Asymptotic Normality

Asymptotic Efficiency

Hyun Min Kang

March 19th, 2013
Last Lecture

- What is a Bayes Risk?
Last Lecture

- What is a Bayes Risk?
- What is the Bayes rule Estimator minimizing squared error loss?
Recap

Asymptotic Normality

Asymptotic Efficiency

Summary

Last Lecture

- What is a Bayes Risk?
- What is the Bayes rule Estimator minimizing squared error loss?
- What is the Bayes rule Estimator minimizing absolute error loss?
Last Lecture

- What is a Bayes Risk?
- What is the Bayes rule Estimator minimizing squared error loss?
- What is the Bayes rule Estimator minimizing absolute error loss?
- What are the tools for proving a point estimator is consistent?
What is a Bayes Risk?
What is the Bayes rule Estimator minimizing squared error loss?
What is the Bayes rule Estimator minimizing absolute error loss?
What are the tools for proving a point estimator is consistent?
Can a biased estimator be consistent?
Bayes Estimator based on absolute error loss

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$.
Bayes Estimator based on absolute error loss

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$E[L(\theta, \hat{\theta}(x))] = \int_{\Omega} |\theta - \hat{\theta}(x)| \pi(\theta|x) d\theta$$
Bayes Estimator based on absolute error loss

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$E[L(\theta, \hat{\theta}(x))] = \int_{\Omega} |\theta - \hat{\theta}(x)| \pi(\theta | x) d\theta$$

$$= E[|\theta - \hat{\theta}| | X = x]$$
Bayes Estimator based on absolute error loss

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$
E[L(\theta, \hat{\theta}(x))] = \int_{\Omega} |\theta - \hat{\theta}(x)| \pi(\theta|x) d\theta
$$

$$
= E[|\theta - \hat{\theta}|\big| x] = \int_{-\infty}^{\hat{\theta}} -(\theta - \hat{\theta}) \pi(\theta|x) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|x) d\theta
$$
Bayes Estimator based on absolute error loss

Suppose that \(L(\theta, \hat{\theta}) = |\theta - \hat{\theta}| \). The posterior expected loss is

\[
\begin{align*}
\mathbb{E}[L(\theta, \hat{\theta}(x))] &= \int_{\Omega} |\theta - \hat{\theta}(x)| \pi(\theta|x) \, d\theta \\
&= \mathbb{E}[|\theta - \hat{\theta}| | X = x] \\
&= \int_{-\infty}^{\hat{\theta}} - (\theta - \hat{\theta}) \pi(\theta|x) \, d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|x) \, d\theta
\end{align*}
\]

\[
\frac{\partial}{\partial \hat{\theta}} \mathbb{E}[L(\theta, \hat{\theta}(x))] = \int_{-\infty}^{\hat{\theta}} \pi(\theta|x) \, d\theta - \int_{\hat{\theta}}^{\infty} \pi(\theta|x) \, d\theta = 0
\]
Bayes Estimator based on absolute error loss

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$E[L(\theta, \hat{\theta}(x))] = \int_\Omega |\theta - \hat{\theta}(x)| \pi(\theta|x) d\theta$$

$$= E[|\theta - \hat{\theta}||X = x]$$

$$= \int_{-\infty}^{\hat{\theta}} -(\theta - \hat{\theta}) \pi(\theta|x) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|x) d\theta$$

$$\frac{\partial}{\partial \hat{\theta}} E[L(\theta, \hat{\theta}(x))] = \int_{-\infty}^{\hat{\theta}} \pi(\theta|x) d\theta - \int_{\hat{\theta}}^{\infty} \pi(\theta|x) d\theta = 0$$

Therefore, $\hat{\theta}$ is posterior median.
Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its *asymptotic* properties.
Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its *asymptotic* properties.

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(X)$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_θ for every $\theta \in \Omega$.
Recap

Asymptotic Normality

Asymptotic Efficiency

Summary

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its *asymptotic* properties.

Definition - Consistency

Let $W_n = W_n(X_1, \ldots, X_n) = W_n(X)$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_θ for every $\theta \in \Omega$.

$W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \geq \epsilon) = 0$$

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 1$$
Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its *asymptotic* properties.

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_θ for every $\theta \in \Omega$.

