1;
    for(int i=2; i <= n; ++i) {
        fibs[i] = fibs[i-1]+fibs[i-2];
    }
    int ret = fibs[n];
    delete [] fibs;
    return ret;
}
```

Bottom-up dynamic programming: smart recursion

```
int fibonacci(int* fibs, int n) {
    if ( fibs[n] > 0 ) {
        return fibs[n]; // reuse stored solution if available
    }
    else if ( n < 2 ) {
        return n; // terminal condition
    }
    fibs[n] = fibonacci(fibs, n-1) + fibonacci(fibs, n-2); // store the solution once computed
    return fibs[n];
}
```
Recap: The Manhattan tourist problem

A "dynamic" structure of the solution

- Let $C(r, c)$ be the optimal cost from $(0, 0)$ to (r, c)
- Let $h(r, c)$ be the weight from (r, c) to $(r, c + 1)$
- Let $v(r, c)$ be the weight from (r, c) to $(r + 1, c)$
- We can recursively define the optimal cost as

$$C(r, c) = \begin{cases}
C(r - 1, c) + v(r - 1, c) & r > 0, c > 0 \\
C(r, c - 1) + h(r, c - 1) & r > 0, c = 0 \\
C(r - 1, c) + v(r - 1, c) & r = 0, c > 0 \\
0 & r = 0, c = 0
\end{cases}$$

- Once $C(r, c)$ is evaluated, it must be stored to avoid redundant computation.

Recap: Edit distance

Today

- Boost library
- Graph algorithms
 - Dijkstra’s algorithm
 - All-pair shortest path
Using boost C++ libraries

Boost C++ library

- An extensive set of libraries for C++
- Supports many additional classes and functions beyond STL
- Useful for increasing productivity

Examples of useful libraries

- Math/Statistical Distributions
- Graph
- Regular expressions
- Tokenizer

Quick boost installation guide

Check whether your system already has boost installed

- Type ls /usr/include/boost or ls /usr/local/include/boost
- If you get a non-error message, you are in luck!

Otherwise, in Linux or MacOS X

user@host:~/$ tar xzvf boost_1.45.0.tar.gz
user@host:~/$ cd boost_1.45.0
user@host:~/$ mkdir --p /home/[user]/devel
user@host:~/$./bootstrap.sh --prefix=/home/[user]/devel
user@host:~/$ tar xzvf boost_1.45_0.tar.gz
user@host:~/$ g++ -I/home/[user]/devel/include -o boostExample boostExample.cpp
user@host:~/$./bootstrap.sh --prefix=/home/[user]/devel
user@host:~/$ tar xzvf boost_1.45_0.tar.gz
user@host:~/$ g++ -I/home/[user]/devel/include -o boostExample boostExample.cpp
user@host:~/$ cd boost_1.45_0
user@host:~/$ tar xzvf boost_1.45_0.tar.gz
user@host:~/$ g++ -I/home/[user]/devel/include -o boostExample boostExample.cpp

In Windows with Visual Studio

http://www.boost.org/doc/libs/1_45_0/more/getting_started/windows.html

Getting started with boost libraries

Download, Compile, and Install

- Note that compile takes a REALLY LONG time - up to hours!
- Everyone should try to install it, and let me know if it does not work for your environment.

boost example 1 : Chi-squared test

```cpp
#include <iostream>
#include <boost/math/distributions/chi_squared.hpp>
int main(int argc, char** argv) {
    if (argc != 5) {
        std::cerr << "Usage: chisqTest [a] [b] [c] [d]" << std::endl;
        return -1;
    }
    int a = atoi(argv[1]); // read 2x2 table from command line arguments
    int b = atoi(argv[2]);
    int c = atoi(argv[3]);
    int d = atoi(argv[4]);
    // calculate chi-squared statistic and p-value
    double chisq = (double)((a*d-b*c)*(a*d-b*c)+(a+b+c+d)/(a+b)/(c+d)/(a+c)/(b+d));
    boost::math::chi_squared chisqDist(1); // chi-squared statistic
    double p = boost::math::cdf(chisqDist, chisq); // calculate cdf
    std::cout << "Chi-square statistic = " << chisq << std::endl;
    std::cout << "p-value = " << 1-p << std::endl; // output p-value
    return 0;
}
```
Using namespace: save your wrists

Running examples of chisqTest

