Likelihood Function

Definition

\[X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} f_X(x|\theta). \]

The join distribution of \(\mathbf{X} = (X_1, \cdots, X_n) \) is

\[
f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_i|\theta)
\]

Given that \(\mathbf{X} = \mathbf{x} \) is observed, the function of \(\theta \) defined by \(L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta) \) is called the likelihood function.
Examples of Likelihood Function - 1/3

- \(X_1, X_2, X_3, X_4 \) \(\sim \) Bernoulli\((p)\), \(0 < p < 1 \).
Examples of Likelihood Function - 1/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}\sim \text{Bernoulli}(p)$, $0 < p < 1$.
- $\mathbf{x} = (1, 1, 1, 1)^T$
Examples of Likelihood Function - 1/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \ 0 < p < 1.$
- $x = (1, 1, 1, 1)^T$
- Intuitively, it is more likely that p is larger than smaller.
Examples of Likelihood Function - 1/3

- \(X_1, X_2, X_3, X_4 \) i.i.d. \(\text{Bernoulli}(p) \), \(0 < p < 1 \).
- \(\mathbf{x} = (1, 1, 1, 1)^T \)
- Intuitively, it is more likely that \(p \) is larger than smaller.
- \(L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^{4} p^{x_i} (1 - p)^{1-x_i} = p^4 \).
Examples of Likelihood Function - 1/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \ 0 < p < 1$.
- $x = (1, 1, 1, 1)^T$
- Intuitively, it is more likely that p is larger than smaller.
- $L(p|x) = f(x|p) = \prod_{i=1}^{4} p^{x_i} (1 - p)^{1-x_1} = p^4$.

![Graph showing likelihood function](image)
Examples of Likelihood Function - 2/3

- $X_1, X_2, X_3, X_4 \sim \text{Bernoulli}(p), \ 0 < p < 1.$
Examples of Likelihood Function - 2/3

- \(X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \, 0 < p < 1. \)
- \(x = (0, 0, 0, 0)^T \)
Examples of Likelihood Function - 2/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \; 0 < p < 1.$
- $x = (0, 0, 0, 0)^T$
- Intuitively, it is more likely that p is smaller than larger.
Examples of Likelihood Function - 2/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \; 0 < p < 1.$
- $x = (0, 0, 0, 0)^T$
- Intuitively, it is more likely that p is smaller than larger.
- $L(p|x) = f(x|p) = \prod_{i=1}^{4} p^{x_i} (1 - p)^{1-x_1} = (1 - p)^4.$
Examples of Likelihood Function - 2/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \ 0 < p < 1.$
- $\mathbf{x} = (0, 0, 0, 0)^T$
- Intuitively, it is more likely that p is smaller than larger.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^{4} p^{x_i}(1 - p)^{1-x_i} = (1 - p)^4.$
Examples of Likelihood Function - 3/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \ 0 < p < 1.$
Examples of Likelihood Function - 3/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \ 0 < p < 1.$
- $\mathbf{x} = (1, 1, 0, 0)^T$

Intuitively, it is more likely that p is somewhere in the middle than in the extremes.

$$L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^{4} p^{x_i} (1-p)^{1-x_i}.$$
Examples of Likelihood Function - 3/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p)$, $0 < p < 1$.
- $x = (1, 1, 0, 0)^T$
- Intuitively, it is more likely that p is somewhere in the middle than in the extremes.
Examples of Likelihood Function - 3/3

- $X_1, X_2, X_3, X_4 \overset{i.i.d.}{\sim} \text{Bernoulli}(p), \ 0 < p < 1.$
- $\mathbf{x} = (1, 1, 0, 0)^T$
- Intuitively, it is more likely that p is somewhere in the middle than in the extremes.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^{4} p^{x_i} (1 - p)^{1-x_1} = p^2(1 - p)^2.$
Examples of Likelihood Function - 3/3

- \(X_1, X_2, X_3, X_4 \) i.i.d. Bernoulli\((p)\), \(0 < p < 1 \).
- \(x = (1, 1, 0, 0)^T \)
- Intuitively, it is more likely that \(p \) is somewhere in the middle than in the extremes.
- \(L(p|x) = f(x|p) = \prod_{i=1}^{4} p^{x_i} (1 - p)^{1-x_i} = p^2 (1 - p)^2. \)
Point Estimation: Ingredients

- **Data**: $\mathbf{x} = (x_1, \cdots, x_n)$ - realizations of random variables (X_1, \cdots, X_n).
Point Estimation: Ingredients

- **Data:** \(\mathbf{x} = (x_1, \cdots, x_n) \) - realizations of random variables \((X_1, \cdots, X_n)\).

- \(X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} f_X(x|\theta) \).
Point Estimation: Ingredients

- **Data:** \(\mathbf{x} = (x_1, \cdots, x_n) \) - realizations of random variables \((X_1, \cdots, X_n)\).
- \(X_1, \cdots, X_n \) i.i.d. \(f_X(x|\theta) \).
- Assume a model \(\mathcal{P} = \{f_X(x|\theta) : \theta \in \Omega \subset \mathbb{R}^p\} \) where the functional form of \(f_X(x|\theta) \) is known, but \(\theta \) is unknown.
Point Estimation: Ingredients