$W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \geq \epsilon) = 0$$
$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 1$$

When $|W_n - \tau(\theta)| < \epsilon$ can also be represented that W_n is close to $\tau(\theta)$.

Hyun Min Kang
Biostatistics 602 - Lecture 16
March 19th, 2013 4 / 33
Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its *asymptotic* properties.

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_θ for every $\theta \in \Omega$.

$W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$,

\[
\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \geq \epsilon) = 0
\]

\[
\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 1
\]

When $|W_n - \tau(\theta)| < \epsilon$ can also be represented that W_n is close to $\tau(\theta)$. Consistency implies that the probability of W_n close to $\tau(\theta)$ approaches to 1 as n goes to ∞.
Tools for proving consistency

- Use definition (complicated)
Tools for proving consistency

- Use definition (complicated)
- Chebychev’s Inequality

\[
\Pr(|W_n - \tau(\theta)| \geq \epsilon) = \Pr((W_n - \tau(\theta))^2 \geq \epsilon^2) \\
\leq \frac{\text{E}[(W_n - \tau(\theta))^2]}{\epsilon^2} \\
= \frac{\text{MSE}(W_n)}{\epsilon^2} = \frac{\text{Bias}^2(W_n) + \text{Var}(W_n)}{\epsilon^2}
\]
Tools for proving consistency

- Use definition (complicated)
- Chebychev’s Inequality

\[
\Pr(|W_n - \tau(\theta)| \geq \epsilon) = \Pr((W_n - \tau(\theta))^2 \geq \epsilon^2) \leq \frac{\text{E}[W_n - \tau(\theta)]^2}{\epsilon^2} = \frac{\text{MSE}(W_n)}{\epsilon^2} = \frac{\text{Bias}^2(W_n) + \text{Var}(W_n)}{\epsilon^2}
\]

Need to show that both \text{Bias}(W_n) and \text{Var}(W_n) converges to zero
Theorem for consistency

Theorem 10.1.3

If W_n is a sequence of estimators of $\tau(\theta)$ satisfying

- $\lim_{n \to \infty} \text{Bias}(W_n) = 0$.
- $\lim_{n \to \infty} \text{Var}(W_n) = 0$.

for all θ, then W_n is consistent for $\tau(\theta)$.
Weak Law of Large Numbers

Theorem 5.5.2

Let X_1, \cdots, X_n be iid random variables with $E(X) = \mu$ and $\text{Var}(X) = \sigma^2 < \infty$. Then \overline{X}_n converges in probability to μ.

I.e. $\overline{X}_n \xrightarrow{P} \mu$.
Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n, b_n be sequences of constants satisfying

1. $\lim_{n \to \infty} a_n = 1$
2. $\lim_{n \to \infty} b_n = 0$.

Continuous Map Theorem

If W_n is consistent for τ and g is a continuous function, then $g(W_n)$ is consistent for $g(\tau)$.
Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n, b_n be sequences of constants satisfying

1. $\lim_{n \to \infty} a_n = 1$
2. $\lim_{n \to \infty} b_n = 0$.

Then $U_n = a_n W_n + b_n$ is also a consistent sequence of estimators of $\tau(\theta)$.
Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n, b_n be sequences of constants satisfying

1. $\lim_{n \to \infty} a_n = 1$
2. $\lim_{n \to \infty} b_n = 0$.

Then $U_n = a_n W_n + b_n$ is also a consistent sequence of estimators of $\tau(\theta)$.

Continuous Map Theorem

If W_n is consistent for θ and g is a continuous function, then $g(W_n)$ is consistent for $g(\theta)$.
Example - Exponential Family

Problem

Suppose \(X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Exponential}(\beta) \).
Example - Exponential Family

Problem

Suppose $X_1, \cdots, X_n \overset{i.i.d.}{\sim} \text{Exponential}(\beta)$.

1. Propose a consistent estimator of the median.
Example - Exponential Family

Problem

Suppose \(X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Exponential}(\beta) \).

