Biostatistics 615/815 Lecture 8: Trees and Hash Tables

Hyun Min Kang

September 29th, 2011
Average time complexity of container operations

<table>
<thead>
<tr>
<th>Container</th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>SortedArray</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>List</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Tree</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Hash</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Recap - List implementation: class myListNode

```cpp
myListNode.h

// myListNode class is only accessible from myList class
template<class T>
class myListNode {
  protected:
  T value; // the value of each element
  myListNode<T>* next; // pointer to the next element
  myListNode(T v, myListNode<T>* n) : value(v), next(n) {} // constructor
  ~myListNode();
  int search(T x, int curPos);
  myListNode<T>* remove(T x, myListNode<T>*& prevNext);
  template <class S> friend class myList; // allow full access to myList class
};
```
Recap - Removing an element from a list

```cpp
template <class T>
// pass the pointer to [prevElement->next] so that we can change it
myListNode<T>* myListNode<T>::remove(T x, myListNode<T>*& prevNext) {
    if ( value == x ) { // if FOUND
        prevNext = next; // *pPrevNext was this, but change to next
        next = NULL; // disconnect the current object from the list
        return this; // and return it so that it can be destroyed
    }
    else if ( next == NULL ) {
        return NULL; // return NULL if NOT_FOUND
    }
    else {
        return next->remove(x, next); // recursively call on the next element
    }
}
```
Recap - Implementation of binary search tree

myTree.h

```cpp
template <class T>
class myTree {
    protected:
        myTreeNode<T>* pRoot; // tree contains pointer to root
        myTree(myTree& a) {} // prevent copying

    public:
        myTree() : pRoot(NULL) {} // initially root is empty
        ~myTree() { if ( pRoot != NULL ) delete pRoot; } // destructor
        void insert(T x);
        int search(T x);
        bool remove(T x);
};
```

Hyun Min Kang Biostatistics 615/815 - Lecture 8 September 29th, 2011 5 / 41
Recap - Implementation of binary search tree

```cpp
template <class T>
class myTreeNode {
    T value;   // key value
    int size;  // total number of nodes in the subtree
    myTreeNode<T>* left;  // pointer to the left subtree
    myTreeNode<T>* right; // pointer to the right subtree
    myTreeNode(T x, myTreeNode<T>* l, myTreeNode<T>* r); // constructors
~myTreeNode(); // destructors
    void insert(T x); // insert an element
    int search(T x);
    myTreeNode<T>* remove(T x, myTreeNode<T>** ppSelf);
    T getMax();   // maximum value in the subtree
    T getMin();   // minimum value in the subtree
};
```
Binary search tree: REMOVE

```cpp
template <class T>
myTreeNode<T>* myTreeNode<T>::remove(T x, myTreeNode<T>*& pSelf) {
    if ( x == value ) { // key was found
        if ( ( left == NULL ) && ( right == NULL ) ) { // no child
            pSelf = NULL; // the parent has no offspring any more
            return this;
        }
        else if ( left == NULL ) { // only left is NULL
            pSelf = right; // right becomes the new offspring
            right = NULL; // isolate the node so that deletion won't propagate
            return this;
        }
        else if ( right == NULL ) { // only right is NULL
            pSelf = left; // left node becomes the new offspring
            left = NULL; // isolate the node so that deletion won't propagate
            return this;
        }
    }
    // ....
```
myTreeNode.h

```cpp
else { // neither left nor right is NULL
    // choose which subtree to delete
    myTreeNode<T>* p;
    if ( left->size > right->size ) { // if left subtree is larger
        T m = left->getMax();   // copy the largest value among them
        p = left->remove(m, left); // to current node, and delete the node
        value = m;
    }
    else {
        T m = right->getMin();    // copy smallest value among them
        p = right->remove(m, right); // to current node, and delete the node
        value = m;
    }
    return p;
}

// ....
```
Hyun Min Kang

myTreeNode.h

```c
else if ( x < value ) {
    if ( left == NULL )
        return NULL;
    else
        return left->remove(x, left);
}
else { // x > value
    if ( right == NULL )
        return NULL;
    else
        return right->remove(x, right);
}
```
Binary search tree: \texttt{getMax} and \texttt{getMin}

```
myTreeNode.h