- **Data**: $\mathbf{x} = (x_1, \cdots, x_n)$ - realizations of random variables (X_1, \cdots, X_n).
- $X_1, \cdots, X_n \overset{i.i.d.}{\sim} f_X(x|\theta)$.
- Assume a model $\mathcal{P} = \{f_X(x|\theta) : \theta \in \Omega \subset \mathbb{R}^p\}$ where the functional form of $f_X(x|\theta)$ is known, but θ is unknown.
- Task is to use data \mathbf{x} to make inference on θ
Definition

If we use a function of sample \(w(X_1, \cdots, X_n) \) as a "guess" of \(\tau(\theta) \), where \(\tau(\theta) \) is a function of true parameter \(\theta \).
Point Estimation

Definition

If we use a function of sample $w(X_1, \cdots, X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ. Then $w(X) = w(X_1, \cdots, X_n)$ is called a point estimator of $\tau(\theta)$.
Point Estimation

Definition

If we use a function of sample \(w(X_1, \cdots, X_n) \) as a "guess" of \(\tau(\theta) \), where \(\tau(\theta) \) is a function of true parameter \(\theta \). Then \(w(X) = w(X_1, \cdots, X_n) \) is called a point estimator of \(\tau(\theta) \). The realization of the estimation, \(w(x) = w(x_1, \cdots, x_n) \) is called the estimate of \(\tau(\theta) \).

Example

- \(X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1) \), where \(\theta \in \Omega \in \mathbb{R} \).
Point Estimation

Definition

If we use a function of sample $w(X_1, \cdots, X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ. Then $w(X) = w(X_1, \cdots, X_n)$ is called a point estimator of $\tau(\theta)$. The realization of the estimation, $w(x) = w(x_1, \cdots, x_n)$ is called the estimate of $\tau(\theta)$.

Example

- $X_1, \cdots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, 1)$, where $\theta \in \Omega \in \mathbb{R}$.
- Suppose $n = 6$, and $(x_1, \cdots, x_6) = (2.0, 2.1, 2.9, 2.6, 1.2, 1.8)$.
Point Estimation

Definition

If we use a function of sample $w(X_1, \cdots, X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ. Then $w(X) = w(X_1, \cdots, X_n)$ is called a point estimator of $\tau(\theta)$. The realization of the estimation, $w(x) = w(x_1, \cdots, x_n)$ is called the estimate of $\tau(\theta)$.

Example

- $X_1, \cdots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\theta, 1)$, where $\theta \in \Omega \in \mathbb{R}$.
- Suppose $n = 6$, and $(x_1, \cdots, x_6) = (2.0, 2.1, 2.9, 2.6, 1.2, 1.8)$.
- Define $w_1(X_1, \cdots, X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X} = 2.1$.
Point Estimation

Definition

If we use a function of sample $w(X_1, \cdots, X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ. Then $w(X) = w(X_1, \cdots, X_n)$ is called a point estimator of $\tau(\theta)$. The realization of the estimation, $w(x) = w(x_1, \cdots, x_n)$ is called the estimate of $\tau(\theta)$.

Example

- $X_1, \cdots, X_n \overset{	ext{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$, where $\theta \in \Omega \subset \mathbb{R}$.
- Suppose $n = 6$, and $(x_1, \cdots, x_6) = (2.0, 2.1, 2.9, 2.6, 1.2, 1.8)$.
- Define $w_1(X_1, \cdots, X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X} = 2.1$.
- Define $w_2(X_1, \cdots, X_n) = X_{(1)} = 1.2.$
Method of Moments

A method to equate sample moments to population moments and solve equations.
Method of Moments

A method to equate sample moments to population moments and solve equations.

<table>
<thead>
<tr>
<th>Sample moments</th>
<th>Population moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i$</td>
<td>$\mu'_1 = E[X</td>
</tr>
<tr>
<td>$m_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$</td>
<td>$\mu'_2 = E[X</td>
</tr>
<tr>
<td>$m_3 = \frac{1}{n} \sum_{i=1}^{n} X_i^3$</td>
<td>$\mu'_3 = E[X</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Method of Moments

A method to equate sample moments to population moments and solve equations.

<table>
<thead>
<tr>
<th>Sample moments</th>
<th>Population moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i$</td>
<td>$\mu'_1 = E[X</td>
</tr>
<tr>
<td>$m_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$</td>
<td>$\mu'_2 = E[X</td>
</tr>
<tr>
<td>$m_3 = \frac{1}{n} \sum_{i=1}^{n} X_i^3$</td>
<td>$\mu'_3 = E[X</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Point estimator of $T(\theta)$ is obtained by solving equations like this.
Method of Moments

A method to equate sample moments to population moments and solve equations.

<table>
<thead>
<tr>
<th>Sample moments</th>
<th>Population moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i$</td>
<td>$\mu_1' = E[X</td>
</tr>
<tr>
<td>$m_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$</td>
<td>$\mu_2' = E[X</td>
</tr>
<tr>
<td>$m_3 = \frac{1}{n} \sum_{i=1}^{n} X_i^3$</td>
<td>$\mu_3' = E[X</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Point estimator of $T(\theta)$ is obtained by solving equations like this.

\[
\begin{align*}
m_1 &= \mu_1'(\theta) \\
m_2 &= \mu_2'(\theta) \\
\vdots &= \vdots \\
m_k &= \mu_k'(\theta)
\end{align*}
\]
Examples of method of moments estimator

Problem

\(X_1, \ldots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2) \). Find estimator for \(\mu, \sigma^2 \).
Examples of method of moments estimator

Problem

\(X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2) \). Find estimator for \(\mu, \sigma^2 \).