1. Propose a consistent estimator of the median.
2. Propose a consistent estimator of \(\Pr(X \leq c) \) where \(c \) is constant.
Consistent estimator of \(\Pr(X \leq c) \)

\[
\Pr(X \leq c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} \, dx
\]
Consistent estimator of $\Pr(X \leq c)$

\[
\Pr(X \leq c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} \, dx
\]

\[
= 1 - e^{-c/\beta}
\]
Consistent estimator of $\Pr(X \leq c)$

$$
\Pr(X \leq c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} \, dx \\
= 1 - e^{-c/\beta}
$$

As X is consistent for β, $1 - e^{-c/\beta}$ is continuous function of β.
Consistent estimator of $\Pr(X \leq c)$

$$\Pr(X \leq c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} \, dx$$

$$= 1 - e^{-c/\beta}$$

As \bar{X} is consistent for β, $1 - e^{-c/\beta}$ is a continuous function of β. By continuous mapping Theorem, $g(\bar{X}) = 1 - e^{-c/\bar{X}}$ is consistent for $\Pr(X \leq c) = 1 - e^{-c/\beta} = g(\beta)$
Consistent estimator of $\Pr(X \leq c)$ - Alternative Method

Define $Y_i = I(X_i \leq c)$. Then $Y_i \sim \text{i.i.d. Bernoulli}(p)$ where $p = \Pr(X \leq c)$.
Define $Y_i = I(X_i \leq c)$. Then $Y_i \overset{	ext{i.i.d.}}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \leq c)$.

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq c)$$

is consistent for p by Law of Large Numbers.
Theorem 10.1.6 - Consistency of MLEs

Suppose $X_i \sim \text{i.i.d.} f(x|\theta)$. Let $\hat{\theta}$ be the MLE of θ, and $\tau(\theta)$ be a continuous function of θ. Then under "regularity conditions" on $f(x|\theta)$, the MLE of $\tau(\theta)$ (i.e. $\tau(\hat{\theta})$) is consistent for $\tau(\theta)$.
Asymptotic Normality

Definition: Asymptotic Normality

A statistic (or an estimator) $W_n(X)$ is asymptotically normal if

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}(0, \nu(\theta))$$

for all θ

where \xrightarrow{d} stands for "converge in distribution"
Asymptotic Normality

Definition: Asymptotic Normality

A statistic (or an estimator) $W_n(X)$ is asymptotically normal if

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}(0, \nu(\theta))$$

for all θ

where \xrightarrow{d} stands for "converge in distribution"

- $\tau(\theta)$: "asymptotic mean"
- $\nu(\theta)$: "asymptotic variance"
Defintion: Asymptotic Normality

A statistic (or an estimator) $W_n(\mathbf{X})$ is *asymptotically normal* if

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}(0, \nu(\theta))$$

for all θ, where \xrightarrow{d} stands for "converge in distribution"

- $\tau(\theta)$: "asymptotic mean"
- $\nu(\theta)$: "asymptotic variance"

We denote $W_n \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$.

Central Limit Theorem

Assume \(X_i \overset{\text{i.i.d.}}{\sim} f(x|\theta) \) with finite mean \(\mu(\theta) \) and variance \(\sigma^2(\theta) \).

\[
\bar{X} \sim \mathcal{N}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n} \right)
\]
Central Limit Theorem

Assume $X_i \overset{	ext{i.i.d.}}{\sim} f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

\[
\bar{X} \sim \mathcal{N}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)
\]

\[\iff \quad \sqrt{n} (\bar{X} - \mu(\theta)) \overset{d}{\to} \mathcal{N}(0, \sigma^2(\theta))\]
Central Limit Theorem

Assume $X_i \sim f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

$\overline{X} \sim \mathcal{N} \left(\mu(\theta), \frac{\sigma^2(\theta)}{n} \right)$

$\Leftrightarrow \sqrt{n} \left(\overline{X} - \mu(\theta) \right) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\theta))$

Theorem 5.5.17 - Slutsky’s Theorem

If $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{P} a$, where a is a constant,
Central Limit Theorem

Assume $X_i \overset{i.i.d.}{\sim} f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

$$\bar{X} \sim \mathcal{N} \left(\mu(\theta), \frac{\sigma^2(\theta)}{n} \right)$$

$$\Leftrightarrow \sqrt{n} \left(\bar{X} - \mu(\theta) \right) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\theta))$$