```cpp
#include <iostream>
#include <boost/math/distributions/chi_squared.hpp>
using namespace std;
using namespace boost::math;
int main(int argc, char** argv) {
  ...
  // calculate chi-square statistic and p-value
  double chisq = (double)(a*d-b*c)*(a*d-b*c)*((a+b+c+d)/(a+b)/(c+d)/(a+c)/(b+d));
  chi_squared chisqDist(1); // instead of boost::math::chi_squared
  double p = cdf(chisqDist, chisq); // instead of boost::math::cdf
  cout << "Chi-square statistic = " << chisq << endl; // instead of std::cout
  cout << "p-value = " << 1-p << endl; // and std::endl;
  return 0;
}
```

A running example of tokenizerTest

```cpp
#include <iostream>
#include <boost/tokenizer.hpp>
using namespace std;
using namespace boost;
int main(int argc, char** argv) {
  ...
  // default delimiters are spaces and punctuations
  string s1 = "Hello, boost library";
  tokenizer<> tok1(s1);
  for(tokenizer<>::iterator i=tok1.begin(); i != tok1.end() ; ++i) {
    cout << *i << endl;
  }
  // you can parse csv-like format
  string s2 = "Field 1","putting quotes around fields, allows commas","Field 3";
  tokenizer<escaped_list_separator<char>> tok2(s2);
  for(tokenizer<escaped_list_separator<char>> ::iterator i=tok2.begin(); i != tok2.end() ; ++i) {
    cout << *i << endl;
  }
  return 0;
}
```

boost Example 2 : Tokenizer

```cpp
#include <iostream>
#include <boost/tokenizer.hpp>
#include <string>
using namespace std;
using namespace boost;
int main(int argc, char** argv) {
  ...
  // default delimiters are spaces and punctuations
  string s1 = "Hello, boost library";
  tokenizer<> tok1(s1);
  for(tokenizer<>::iterator i=tok1.begin(); i != tok1.end() ; ++i) {
    cout << *i << endl;
  }
  // you can parse csv-like format
  string s2 = "Field 1","putting quotes around fields, allows commas","Field 3";
  tokenizer<escaped_list_separator<char>> tok2(s2);
  for(tokenizer<escaped_list_separator<char>> ::iterator i=tok2.begin(); i != tok2.end() ; ++i) {
    cout << *i << endl;
  }
  return 0;
}
```
Introducing graphs

Graph is useful for representing
- Bayesian network
- Biological network
- Dependency between processes
- Phylogenetic tree

Key components of a graph
- Vertices
- Edges
- Directionality (directed, undirected, bidirectional)
- Vertex properties (e.g. colors)
- Edge properties (e.g. weights)

Algorithmic problems with graphs

- **Vertex coloring (k-coloring) problem**
 - Minimum number of colors required to color all pairs of adjacent vertices with different colors
 - An *NP-complete* problem - no known polynomial time solution.

- **Traveling salesman problem**
 - Determine whether there is a path to visit each vertex exactly once.
 - Another *NP-complete* problem

- **Shortest path finding problem**
 - Find shortest path from a source to destination
 - A polynomial time solution exists

Single-source shortest paths problem

Given
- A directed graph \(G = (V, E) \)
- With weight function \(w : E \rightarrow \mathbb{R} \)
- \((u, v) : \) source and destination vertices.

Want

A path \(p = \langle x_0, x_1, \ldots, x_k \rangle \) \((x_0 = u, x_k = v)\) whose weight \(w(p) = \sum_{i=1}^{k} w(x_{i-1}, x_i) \) is minimum among all possible paths

Shortest path algorithms

- **Single-source shortest paths problems**
 - Bellman-Ford algorithm : allowing negative weights
 - \(\Theta(|V||E|) \) complexity
 - Dijkstra’s algorithm : non-negative weights only
 - \(\Theta(|V|\log|V| + |E|) \) complexity

- **All-pair shortest paths algorithms**
 - Floyd-Warshall algorithm
 - \(\Theta(|V|^3) \) complexity
Elementary functions

Algorithm INITIALIZE SINGLE SOURCE

Data: G : graph, s : source

for v ∈ G.V **do**

 v.d = ∞;

 v.π = NIL;

end

s.d = 0;

Algorithm RELAX

Data: u : vertex, v : vertex, w : weights

if v.d > u.d + w(u, v) **then**

 v.d = u.d + w(u, v);

 v.π = u;

end

Dijkstra’s algorithm

Algorithm DIJKSTRA

Data: G : graph, w : weight, s : source

Result: Each vertex contains the optimal weight from s

INITIALIZE SINGLE SOURCE(G,s);

S = ∅;

Q = G.V;

while Q ≠ ∅ **do**

 u = EXTRACT MIN(Q);

 S = S ∪ {u};

 for v ∈ G.Adj[u] **do**

 RELAX(u, v, w);

 end

end

Illustration of DIJKSTRA’s algorithm

Time complexity of DIJKSTRA’s algorithm

- The total number of while iteration is |V|
- EXTRACT MIN takes Θ(log |Q|) ≤ Θ(log |V|) time
- The total number of for iteration if |E| because RELAX is called only once per edge
- The total time complexity is Θ(|V| log |V| + |E|).
Using boost library for Manhattan Tourist Problem