Solution

\[
\mu_1' = E X = \mu = \bar{X}
\]
Examples of method of moments estimator

Problem

\[X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2). \] Find estimator for \(\mu, \sigma^2 \).

Solution

\[
\begin{align*}
\mu'_1 &= E[X] = \mu = \bar{X} \\
\mu'_2 &= E[X^2] = [E[X]]^2 + \text{Var}(X) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2
\end{align*}
\]
Examples of method of moments estimator

Problem

\(X_1, \ldots, X_n \overset{	ext{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2). \) Find estimator for \(\mu, \sigma^2. \)

Solution

\[
\begin{align*}
\mu_1' &= EX = \mu = \bar{X} \\
\mu_2' &= EX^2 = [EX]^2 + \text{Var}(X) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \\
& \quad \left\{ \hat{\mu} = \bar{X} \right\}
\end{align*}
\]
Examples of method of moments estimator

Problem

\(X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)\). Find estimator for \(\mu, \sigma^2\).

Solution

\[
\begin{align*}
\mu_1' &= E[X] = \mu = \bar{X} \\
\mu_2' &= E[X^2] = [E[X]]^2 + \text{Var}(X) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2
\end{align*}
\]

\[
\begin{cases}
\hat{\mu} = \bar{X} \\
\hat{\mu}^2 + \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2
\end{cases}
\]
Examples of method of moments estimator

Problem

\[X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2). \] Find estimator for \(\mu, \sigma^2 \).

Solution

\[\mu_1' = E \mathbf{X} = \mu = \overline{X} \]

\[\mu_2' = E \mathbf{X}^2 = (E \mathbf{X})^2 + \text{Var}(\mathbf{X}) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \]

\[
\begin{cases}
\hat{\mu} = \overline{X} \\
\hat{\mu}^2 + \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2
\end{cases}
\]

Solving the two equations above, \(\hat{\mu} = \overline{X}, \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n} \).
Method of moments estimator - Binomial

Problem

\[X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \text{Binomial}(k, p). \text{ Find an estimator for } k, p. \]
Method of moments estimator - Binomial

Problem

\(X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \text{Binomial}(k, p) \). Find an estimator for \(k, p \).

Solution

\[
f_X(x | k, p) = \binom{k}{x} p^x (1 - p)^{k-x} \quad x \in \{0, 1, \cdots, k\}
\]
Method of moments estimator - Binomial

Problem

\(X_1, \cdots, X_n \overset{i.i.d.}{\sim} \text{Binomial}(k, p) \). Find an estimator for \(k, p \).

Solution

\[
f_X(x|k, p) = \binom{k}{x} p^x (1 - p)^{k-x} \quad x \in \{0, 1, \cdots, k\}
\]

Equating first two sample moments,

\[
\frac{1}{n} \sum_{i=1}^{n} X_i = \bar{x} = \mu_1' = E X = k p
\]
Method of moments estimator - Binomial

Problem

\(X_1, \cdots, X_n \sim \text{i.i.d. Binomial}(k, p)\). Find an estimator for \(k, p\).

Solution

\[
f_X(x|k, p) = \binom{k}{x} p^x (1 - p)^{k-x} \quad x \in \{0, 1, \cdots, k\}
\]

Equating first two sample moments,

\[
\frac{1}{n} \sum_{i=1}^{n} X_i = \bar{x} = \mu_1' = E[X] = kp
\]

\[
\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \mu_2' = E[X^2] = (E[X])^2 + \text{Var}(X) = k^2 p^2 + kp(1 - p)
\]
The method of moments estimators are

\[\hat{k} = \frac{\overline{X}^2}{\overline{X} - \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2} \]
The method of moments estimators are

\[\hat{k} = \frac{\overline{X}^2}{\overline{X} - \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2} \]

\[\hat{p} = \frac{\overline{X}}{\hat{k}} \]
The method of moments estimators are

\[\hat{k} = \frac{\bar{X}^2}{\bar{X} - \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2} \]

\[\hat{p} = \frac{\bar{X}}{\hat{k}} \]

These are not the best estimators. It is possible to get negative estimates of \(k \) and \(p \).
Examples of MoM estimator - Negative Binomial

Problem

\[X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Negative Binomial}(r, p). \text{ Find estimator for } (r, p). \]
Examples of MoM estimator - Negative Binomial

Problem

\[X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Negative Binomial}(r, p). \text{ Find estimator for } (r, p). \]

Solution

\[
m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i = E X = \frac{r(1 - p)}{p}
\]
Examples of MoM estimator - Negative Binomial

Problem

\(X_1, \ldots, X_n \sim \text{i.i.d. Negative Binomial}(r, p) \). Find estimator for \((r, p)\).

Solution

\[
\begin{align*}
 m_1 & = \frac{1}{n} \sum_{i=1}^{n} X_i = E(X) = \frac{r(1 - p)}{p} \\
 m_2 & = \frac{1}{n} \sum_{i=1}^{n} X_i^2 = E(X^2) = \left(\frac{r(1 - p)}{p} \right)^2 + \frac{r(1 - p)}{p^2}
\end{align*}
\]
Examples of MoM estimator - Negative Binomial

Problem

\(X_1, \cdots, X_n \overset{i.i.d.}{\sim} \text{Negative Binomial}(r, p). \) Find estimator for \((r, p)\).