Theorem 5.5.17 - Slutsky’s Theorem

If $X_n \xrightarrow{d} X, Y_n \xrightarrow{P} a$, where a is a constant,

1. $Y_n \cdot X_n \xrightarrow{d} aX$
Central Limit Theorem

Assume \(X_i \overset{i.i.d.}{\sim} f(x|\theta) \) with finite mean \(\mu(\theta) \) and variance \(\sigma^2(\theta) \).

\[
\frac{1}{\sqrt{n}} \left(\bar{X} - \mu(\theta) \right) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\theta) / n)
\]

Theorem 5.5.17 - Slutsky’s Theorem

If \(X_n \xrightarrow{d} X \), \(Y_n \xrightarrow{P} a \), where \(a \) is a constant,

1. \(Y_n \cdot X_n \xrightarrow{d} aX \)
2. \(X_n + Y_n \xrightarrow{d} X + a \)
Example - Estimator of $\Pr(X \leq c)$

Define $Y_i = I(X_i \leq c)$. Then $Y_i \overset{i.i.d.}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \leq c)$.

Example - Estimator of $\Pr(X \leq c)$

Define $Y_i = I(X_i \leq c)$. Then $Y_i \sim_{i.i.d.} \text{Bernoulli}(p)$ where $p = \Pr(X \leq c)$.

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq c)$$

is consistent for p. Therefore,
Example - Estimator of $\Pr(X \leq c)$

Define $Y_i = I(X_i \leq c)$. Then $Y_i \overset{i.i.d.}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \leq c)$.

$$
\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq c)
$$

is consistent for p. Therefore,

$$
\frac{1}{n} \sum_{i=1}^{n} I(X_i \leq c) \sim \mathcal{AN} \left(\text{E}(Y), \frac{\text{Var}(Y)}{n} \right)
$$

$$
= \mathcal{AN} \left(p, \frac{p(1-p)}{n} \right)
$$
Example

Let \(X_1, \ldots, X_n \) be iid samples with finite mean \(\mu \) and variance \(\sigma^2 \). Define

\[
S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

By Central Limit Theorem, \(\bar{X}_n \overset{\text{d}}{\rightarrow} N(\mu, \sigma^2/n) \) as \(n \to \infty \).
Example

Let X_1, \cdots, X_n be iid samples with finite mean μ and variance σ^2. Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

By Central Limit Theorem,

$$\bar{X}_n \sim \mathcal{AN}\left(\mu, \frac{\sigma^2}{n}\right)$$
Example

Let X_1, \ldots, X_n be iid samples with finite mean μ and variance σ^2. Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

By Central Limit Theorem,

$$\bar{X}_n \sim \mathcal{AN} \left(\mu, \frac{\sigma^2}{n} \right)$$

$$\iff \sqrt{n}(\bar{X} - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$
Example

Let \(X_1, \ldots, X_n \) be iid samples with finite mean \(\mu \) and variance \(\sigma^2 \). Define

\[
S^2_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2
\]

By Central Limit Theorem,

\[
\overline{X}_n \sim \mathcal{N} \left(\mu, \frac{\sigma^2}{n} \right)
\]

\[
\iff \sqrt{n}(\overline{X} - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)
\]

\[
\iff \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0, 1)
\]
Example (cont’d)

\[
\frac{\sqrt{n}(\bar{X} - \mu)}{S_n} = \frac{\sigma}{S_n} \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma}
\]
Asymptotic Normality

$$\sqrt{n(\overline{X} - \mu)} \frac{S_n}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}(\overline{X} - \mu)}$$

We showed previously $S_n^2 \xrightarrow{p} \sigma^2 \Rightarrow S_n \xrightarrow{p} \sigma \Rightarrow \sigma / S_n \xrightarrow{p} 1$.

Asymptotic Efficiency

Recap

Summary
Example (cont’d)

\[
\frac{\sqrt{n} (\overline{X} - \mu)}{S_n} = \frac{\sigma \sqrt{n} (\overline{X} - \mu)}{\sigma}
\]

We showed previously \(S_n^2 \xrightarrow{P} \sigma^2 \Rightarrow S_n \xrightarrow{P} \sigma \Rightarrow \sigma / S_n \xrightarrow{P} 1 \).