```cpp
int main(int argc, char** argv) {
    // defining a graph type
    // 1. edges are stored as std::list internally
    // 2. vertices are stored as std::vector internally
    // 3. the graph is directed (undirected5, bidirectional5 can be used)
    // 4. vertices do not carry particular properties
    // 5. edges contains weight property as integer value
    typedef adjacency_list< listS, vecS, directedS, no_property, property< edge_weight_t, int > > graph_t;

    // vertex descriptor is a type for representing vertices
    typedef graph_traits< graph_t >::vertex_iterator vi, vend;

    // Connect between vertices as in the Manhattan Tourist Problem
    // Each node is labeled as a two-digit integer of [row] and [col]
    enum { N11, N12, N13, N14, N15,
          N21, N22, N23, N24, N25,
          N31, N32, N33, N34, N35,
          N41, N42, N43, N44, N45,
          N51, N52, N53, N54, N55 };

    // model edges for Manhattan tourist problem
    E edges [] = { E(N11,N12), E(N12,N13), E(N13,N14), E(N14,N15),
                  E(N21,N22), E(N22,N23), E(N23,N24), E(N24,N25),
                  E(N31,N32), E(N32,N33), E(N33,N34), E(N34,N35),
                  E(N41,N42), E(N42,N43), E(N43,N44), E(N44,N45),
                  E(N51,N52), E(N52,N53), E(N53,N54), E(N54,N55),
                  E(N11,N21), E(N12,N22), E(N13,N23), E(N14,N24), E(N15,N25),
                  E(N21,N31), E(N22,N32), E(N23,N33), E(N24,N34), E(N25,N35),
                  E(N31,N41), E(N32,N42), E(N33,N43), E(N34,N44), E(N35,N45),
                  E(N41,N51), E(N42,N52), E(N43,N53), E(N44,N54), E(N45,N55) };

    // Assign weights for each edge
    int weight [] = { 4, 2, 0, 7, // horizontal weights
                     7, 4, 5, 9,
                     6, 8, 1, 0,
                     1, 6, 4, 7,
                     1, 5, 8, 5,
                     0, 6, 6, 2, 4, // vertical weights
                     9, 7, 1, 0, 6,
                     1, 8, 4, 8, 9,
                     3, 6, 6, 0, 7 };