Solution

\[
\begin{align*}
m_1 &= \frac{1}{n} \sum_{i=1}^{n} X_i = E(X) = \frac{r(1 - p)}{p} \\
m_2 &= \frac{1}{n} \sum_{i=1}^{n} X_i^2 = E(X^2) = \left(\frac{r(1 - p)}{p} \right)^2 + \frac{r(1 - p)}{p^2} \\
\hat{p} &= \frac{m_1}{m_2 - m_1} = \frac{\bar{X}}{\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2}
\end{align*}
\]
Examples of MoM estimator - Negative Binomial

Problem

\(X_1, \ldots, X_n \text{i.i.d.} \sim \text{Negative Binomial}(r, p) \). Find estimator for \((r, p)\).

Solution

\[
\begin{align*}
m_1 &= \frac{1}{n} \sum_{i=1}^{n} X_i = E(X) = \frac{r(1 - p)}{p} \\
m_2 &= \frac{1}{n} \sum_{i=1}^{n} X_i^2 = E(X^2) = \left(\frac{r(1 - p)}{p} \right)^2 + \frac{r(1 - p)}{p^2} \\
\hat{p} &= \frac{m_1}{m_2 - m_1^2} = \frac{\bar{X}}{1 - \bar{X}} \\
\hat{r} &= \frac{m_1 \hat{p}}{1 - \hat{p}} = \frac{\bar{X} \hat{p}}{1 - \hat{p}}
\end{align*}
\]
Satterthwaite Approximation

Problem

Let Y_1, \cdots, Y_k are independently (but not identically) distributed random variables from $\chi^2_{r_1}, \cdots, \chi^2_{r_k}$, respectively. We know that the distribution $\sum_{i=1}^{n} Y_i$ is also chi-squared with degrees of freedom equal to $\sum_{i=1}^{k} r_i$.
Satterthwaite Approximation

Problem

Let Y_1, \ldots, Y_k are independently (but not identically) distributed random variables from $\chi^2_{r_1}, \ldots, \chi^2_{r_k}$, respectively. We know that the distribution $\sum_{i=1}^{n} Y_i$ is also chi-squared with degrees of freedom equal to $\sum_{i=1}^{k} r_i$.

However, the distribution of $\sum_{i=1}^{k} a_i Y_i$, where a_i's are known constants with $\sum_{i=1}^{n} a_i r_i = 1$, in general, the distribution is hard to obtain.
Satterthwaite Approximation

Problem

Let Y_1, \cdots, Y_k are independently (but not identically) distributed random variables from $\chi^2_{r_1}, \cdots, \chi^2_{r_k}$, respectively. We know that the distribution $\sum_{i=1}^{n} Y_i$ is also chi-squared with degrees of freedom equal to $\sum_{i=1}^{k} r_i$.

However, the distribution of $\sum_{i=1}^{k} a_i Y_i$, where a_is are known constants with $\sum_{i=1}^{n} a_i r_i = 1$, in general, the distribution is hard to obtain.

It is often reasonable to assume that the distribution of $\sum_{i=1}^{k} a_i Y_i$ follows $\frac{1}{\nu} \chi^2_{\nu}$ approximately. Find a moment-based estimator of ν.
A Naive Solution

To match the first moment, let $X \sim \chi^2_{\nu}/\nu$. Then $E(X) = 1$, and $\text{Var}(X) = 2/\nu$.

Note that ν can be negative, which is not desirable.
A Naive Solution

To match the first moment, let $X \sim \chi^2_{\nu}/\nu$. Then $E(X) = 1$, and $\text{Var}(X) = 2/\nu$.

$$E \left(\sum_{i=1}^{k} a_i Y_i \right) = \sum_{i=1}^{k} a_i EY_i = \sum_{i=1}^{k} a_i r_i = 1 = E(X)$$
A Naive Solution

To match the first moment, let $X \sim \chi^2_{\nu}/\nu$. Then $E(X) = 1$, and $\text{Var}(X) = 2/\nu$.

$$E \left(\sum_{i=1}^{k} a_i Y_i \right) = \sum_{i=1}^{k} a_i E(Y_i) = \sum_{i=1}^{k} a_i r_i = 1 = E(X)$$

To match the second moments,

$$E \left(\left(\sum_{i=1}^{k} a_i Y_i \right)^2 \right) = E(X^2) = \frac{2}{\nu} + 1$$
A Naive Solution

To match the first moment, let $X \sim \chi^2_{\nu}/\nu$. Then $E(X) = 1$, and $\text{Var}(X) = 2/\nu$.

$$E\left(\sum_{i=1}^{k} a_i Y_i\right) = \sum_{i=1}^{k} a_i E(Y_i) = \sum_{i=1}^{k} a_i r_i = 1 = E(X)$$

To match the second moments,

$$E\left(\sum_{i=1}^{k} a_i Y_i\right)^2 = E(X^2) = \frac{2}{\nu} + 1$$

Therefore, the method of moment estimator of ν is

$$\hat{\nu} = \frac{2}{\left(\sum_{i=1}^{k} a_i Y_i\right)^2 - 1}$$

Note that ν can be negative, which is not desirable.
An alternative Solution

To match the second moments,

\[
E\left(\sum_{i=1}^{k} a_i Y_i\right)^2 = \text{Var}\left(\sum_{i=1}^{k} a_i Y_i\right) + \left[E\left(\sum_{i=1}^{k} a_i Y_i\right) \right]^2
\]
An alternative Solution