Therefore, By Slutsky’s Theorem \(\frac{\sqrt{n} (\overline{X} - \mu)}{S_n} \xrightarrow{P} \mathcal{N}(0, 1) \).
Delta Method

Theorem 5.5.24 - Delta Method

Assume $W_n \sim \mathcal{AN} \left(\theta, \frac{\nu(\theta)}{n} \right)$. If a function g satisfies $g'(\theta) \neq 0$, then

$$g(W_n) \sim \mathcal{AN} \left(g(\theta), \left[g'(\theta) \right]^2 \frac{\nu(\theta)}{n} \right)$$
Delta Method - Example

\[X_1, \cdots, X_n \overset{i.i.d.}{\sim} \text{Bernoulli}(p) \text{ where } p \neq \frac{1}{2}, \text{ we want to know the asymptotic distribution of } \overline{X}(1 - \overline{X}). \]
Delta Method - Example

\(X_1, \cdots, X_n \sim \text{i.i.d.} \text{ Bernoulli}(p)\) where \(p \neq \frac{1}{2}\), we want to know the asymptotic distribution of \(\bar{X}(1 - \bar{X})\). By central limit Theorem,

\[
\frac{\sqrt{n}(\bar{X}_n - p)}{\sqrt{p(1 - p)}} \overset{d}{\rightarrow} N(0, 1)
\]
Delta Method - Example

\(X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Bernoulli}(p) \) where \(p \neq \frac{1}{2} \), we want to know the asymptotic distribution of \(\bar{X}(1 - \bar{X}) \). By central limit Theorem,

\[
\frac{\sqrt{n}(\bar{X}_n - p)}{\sqrt{p(1 - p)}} \xrightarrow{d} \mathcal{N}(0, 1)
\]

\(\Leftrightarrow \bar{X}_n \sim \mathcal{AN} \left(p, \frac{p(1 - p)}{n} \right) \)
Delta Method - Example

\(X_1, \cdots, X_n \overset{i.i.d.}{\sim} \text{Bernoulli}(p)\) where \(p \neq \frac{1}{2}\), we want to know the asymptotic distribution of \(\bar{X}(1 - \bar{X})\). By central limit Theorem,

\[
\frac{\sqrt{n} (\bar{X}_n - p)}{\sqrt{p(1-p)}} \xrightarrow{d} \mathcal{N}(0,1)
\]

\[
\iff \bar{X}_n \sim \mathcal{AN} \left(p, \frac{p(1-p)}{n} \right)
\]

Define \(g(y) = y(1 - y)\), then \(\bar{X}(1 - \bar{X}) = g(\bar{X})\).
Delta Method - Example

\(X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)\) where \(p \neq \frac{1}{2}\), we want to know the asymptotic distribution of \(\bar{X}(1 - \bar{X})\). By central limit Theorem,

\[
\frac{\sqrt{n}(\bar{X}_n - p)}{\sqrt{p(1 - p)}} \xrightarrow{d} \mathcal{N}(0, 1)
\]

\[
\Leftrightarrow \bar{X}_n \sim \mathcal{AN} \left(p, \frac{p(1 - p)}{n} \right)
\]

Define \(g(y) = y(1 - y)\), then \(\bar{X}(1 - \bar{X}) = g(\bar{X})\).

\[
g'(y) = (y - y^2)' = 1 - 2y
\]
Delta Method - Example

\(X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Bernoulli}(p) \) where \(p \neq \frac{1}{2} \), we want to know the asymptotic distribution of \(\bar{X}(1 - \bar{X}) \). By central limit Theorem,

\[
\frac{\sqrt{n}(\bar{X}_n - p)}{\sqrt{p(1 - p)}} \xrightarrow{d} \mathcal{N}(0, 1)
\]

\[\iff \bar{X}_n \sim \mathcal{AN} \left(p, \frac{p(1 - p)}{n} \right) \]

Define \(g(y) = y(1 - y) \), then \(\bar{X}(1 - \bar{X}) = g(\bar{X}) \).

\[g'(y) = (y - y^2)' = 1 - 2y \]

By Delta Method,

\[g(\bar{X}) = \bar{X}(1 - \bar{X}) \sim \mathcal{AN} \left(g(p), \left[g'(p) \right]^2 \frac{p(1 - p)}{n} \right) \]
Delta Method - Example

\(X_1, \ldots, X_n \sim \text{i.i.d.} \) Bernoulli\((p)\) where \(p \neq \frac{1}{2}\), we want to know the asymptotic distribution of \(\overline{X}(1 - \overline{X})\). By central limit Theorem,

\[
\frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{p(1 - p)}} \xrightarrow{d} \mathcal{N}(0, 1)
\]

\(\Leftrightarrow \overline{X}_n \sim \mathcal{AN} \left(p, \frac{p(1 - p)}{n} \right) \)

Define \(g(y) = y(1 - y)\), then \(\overline{X}(1 - \overline{X}) = g(\overline{X})\).