```template <class T>```

```
T myTreeNode<T>::getMax() { // return the largest value
    if ( right == NULL ) return value;
    else return right->getMax();
}
```

```
T myTreeNode<T>::getMin() { // return the smallest value
    if ( left == NULL ) return value;
    else return left->getMin();
}
```
If you want to print a tree...

```cpp
myTreeNode.h

template <class T> void myTreeNode<T>::print() {
    std::cout << "[ ";
    if ( left != NULL ) left->print();
    else std::cout << "[ NULL ]";
    std::cout << ", (" << value << "," << size << ") , ";
    if ( right != NULL ) right->print();
    else std::cout << "[ NULL ]";
    std::cout << " ]";
}

myTree.h

template <class T> void myTree<T>::print() {
    if ( pRoot != NULL ) pRoot->print();
    else std::cout << "(EMPTY TREE)";
    std::cout << std::endl;
}
```
Summary - Binary Search Tree

- **Key Features**
 - Fast insertion, search, and removal
 - Implementation is much more complicated

- **Class Structure**
 - `myTree` class to keep the root node
 - `myTreeNode` class to store key and up to two children

- **Key Algorithms**
 - **Insert**: Traverse the tree in sorted order and create a new node in the first leaf node.
 - **Search**: Divide-and-conquer algorithms
 - **Remove**: Move the nearest leaf element among the subtree and destroy it.
Two types of containers

Containers for single-valued objects - last lecture

- **INSERT**(T, x) - Insert x to the container.
- **SEARCH**(T, x) - Returns the location/index/existence of x.
- **REMOVE**(T, x) - Delete x from the container if exists
- STL examples include `std::vector`, `std::list`, `std::deque`, `std::set`, and `std::multiset`.

Containers for (key,value) pairs - this lecture

- **INSERT**(T, x) - Insert ($x.key, x.value$) to the container.
- **SEARCH**(T, k) - Returns the value associated with key k.
- **REMOVE**(T, x) - Delete element x from the container if exists
- Examples include `std::map`, `std::multimap`, and `__gnu_cxx::hash_map`
Direct address tables

An example (key, value) container

- $U = \{0, 1, \ldots, N - 1\}$ is possible values of keys (N is not huge)
- No two elements have the same key

Direct address table: a constant-time container

Let $T[0, \cdots, N - 1]$ be an array space that can contain N objects

- **INSERT(T, x):** $T[x.key] = x$
- **SEARCH(T, k):** return $T[k]$
- **REMOVE(T, x):** $T[x.key] = \text{NIL}$
Analysis of direct address tables

Time complexity
- Requires a single memory access for each operation
- $O(1)$ - constant time complexity

Memory requirement
- Requires to pre-allocate memory space for any possible input value
 - $2^{32} = 4\, GB \times \text{(size of data)}$ for 4 bytes (32 bit) key
 - $2^{64} = 18\, EB \times (1.8 \times 10^7 \, TB) \times \text{(size of data)}$ for 8 bytes (64 bit) key
- An infinite amount of memory space needed for storing a set of arbitrary-length strings (or exponential to the length of the string)
Hash Tables

Key features

- $O(1)$ complexity for **Insert**, **Search**, and **Remove**
- Requires large memory space than the actual content for maintaining good performance
- But uses much smaller memory than direct-address tables

Key components

- **Hash function**
 - $h(x, \text{key})$ mapping key onto smaller 'addressible' space H
 - Total required memory is the possible number of hash values
 - Good hash function minimize the possibility of key collisions

- **Collision-resolution strategy**, when $h(k_1) = h(k_2)$.
Chained hash: A simple example

A good hash function

- Assume that we have a good hash function \(h(x, \text{key}) \) that 'fairly uniformly' distribute key values to \(H \)
- What makes a good hash function will be discussed later today.