To match the second moments,

\[
E \left(\sum_{i=1}^{k} a_i Y_i \right)^2 = \text{Var} \left(\sum_{i=1}^{k} a_i Y_i \right) + \left[E \left(\sum_{i=1}^{k} a_i Y_i \right) \right]^2
\]

\[
= \left[E \left(\sum_{i=1}^{k} a_i Y_i \right) \right]^2 \left[\frac{\text{Var} \left(\sum_{i=1}^{k} a_i Y_i \right)}{E \left(\sum_{i=1}^{k} a_i Y_i \right)^2} + 1 \right]
\]
An alternative Solution

To match the second moments,

\[
E\left(\sum_{i=1}^{k} a_i Y_i\right)^2 = \text{Var}\left(\sum_{i=1}^{k} a_i Y_i\right) + \left[E\left(\sum_{i=1}^{k} a_i Y_i\right)\right]^2
\]

\[
= \left[E\left(\sum_{i=1}^{k} a_i Y_i\right)\right]^2 \left[\frac{\text{Var}\left(\sum_{i=1}^{k} a_i Y_i\right)}{\left[E\left(\sum_{i=1}^{k} a_i Y_i\right)\right]^2} + 1\right]
\]

\[
= \left[\frac{\text{Var}\left(\sum_{i=1}^{k} a_i Y_i\right)}{\left[E\left(\sum_{i=1}^{k} a_i Y_i\right)\right]^2} + 1\right] = \frac{2}{\nu} + 1
\]
An alternative Solution

To match the second moments,

\[
E \left(\sum_{i=1}^{k} a_i Y_i \right)^2 = \text{Var} \left(\sum_{i=1}^{k} a_i Y_i \right) + \left[E(\sum_{i=1}^{k} a_i Y_i) \right]^2
\]

\[
= \left[E(\sum_{i=1}^{k} a_i Y_i) \right]^2 \left[\frac{\text{Var}(\sum_{i=1}^{k} a_i Y_i)}{E(\sum_{i=1}^{k} a_i Y_i)^2} \right] + 1
\]

\[
= \left[\frac{\text{Var}(\sum_{i=1}^{k} a_i Y_i)}{E(\sum_{i=1}^{k} a_i Y_i)^2} \right]^2 + 1 = \frac{2}{\nu} + 1
\]

\[
\nu = \frac{2 \left[E(\sum_{i=1}^{k} a_i Y_i) \right]^2}{\text{Var}(\sum_{i=1}^{k} a_i Y_i)}
\]
Alternative Solution (cont’d)

To match the second moments, Finally, use the fact that Y_1, \cdots, Y_k are independent chi-squared random variables.
Alternative Solution (cont’d)

To match the second moments, finally, use the fact that Y_1, \cdots, Y_k are independent chi-squared random variables.

\[
\text{Var}\left(\sum_{i=1}^{n} a_i Y_i\right) = \sum_{i=1}^{k} a_i \text{Var}(Y_i)
\]
Alternative Solution (cont’d)

To match the second moments, finally, use the fact that Y_1, \cdots, Y_k are independent chi-squared random variables.

\[
\text{Var}\left(\sum_{i=1}^{n} a_i Y_i \right) = \sum_{i=1}^{k} a_i \text{Var}(Y_i) \\
= 2 \sum_{i=1}^{n} \frac{a_i^2 (EY_i)^2}{r_i}
\]
Alternative Solution (cont’d)

To match the second moments, finally, use the fact that Y_1, \cdots, Y_k are independent chi-squared random variables.

$$\text{Var}(\sum_{i=1}^{n} a_i Y_i) = \sum_{i=1}^{k} a_i \text{Var}(Y_i)$$

$$= 2 \sum_{i=1}^{n} \frac{a_i^2 (EY_i)^2}{r_i}$$

Substituting this expression for the variance and removing expectations, we obtain Satterthwaite’s estimator.
Alternative Solution (cont’d)

To match the second moments, Finally, use the fact that Y_1, \cdots, Y_k are independent chi-squared random variables.

\[
\text{Var}\left(\sum_{i=1}^{n} a_i Y_i \right) = \sum_{i=1}^{k} a_i \text{Var}(Y_i)
\]

\[
= 2 \sum_{i=1}^{n} \frac{a_i^2 (EY_i)^2}{r_i}
\]

Substituting this expression for the variance and removing expectations, we obtain Satterthwaite’s estimator

\[
\hat{v} = \frac{\sum_{i=1}^{n} a_i Y_i}{\sum_{i=1}^{n} \frac{a_i^2}{r_i} Y_i^2}
\]
Definition

- For a given sample point \(x = (x_1, \cdots, x_n) \),
Maximum Likelihood Estimator

Definition

- For a given sample point \(\mathbf{x} = (x_1, \cdots, x_n) \),
- let \(\hat{\theta}(\mathbf{x}) \) be the value such that

\[
L(\hat{\theta}(\mathbf{x})) = \max_{\theta \in \Theta} L(\theta | \mathbf{x})
\]

\(\hat{\theta}(\mathbf{x}) \) is called the maximum likelihood estimate of \(\theta \) based on data \(\mathbf{x} \), and \(\hat{\theta}(\mathbf{X}) \) is the maximum likelihood estimator (MLE) of \(\theta \).
Maximum Likelihood Estimator

Definition

- For a given sample point $\mathbf{x} = (x_1, \cdots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that
- $L(\theta|\mathbf{x})$ attains its maximum.
Maximum Likelihood Estimator