\(g'(y) = (y - y^2)' = 1 - 2y\)

By Delta Method,

\[
g(\overline{X}) = \overline{X}(1 - \overline{X}) \sim \mathcal{AN} \left(g(p), \left[g'(p)\right]^2 \frac{p(1 - p)}{n} \right)
\]

\[
= \mathcal{AN} \left(p(1 - p), (1 - 2p)^2 \frac{p(1 - p)}{n} \right)
\]
Asymptotic Normality

Given a statistic $W_n(X)$, for example \bar{X}, s_X^2, $e^{-\bar{X}}$
Asymptotic Normality

Given a statistic $W_n(X)$, for example \bar{X}, s^2_X, $e^{-\bar{X}}$

$\sqrt{n}(W_n - \tau(\theta)) \overset{d}{\rightarrow} \mathcal{N}(0, \nu(\theta))$ for all θ

$\iff W_n \sim \mathcal{AN} \left(\tau(\theta), \frac{\nu(\theta)}{n} \right)$
Asymptotic Normality

Given a statistic $W_n(X)$, for example \bar{X}, s^2_X, e^{-X}

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}(0, \nu(\theta)) \quad \text{for all } \theta$$

$$\iff W_n \sim \mathcal{AN}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$$

Tools to show asymptotic normality

1. Central Limit Theorem
Asymptotic Normality

Given a statistic $W_n(\mathbf{X})$, for example \overline{X}, $s^2_{\mathbf{X}}$, $e^{-\overline{X}}$

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}(0, \nu(\theta)) \quad \text{for all } \theta$$

$$\iff W_n \sim \mathcal{AN}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$$

Tools to show asymptotic normality

1. Central Limit Theorem
2. Slutsky Theorem
Given a statistic $W_n(X)$, for example \overline{X}, s^2_X, e^{-X}

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}(0, \nu(\theta)) \quad \text{for all } \theta$$

$$\iff W_n \sim \mathcal{AN}\left(\tau(\theta), \frac{\nu(\theta)}{n} \right)$$

Tools to show asymptotic normality

1. Central Limit Theorem
2. Slutsky Theorem
3. Delta Method (Theorem 5.5.24)
Using Central Limit Theorem

\[\bar{X} \sim \mathcal{N} \left(\mu(\theta), \frac{\sigma^2(\theta)}{n} \right) \]

where \(\mu(\theta) = E(X) \), and \(\sigma^2(\theta) = \text{Var}(X) \).
Using Central Limit Theorem

\[\bar{X} \sim \mathcal{N} \left(\mu(\theta), \frac{\sigma^2(\theta)}{n} \right) \]

where \(\mu(\theta) = \mathbb{E}(X) \), and \(\sigma^2(\theta) = \text{Var}(X) \).

For example, in order to get the asymptotic distribution of \(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \),
Using Central Limit Theorem

\[\bar{X} \sim AN \left(\mu(\theta), \frac{\sigma^2(\theta)}{n} \right) \]

where \(\mu(\theta) = E(X) \), and \(\sigma^2(\theta) = Var(X) \).

For example, in order to get the asymptotic distribution of \(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \), define \(Y_i = X_i^2 \), then

\[\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i = \bar{Y} \]
Using Central Limit Theorem

\[\bar{X} \sim \mathcal{AN} \left(\mu(\theta), \frac{\sigma^2(\theta)}{n} \right) \]

where \(\mu(\theta) = \mathbb{E}(X) \), and \(\sigma^2(\theta) = \text{Var}(X) \).