    // define a graph as an array of edges and weights
    graph_t g(edges, edges + sizeof(edges) / sizeof(E), weight, 25);
    // vectors to store predecessors and shortest distances from source
    std::vector<vertex_descriptor> p(num_vertices(g));
    std::vector<int> d(num_vertices(g));

    vertex_descriptor s = vertex(N11, g); // specify source vertex
    // Run Dijkstra's algorithm and store paths and distances to p and d
    dijkstra_shortest_paths<graph_t, vertex_descriptor, E> s, predecessor_map(&p[0]).distance_map(&d[0]);
    graph_traits<graph_t>::vertex_iterator vi, vend;

    std::cout << "Backtracking the optimal path from the destination to source" << std::endl;
    for(int node = N55; node != N11; node = p[node]) {
        std::cout << "Path: N" << getNodeID(p[node]) << " -> N" << d[node] << std::endl;
        if(getNodeID(node) == "", Distance from origin is " << d[node] << std::endl;
    }
    return 0;
}
```

Using Dijkstra's algorithm to solve the MTP

// define a graph as an array of edges and weights
graph_t g(edges, edges + sizeof(edges) / sizeof(E), weight, 25);
// vectors to store predecessors and shortest distances from source
std::vector<vertex_descriptor> p(num_vertices(g));
std::vector<int> d(num_vertices(g));

vertex_descriptor s = vertex(N11, g); // specify source vertex
// Run Dijkstra's algorithm and store paths and distances to p and d
dijkstra_shortest_paths<graph_t, vertex_descriptor, E> s, predecessor_map(&p[0]).distance_map(&d[0]);
graph_traits<graph_t>::vertex_iterator vi, vend;

std::cout << "Backtracking the optimal path from the destination to source" << std::endl;
for(int node = N55; node != N11; node = p[node]) {
 std::cout << "Path: N" << getNodeID(p[node]) << " -> N" << d[node] << std::endl;
 if(getNodeID(node) == "", Distance from origin is " << d[node] << std::endl;
}
return 0;

The remainder - beginning of DijkstraMTP.cpp

// Note that this code would not work with VC++
#include <iostream> // for input/output
#include <boost/graph/adjacency_list.hpp> // for using graph type
#include <boost/graph/dijkstra_shortest_paths.hpp> // for dijkstra algorithm
using namespace std; // allow to omit prefix 'std::'
using namespace boost; // allow to omit prefix 'boost::'

// converts 0,1,2,3,4,5,6,...,25 to 11,12,13,14,15,21,22,...,55
int getNodeId(int node) {
 return ((node/5)+1)*10+(node%5+1);
}

int main(int argc, char** argv) {
 // ...
}
Running example of DijkstraMTP

user@host~/$./DijkstraMTP
Backtracking the optimal path from the destination to source
Path: N54 -> N55, Distance from origin is 21
Path: N44 -> N54, Distance from origin is 16
Path: N34 -> N44, Distance from origin is 16
Path: N24 -> N34, Distance from origin is 8
Path: N14 -> N24, Distance from origin is 8
Path: N13 -> N14, Distance from origin is 6
Path: N12 -> N13, Distance from origin is 6
Path: N11 -> N12, Distance from origin is 4

Dijkstra’s algorithm: summary

- An efficient algorithm for shortest-path finding
- Using boost library
- Transformed Manhattan Tourist Problem (simpler) to a shortest-path finding problem (more complex).

Calculating all-pair shortest-path weights

A dynamic programming formulation

Let $d_{ij}^{(k)}$ be the weight of shortest path from vertex i to j, for which intermediate vertices are in the set $\{1, 2, \cdots, k\}$.

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & k = 0 \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & k = 1 \end{cases}$$

Floyd-Warshall Algorithm

Algorithm FLOYDWARSHALL

Data: $W: n \times n$ weight matrix

$D^{(0)} = W$;

for $k = 1$ to n do
 for $i = 1$ to n do
 for $j = 1$ to n do
 $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$;
 end
end
return $D^{(n)}$;
Graphs and Statistical Models

- Graphs are useful in modeling dependency between random variables, especially in Bayesian networks
 - Each node represents a random variable
 - A directed edge can represent conditional dependency
 - A undirected edge can represent joint probability distribution.
- Inference in Bayesian network directly correspond to particular graph algorithms
- For example, Viterbi algorithm in Hidden Markov Models (HMMs) is equivalentlly represented as Dijkstra’s algorithm.

Next Lecture

- Random numbers
- Hidden Markov Models