Definition

- For a given sample point \(\mathbf{x} = (x_1, \cdots, x_n) \),
- let \(\hat{\theta}(\mathbf{x}) \) be the value such that
- \(L(\theta|\mathbf{x}) \) attains its maximum.
- More formally, \(L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \geq L(\theta|\mathbf{x}) \ \forall \theta \in \Omega \) where \(\hat{\theta}(\mathbf{x}) \in \Omega \).
Definition

- For a given sample point $\mathbf{x} = (x_1, \cdots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that $L(\theta|\mathbf{x})$ attains its maximum.
- More formally, $L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \geq L(\theta|\mathbf{x}) \ \forall \theta \in \Omega$ where $\hat{\theta}(\mathbf{x}) \in \Omega$.
- $\hat{\theta}(\mathbf{x})$ is called the maximum likelihood estimate of θ based on data \mathbf{x},
Maximum Likelihood Estimator

Definition

- For a given sample point \(\mathbf{x} \equiv (x_1, \cdots, x_n) \),
- let \(\hat{\theta}(\mathbf{x}) \) be the value such that
- \(L(\theta|\mathbf{x}) \) attains its maximum.
- More formally, \(L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \geq L(\theta|\mathbf{x}) \) \(\forall \theta \in \Omega \) where \(\hat{\theta}(\mathbf{x}) \in \Omega \).
- \(\hat{\theta}(\mathbf{x}) \) is called the \textit{maximum likelihood estimate} of \(\theta \) based on data \(\mathbf{x} \),
- and \(\hat{\theta}(\mathbf{X}) \) is the \textit{maximum likelihood estimator (MLE)} of \(\theta \).
Example of MLE - Exponential Distribution

Problem

Let $X_1, \cdots, X_n \overset{i.i.d.}{\sim} \text{Exponential}(\beta)$. Find MLE of β.

\[
L(j; x) = f_{\text{X}}(x_j) = n \prod_{i=1}^{n} f_{\text{X}}(x_i) = \frac{1}{n} \exp\left(-\frac{\sum_{i=1}^{n} x_i}{\beta}\right)
\]

where $\beta > 0$.

Hyun Min Kang

Biostatistics 602 - Lecture 09

February 7th, 2013
Example of MLE - Exponential Distribution

Problem

Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Exponential}(\beta)$. Find MLE of β.

Solution

$$L(\beta|x) = f_X(x|\theta) = \prod_{i=1}^{n} f_X(x_i|\theta)$$
Example of MLE - Exponential Distribution

Problem

Let $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Exponential}(\beta)$. Find MLE of β.

Solution

$$L(\beta|x) = f_X(x|\theta) = \prod_{i=1}^{n} f_X(x_i|\theta)$$

$$= \prod_{i=1}^{n} \left[\frac{1}{\beta} e^{-x_i/\beta} \right] = \frac{1}{\beta^n} \exp \left(-\sum_{i=1}^{n} \frac{x_i}{\beta} \right)$$

where $\beta > 0$.
Use the derivative to find potential MLE

To maximize the likelihood function $L(\beta|x)$ is equivalent to maximize the log-likelihood function.
Use the derivative to find potential MLE

To maximize the likelihood function $L(\beta|x)$ is equivalent to maximize the log-likelihood function

$$l(\beta|x) = \log L(\beta|x) = \log \left[\frac{1}{\beta^n} \exp \left(- \sum_{i=1}^{n} \frac{x_i}{\beta} \right) \right]$$
Use the derivative to find potential MLE

To maximize the likelihood function $L(\beta|x)$ is equivalent to maximize the log-likelihood function

$$l(\beta|x) = \log L(\beta|x) = \log \left(\frac{1}{\beta^n} \exp \left(- \sum_{i=1}^{n} \frac{x_i}{\beta} \right) \right)$$

$$= - \frac{\sum_{i=1}^{n} x_i}{\beta} - n \log \beta$$
Use the derivative to find potential MLE

To maximize the likelihood function $L(\beta|x)$ is equivalent to maximize the log-likelihood function

$$l(\beta|x) = \log L(\beta|x) = \log \left[\frac{1}{\beta^n} \exp \left(-\sum_{i=1}^{n} \frac{x_i}{\beta} \right) \right]$$

$$= -\frac{\sum_{i=1}^{n} x_i}{\beta} - n \log \beta$$

$$\frac{\partial l}{\partial \beta} = \frac{\sum_{i=1}^{n} x_i}{\beta^2} - \frac{n}{\beta} = 0$$
Use the derivative to find potential MLE

To maximize the likelihood function \(L(\beta|x) \) is equivalent to maximize the log-likelihood function

\[
l(\beta|x) = \log L(\beta|x) = \log \left[\frac{1}{\beta^n} \exp \left(-\sum_{i=1}^{n} \frac{x_i}{\beta} \right) \right]
\]

\[
= -\frac{\sum_{i=1}^{n} x_i}{\beta} - n \log(\beta)
\]

\[
\frac{\partial l}{\partial \beta} = \sum_{i=1}^{n} \frac{x_i}{\beta^2} - \frac{n}{\beta} = 0
\]

\[
\sum_{i=1}^{n} x_i = n\beta
\]
Use the derivative to find potential MLE

To maximize the likelihood function $L(\beta|x)$ is equivalent to maximize the log-likelihood function

$$ l(\beta|x) = \log L(\beta|x) = \log \left[\frac{1}{\beta^n} \exp \left(-\sum_{i=1}^{n} \frac{x_i}{\beta} \right) \right] $$