For example, in order to get the asymptotic distribution of \(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \), define \(Y_i = X_i^2 \), then

\[\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i = \bar{Y} \]

\[\sim \mathcal{AN} \left(\mathbb{E}Y, \frac{\text{Var}(Y)}{n} \right) \]
Using Central Limit Theorem

\[\overline{X} \sim \mathcal{N} \left(\mu(\theta), \frac{\sigma^2(\theta)}{n} \right) \]

where \(\mu(\theta) = \mathbb{E}(X) \), and \(\sigma^2(\theta) = \text{Var}(X) \).

For example, in order to get the asymptotic distribution of \(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \), define \(Y_i = X_i^2 \), then

\[\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i = \overline{Y} \]

\[\sim \mathcal{N} \left(\mathbb{E}Y, \frac{\text{Var}(Y)}{n} \right) \]

\[\sim \mathcal{N} \left(\mathbb{E}X^2, \frac{\text{Var}(X^2)}{n} \right) \]
Using Slutsky Theorem

When \(X_n \overset{d}{\rightarrow} X, \ Y_n \overset{P}{\rightarrow} a, \) then

1. \(Y_nX_n \overset{d}{\rightarrow} aX \)
2. \(X_n + Y_n \overset{d}{\rightarrow} X + a. \)
Using Delta Method (Theorem 5.5.24)

Assume $W_n \sim \mathcal{AN}(\theta, \frac{\nu(\theta)}{n})$. If a function g satisfies $g'(\theta) \neq 0$, then

$$g(W_n) \sim \mathcal{AN} \left(g(\theta), [g'(\theta)]^2 \frac{\nu(\theta)}{n} \right)$$
Example

Problem

\[X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2) \quad \mu \neq 0 \]

Find the asymptotic distribution of MLE of \(\mu^2 \).
Example

Problem

\[X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2) \quad \mu \neq 0 \]

Find the asymptotic distribution of MLE of \(\mu^2 \).

Solution

1. It can be easily shown that MLE of \(\mu \) is \(\bar{X} \).
Example

Problem

\[X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2) \quad \mu \neq 0 \]

Find the asymptotic distribution of MLE of \(\mu^2 \).

Solution

1. It can be easily shown that MLE of \(\mu \) is \(\overline{X} \).
2. By the invariance property of MLE, MLE of \(\mu^2 \) is \(\overline{X}^2 \).
Example

Problem

\[X_1, \cdots, X_n \overset{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2) \quad \mu \neq 0 \]

Find the asymptotic distribution of MLE of \(\mu^2 \).

Solution

1. It can be easily shown that MLE of \(\mu \) is \(\bar{X} \).
2. By the invariance property of MLE, MLE of \(\mu^2 \) is \(\bar{X}^2 \).
3. By central limit theorem, we know that
 \[
 \bar{X} \sim \mathcal{AN} \left(\mu, \frac{\sigma^2}{n} \right)
 \]
Define \(g(y) = y^2 \), and apply Delta Method.
Solution (cont’d)

4 Define \(g(y) = y^2 \), and apply Delta Method.

\[
g'(y) = 2y
\]
Solution (cont’d)

4 Define $g(y) = y^2$, and apply Delta Method.

$$g'(y) = 2y$$

$$\bar{X}^2 \sim \mathcal{N} \left(g(\mu), \frac{[g'(\mu)]^2 \sigma^2}{n} \right)$$
Solution (cont’d)

Define $g(y) = y^2$, and apply Delta Method.

$$g'(y) = 2y$$

$$\bar{X}^2 \sim \mathcal{AN} \left(g(\mu), [g'(\mu)]^2 \frac{\sigma^2}{n} \right)$$

$$\sim \mathcal{AN} \left(\mu^2, (2\mu)^2 \frac{\sigma^2}{n} \right)$$
Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.
Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.

Definition 10.1.16 : Asymptotic Relative Efficiency

If two estimators W_n and V_n satisfy

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} N(0, \sigma^2_W)$$

$$\sqrt{n}(V_n - \tau(\theta)) \xrightarrow{d} N(0, \sigma^2_V)$$

The asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$\text{ARE}(V_n; W_n) = \frac{\sigma^2_W}{\sigma^2_V}$$

If $\text{ARE}(V_n; W_n) > 1$ for every $\theta \in \Omega$, then V_n is asymptotically more efficient than W_n.
Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.