A ChainedHash

- Each possible hash key contains a linked list
- Each linked list is originally empty
- An input \((\text{key}, \text{value})\) pair is appended to the linked list when inserted
- \(O(1) \) time complexity is guaranteed when no collision occurs
- When collision occurs, the time complexity is proportional to size of linked list associated with \(h(x, \text{key}) \)
Illustration of **Chained Hash**
Simplified algorithms on **ChainedHash**

Initialize \((T)\)
- Allocate an array of list of size \(m\) as the number of possible key values

Insert \((T, x)\)
- Insert \(x\) at the head of list \(T[h(x.key)]\).

Search \((T, k)\)
- Search for an element with key \(k\) in list \(T[h(k)]\).

Remove \((T, x)\)
- Delete \(x\) from the list \(T[h(x.key)]\).
Analysis of hashing with chaining

Assumptions

- Simple uniform hashing
 - \(\Pr(h(k_1) = h(k_2)) = 1/m \) input key pairs \(k_1 \) and \(k_2 \).
- \(n \) is the number of elements stores
- Load factor \(\alpha = n/m \).

Expected time complexity for Search

- \(X_{ij} \in \{0, 1\} \) a random variable of key collision between \(x_i \) and \(x_j \).
- \(E[X_{ij}] = 1/m \).

\[
T(n) = \frac{1}{n} E \left[\sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} (X_{ij}) \right) \right] = \Theta(1 + \alpha)
\]
Interesting properties (under uniform hash)

Probability of an empty slot

\[
Pr(k_1 \neq k, k_2 \neq k, \ldots, k_n \neq k) = \left(1 - \frac{1}{m}\right)^n \approx e^{-\alpha}
\]

Birthday paradox: expected \# of elements before the first collision

\[
Q(H) \approx \sqrt{\frac{\pi}{2}} m
\]

Coupon collector problem: expect \# of elements to fill every slot

\[
\sum_{i=1}^{m} \frac{m}{i} \approx m(\ln m + 0.577)
\]
Hash functions

Making a good hash functions

- A hash function $h(k)$ is a deterministic function from $k \in K$ onto $h(k) \in H$.
- A good hash function distributes map the keys to hash values as uniform as possible.
- The uniformity of hash function should not be affected by the pattern of input sequences.

Example hash functions

- $k \in [0, 1), h(k) = \lfloor km \rfloor$
- $k \in \mathbb{N}, h(k) = k \mod m$
'Good' and 'bad' hash functions

An example: \(h(k) = \lfloor km \rfloor \)

- When the input is uniformly distributed
 - \(h(k) \) is uniformly distributed between 0 and \(m - 1 \).
 - \(h(k) \) is a good hash function

- When the input is skewed: \(\Pr(k < 1/m) = 0.9 \)
 - More than 80% of input key pairs will have collisions
 - \(h(k) \) is a bad hash function
 - Time complexity is close to a single linked list

Good hash functions

- 'Goodness' of a hash function can be dependent on the data
- If it is hard to create adversary inputs to make the hash function 'bad', it is generally a good hash function.
Examples of good hash functions

For integers

- Make the hash size m to be a large prime
- $h(k) = k \mod m$

For floating point values $k \in [0, 1)$

- Make the hash size m to be a large prime
- $h(k) = \lfloor k \times N \rfloor \mod m$ for a large number N.

For strings

- Pretend the string is a number with numeral system of $|\Sigma|$, where Σ is the set of possible characters.
- Apply the same hash function for integers
Open Addressing

Chained Hash - Pros and Cons

△ Easy to understand
△ Behavior at collision is easy to track
▽ Every slot maintains pointer - extra memory consumption
▽ Inefficient to dereference pointers for each access
▽ Larger and unpredictable memory consumption

Open Addressing

- Store all the elements within an array
- Resolve conflicts based on predefined probing rule.
- Avoid using pointers - faster and more memory efficient.
- Implementation of REMOVE can be very complicated
Probing in open hash

Modified hash functions

- \(h : K \times H \rightarrow H \)

- For every \(k \in K \), the probe sequence \(< h(k, 0), h(k, 1), \cdots, h(k, m-1) >\) must be a permutation of \(< 0, 1, \cdots, m-1 >\).
Algorithm OPENHASHINSERT