$$ = -\frac{\sum_{i=1}^{n} x_i}{\beta} - n \log \beta $$

$$ \frac{\partial l}{\partial \beta} = \frac{\sum_{i=1}^{n} x_i}{\beta^2} - \frac{n}{\beta} = 0 $$

$$ \sum_{i=1}^{n} x_i = n \beta $$

$$ \hat{\beta} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x} $$
Use the double derivative to confirm local maximum

\[\frac{\partial^2 l}{\partial \beta^2} \bigg|_{\beta=\bar{x}} = -2 \sum_{i=1}^{n} \frac{x_i}{\beta^3} + \frac{n}{\beta^2} \bigg|_{\beta=\bar{x}} \]
Use the double derivative to confirm local maximum

\[\frac{\partial^2 l}{\partial \beta^2} \bigg|_{\beta=\bar{x}} = -2 \frac{\sum_{i=1}^{n} x_i}{\beta^3} + \frac{n}{\beta^2} \bigg|_{\beta=\bar{x}} \]

\[= \frac{1}{\beta^2} \left(-2 \frac{\sum_{i=1}^{n} x_i}{\beta} + n \right) \bigg|_{\beta=\bar{x}} \]
Use the double derivative to confirm local maximum

\[
\left. \frac{\partial^2 l}{\partial \beta^2} \right|_{\beta=\bar{x}} = -2 \frac{\sum_{i=1}^{n} x_i}{\beta^3} + \frac{n}{\beta^2} \left|_{\beta=\bar{x}} \right.
\]

\[
= \frac{1}{\beta^2} \left(- \frac{2 \sum_{i=1}^{n} x_i}{\beta} + n \right) \left|_{\beta=\bar{x}} \right.
\]

\[
= \frac{1}{\bar{x}^2} \left(- \frac{2n\bar{x}}{\bar{x}} + n \right)
\]
Use the double derivative to confirm local maximum

\[
\frac{\partial^2 l}{\partial \beta^2} \bigg|_{\beta = \bar{x}} = -2 \sum_{i=1}^{n} \frac{x_i}{\beta^3} + \frac{n}{\beta^2} \bigg|_{\beta = \bar{x}}
\]

\[
= \frac{1}{\beta^2} \left(-2 \sum_{i=1}^{n} \frac{x_i}{\beta} + n \right) \bigg|_{\beta = \bar{x}}
\]

\[
= \frac{1}{\bar{x}^2} \left(-2 \frac{n\bar{x}}{\bar{x}} + n \right)
\]

\[
= \frac{1}{\bar{x}^2} (-n) < 0
\]
Use the double derivative to confirm local maximum

\[
\frac{\partial^2 l}{\partial \beta^2} \bigg|_{\beta=\bar{x}} = -2 \sum_{i=1}^{n} \frac{x_i}{\beta^3} + \frac{n}{\beta^2} \bigg|_{\beta=\bar{x}}
\]

\[
= \frac{1}{\beta^2} \left(- \frac{2 \sum_{i=1}^{n} x_i}{\beta} + n \right) \bigg|_{\beta=\bar{x}}
\]

\[
= \frac{1}{\bar{x}^2} \left(- \frac{2n\bar{x}}{\bar{x}} + n \right)
\]

\[
= \frac{1}{\bar{x}^2} (-n) < 0
\]

Therefore, we can conclude that \(\hat{\beta}(X) = \bar{X} \) is unique local maximum on the interval.
Check boundary and confirm global maximum

\[\beta \in (0, \infty). \text{ If } \beta \to \infty \]
Check boundary and confirm global maximum

\(\beta \in (0, \infty) \). If \(\beta \to \infty \)

\[
l(\beta|\mathbf{x}) = -\frac{\sum_{i=1}^{n} x_i}{\beta} - n \log \beta \to -\infty
\]
Check boundary and confirm global maximum

\[\beta \in (0, \infty). \text{ If } \beta \to \infty \]

\[
\begin{align*}
l(\beta|x) & = -\frac{\sum_{i=1}^{n} x_i}{\beta} - n \log \beta \to -\infty \\
L(\beta|x) & \to 0
\end{align*}
\]
Check boundary and confirm global maximum

\(\beta \in (0, \infty) \). If \(\beta \to \infty \)

\[
\ell(\beta|x) = -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \log \beta \to -\infty
\]

\[
L(\beta|x) \to 0
\]

If \(\beta \to 0 \), use \(\log(x) = \lim_{\beta \to 0} \frac{1}{\beta} (x^\beta - 1) \)
Check boundary and confirm global maximum

\[\beta \in (0, \infty). \text{ If } \beta \to \infty \]

\[
l(\beta | x) = - \frac{\sum_{i=1}^{n} x_i}{\beta} - n \log \beta \to -\infty
\]

\[L(\beta | x) \to 0 \]

If \(\beta \to 0 \), use \(\log(x) = \lim_{\beta \to 0} \frac{1}{\beta} (x^\beta - 1) \)

\[
l(\beta | x) = - \frac{\sum_{i=1}^{n} x_i}{\beta} - n \log \beta
\]
Check boundary and confirm global maximum

\(\beta \in (0, \infty) \). If \(\beta \to \infty \)

\[
l(\beta|x) = -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \log \beta \to -\infty
\]

\[
L(\beta|x) \to 0
\]

If \(\beta \to 0 \), use \(\log(x) = \lim_{\beta \to 0} \frac{1}{\beta}(x^\beta - 1) \)

\[
l(\beta|x) = -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \log \beta
\]

\[
= -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \left(\frac{1}{\beta} \beta^\beta - 1 \right)
\]
Check boundary and confirm global maximum