Data: T: hash, k: key value to insert
Result: k is inserted to T

for $i = 0$ to $m - 1$ do
 $j = h(k, i)$
 if $T[j] == \text{NIL}$ then
 $T[j] = k$;
 return j;
 end
end

error "hash table overflow";
Algorithm **OPEN HASH SEARCH**

Data: T: hash, k: key value to search

Result: Return $T[k]$ if exist, otherwise return **NIL**

```
for $i = 0$ to $m - 1$ do
    $j = h(k, i)$;
    if $T[j] == k$ then
        return $j$;
    end
    else if $T[j] == NIL$ then
        return NIL;
    end
end
return NIL;
```
Strategies for Probing

Linear Probing

- \(h(k, i) = (h'(k) + i) \mod m \)
- Easy to implement
- Suffer from primary clustering, increasing the average search time

Quadratic Probing

- \(h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m \)
- Better than linear probing
- Secondary clustering: \(h(k_1, 0) = h(k_2, 0) \) implies \(h(k_1, i) = h(k_2, i) \)
Strategies for Probing

Double Hashing

- $h(k, i) = (h_1(k) + ih_2(k)) \mod m$

- The probe sequence depends in two ways upon k.

- For example, $h_1(k) = k \mod m$, $h_2(k) = 1 + (k \mod m')$

- Avoid clustering problem

- Performance close to ideal scheme of uniform hashing.
Hash tables: summary

- Linear-time performance container with larger storage
- Key components
 - Hash function
 - Conflict-resolution strategy
- Chained hash
 - Linked list for every possible key values
 - Large memory consumption + dereferencing overhead
- Open Addressing
 - Probing strategy is important
 - Double hashing is close to ideal hashing
When are binary search trees better than hash tables?

- When the memory efficiency is more important than the search efficiency
- When many input key values are not unique
- When querying by ranges or trying to find closest value.
Recap: Divide and conquer algorithms

Good examples of divide and conquer algorithms

- **TowerOfHanoi**
- **MergeSort**
- **QuickSort**
- **BinarySearchTree** algorithms

These algorithms divide a problem into smaller and disjoint subproblems until they become trivial.
A divide-and-conquer algorithms for Fibonacci numbers

Fibonacci numbers

\[F_n = \begin{cases}
F_{n-1} + F_{n-2} & n > 1 \\
1 & n = 1 \\
0 & n = 0
\end{cases} \]

A recursive implementation of fibonacci numbers

```java
int fibonacci(int n) {
    if ( n < 2 ) return n;
    else return fibonacci(n-1)+fibonacci(n-2);
}
```
Performance of recursive **Fibonacci**

Computational time

- 4.4 seconds for calculating F_{40}
- 49 seconds for calculating F_{45}
- ∞ seconds for calculating F_{100}!
What is happening in the recursive Fibonacci
Time complexity of redundant \textsc{Fibonacci}

\[
T(n) = T(n-1) + T(n-2)
\]

\[
T(1) = 1
\]

\[
T(0) = 1
\]

\[
T(n) = F_{n+1}
\]

The time complexity is exponential
A non-redundant **Fibonacci**

```c
int fibonacci(int n) {
    int* fibs = new int[n+1];
    fibs[0] = 0;
    fibs[1] = 1;
    for(int i=2; i <= n; ++i) {
        fibs[i] = fibs[i-1]+fibs[i-2];
    }
    int ret = fibs[n];
    delete [] fibs;
    return ret;
}
```
Key idea in non-redundant **Fibonacci**

- Each F_n will be reused to calculate F_{n+1} and F_{n+2}
- Store F_n into an array so that we don’t have to recalculate it
A recursive, but non-redundant **FIBONACCI**

```c
int fibonacci(int* fibs, int n) {
    if ( fibs[n] > 0 ) {
        return fibs[n];    // reuse stored solution if available
    }
    else if ( n < 2 ) {
        return n;          // terminal condition
    }
    fibs[n] = fibonacci(n-1) + fibonacci(n-2); // store the solution once computed
    return fibs[n];
}
```
Summary

Today

- Tree
- Hash Table
- Dynamic programming

Next Lecture

- More on dynamic programming
- Graph algorithms

Reading materials

- CLRS Chapter 15