$\beta \in (0, \infty)$. If $\beta \to \infty$

$$l(\beta|x) = -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \log \beta \to -\infty$$

$L(\beta|x) \to 0$

If $\beta \to 0$, use $\log(x) = \lim_{\beta \to 0} \frac{1}{\beta} (x^\beta - 1)$

$$l(\beta|x) = -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \log \beta$$

$$= -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \left(\frac{1}{\beta} \beta^\beta - 1 \right)$$

$$= -\sum_{i=1}^{n} \frac{x_i}{\beta} - n(\beta^\beta - 1) \to -\infty$$
Check boundary and confirm global maximum

\(\beta \in (0, \infty) \). If \(\beta \to \infty \)

\[
l(\beta | x) = -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \log \beta \to -\infty
\]

\(L(\beta | x) \to 0 \)

If \(\beta \to 0 \), use \(\log(x) = \lim_{\beta \to 0} \frac{1}{\beta}(x^\beta - 1) \)

\[
l(\beta | x) = -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \log \beta
\]

\[
= -\sum_{i=1}^{n} \frac{x_i}{\beta} - n \left(\frac{1}{\beta} \beta^\beta - 1 \right)
\]

\[
= -\sum_{i=1}^{n} \frac{x_i}{\beta} - n(\beta^\beta - 1) \to -\infty
\]

\(L(\beta | x) \to 0 \)
Putting Things Together

1. $\frac{\partial l}{\partial \beta} = 0$ at $\hat{\beta} = \bar{x}$
Putting Things Together

1. \(\frac{\partial l}{\partial \beta} = 0 \) at \(\hat{\beta} = \bar{x} \)

2. \(\frac{\partial^2 l}{\partial \beta^2} < 0 \) at \(\hat{\beta} = \bar{x} \)
Putting Things Together

1. \(\frac{\partial l}{\partial \beta} = 0 \) at \(\hat{\beta} = \bar{x} \)
2. \(\frac{\partial^2 l}{\partial \beta^2} < 0 \) at \(\hat{\beta} = \bar{x} \)
3. \(L(\beta|x) \rightarrow 0 \) (lowest bound) when \(\beta \) approaches the boundary
Putting Things Together

1. \[\frac{\partial l}{\partial \beta} = 0 \text{ at } \hat{\beta} = \bar{x} \]

2. \[\frac{\partial^2 l}{\partial \beta^2} < 0 \text{ at } \hat{\beta} = \bar{x} \]

3. \[L(\beta|x) \rightarrow 0 \text{ (lowest bound) when } \beta \text{ approaches the boundary} \]

Therefore \(l(\beta|x) \) and \(L(\beta|x) \) attains the global maximum when \(\hat{\beta} = \bar{x} \)

\(\hat{\beta}(X) = \bar{X} \) is the MLE of \(\beta \).
How do we find MLE?

If the function is differentiable with respect to θ.
How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero

2. Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1; \theta_2)$ is the likelihood function. Then we need to show
 \[
 \frac{\partial^2}{\partial \theta_1^2} L(\theta_1; \theta_2) < 0 \quad \text{or} \quad \frac{\partial^2}{\partial \theta_2^2} L(\theta_1; \theta_2) < 0.
 \]

 2. Check boundary points to see whether boundary gives global maximum.

If the function is NOT differentiable with respect to θ.

• Use numerical methods
• Or perform directly maximization, using inequalities, or properties of the function.
How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero
2. Check second-order derivative to check local maximum.
How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero
2. Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero
2. Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show

How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero.
2. Check second-order derivative to check local maximum.

- For one-dimensional parameter, negative second order derivative implies local maximum.
- For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show

 \[\frac{\partial^2 L(\theta_1, \theta_2)^2}{\partial \theta_1^2} < 0 \text{ or } \frac{\partial^2 L(\theta_1, \theta_2)^2}{\partial \theta_2^2} < 0. \]
How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero
2. Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show
 (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 (b) Determinant of second-order derivative is positive
How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero
2. Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show
 (a) $\frac{\partial^2 L(\theta_1, \theta_2)^2}{\partial \theta_1^2} < 0$ or $\frac{\partial^2 L(\theta_1, \theta_2)^2}{\partial \theta_2^2} < 0$.
 (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.
How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero
2. Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show
 (a) $\frac{\partial^2 L(\theta_1, \theta_2)^2}{\partial \theta_1^2} < 0$ or $\frac{\partial^2 L(\theta_1, \theta_2)^2}{\partial \theta_2^2} < 0$.
 (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

If the function is NOT differentiable with respect to θ.

- Use numerical methods
How do we find MLE?

If the function is differentiable with respect to θ.

1. Find candidates that makes first order derivative to be zero
2. Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show
 (a) $\frac{\partial^2 L(\theta_1, \theta_2)}{\partial \theta_1^2} < 0$ or $\frac{\partial^2 L(\theta_1, \theta_2)}{\partial \theta_2^2} < 0$.
 (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

If the function is NOT differentiable with respect to θ.

- Use numerical methods
- Or perform directly maximization, using inequalities, or properties of the function.
Summary

Today

- Likelihood Function
- Point Estimator
- Method of Moments Estimator
- Maximum Likelihood Estimator
Summary

Today

- Likelihood Function
- Point Estimator
- Method of Moments Estimator
- Maximum Likelihood Estimator

Next Lecture

- Maximum Likelihood Estimator