Definition 10.1.16: Asymptotic Relative Efficiency

If two estimators W_n and V_n satisfy

$$\sqrt{n}[W_n - \tau(\theta)] \xrightarrow{d} \mathcal{N}(0, \sigma^2_W)$$

$$\sqrt{n}[V_n - \tau(\theta)] \xrightarrow{d} \mathcal{N}(0, \sigma^2_V)$$

The asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$\text{ARE}(V_n, W_n) = \frac{\sigma^2_W}{\sigma^2_V}$$
Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.

Definition 10.1.16 : Asymptotic Relative Efficiency

If two estimators W_n and V_n satisfy

\[
\sqrt{n}[W_n - \tau(\theta)] \xrightarrow{d} \mathcal{N}(0, \sigma^2_W)
\]

\[
\sqrt{n}[V_n - \tau(\theta)] \xrightarrow{d} \mathcal{N}(0, \sigma^2_V)
\]

The asymptotic relative efficiency (ARE) of V_n with respect to W_n is

\[
\text{ARE}(V_n, W_n) = \frac{\sigma^2_W}{\sigma^2_V}
\]

If $\text{ARE}(V_n, W_n) \geq 1$ for every $\theta \in \Omega$, then V_n is asymptotically more efficient than W_n.

Hyun Min Kang
Biostatistics 602 - Lecture 16
March 19th, 2013 26 / 33
Example

Problem

Let $X_i \overset{i.i.d.}{\sim} \text{Poisson}(\lambda)$. consider estimating

$$\Pr(X = 0) = e^{-\lambda}$$
Example

Problem

Let $X_i \overset{i.i.d.}{\sim} \text{Poisson}(\lambda)$. Consider estimating
\[\Pr(X = 0) = e^{-\lambda} \]

Our estimators are
\[W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0) \]
Example

Problem

Let $X_i \overset{i.i.d.}{\sim} \text{Poisson}(\lambda)$. consider estimating

$$\Pr(X = 0) = e^{-\lambda}$$

Our estimators are

$$W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0)$$

$$V_n = e^{-\bar{X}}$$
Example

Problem

Let \(X_i \overset{i.i.d.}{\sim} \text{Poisson}(\lambda) \). Consider estimating

\[
\Pr(X = 0) = e^{-\lambda}
\]

Our estimators are

\[
W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0)
\]

\[
V_n = e^{-\bar{X}}
\]

Determine which one is more asymptotically efficient estimator.
Solution - Asymptotic Distribution of V_n

$$V_n(X) = e^{-\bar{X}}$$, by CLT,
Solution - Asymptotic Distribution of V_n

\[V_n(X) = e^{-\bar{X}}, \text{ by CLT,} \]

\[\bar{X} \sim \mathcal{N}(EX, \text{Var}X/n) \sim \mathcal{N}(\lambda, \lambda/n) \]
Solution - Asymptotic Distribution of V_n

\[V_n(X) = e^{-\bar{X}}, \text{ by CLT}, \]

\[\bar{X} \sim \mathcal{N}(EX, \text{Var}X/n) \sim \mathcal{N}(\lambda, \lambda/n) \]

Define $g(y) = e^{-y}$, then $V_n = g(\bar{X})$ and $g'(y) = -e^{-y}$. By Delta Method
Solution - Asymptotic Distribution of V_n

$V_n(\mathbf{X}) = e^{-\bar{X}}$, by CLT,

$$\bar{X} \sim \mathcal{A}\mathcal{N}(EX, \text{Var}X/n) \sim \mathcal{A}\mathcal{N}(\lambda, \lambda/n)$$

Define $g(y) = e^{-y}$, then $V_n = g(\bar{X})$ and $g'(y) = -e^{-y}$. By Delta Method

$$V_n = e^{-\bar{X}} \sim \mathcal{A}\mathcal{N} \left(g(\lambda), [g'(\lambda)]^2 \frac{\lambda}{n} \right)$$
Solution - Asymptotic Distribution of V_n

$V_n(\mathbf{X}) = e^{-\bar{X}}$, by CLT,

$\bar{X} \sim \mathcal{N}(EX, VarX/n) \sim \mathcal{N}(\lambda, \lambda/n)$

Define $g(y) = e^{-y}$, then $V_n = g(\bar{X})$ and $g'(y) = -e^{-y}$. By Delta Method

$V_n = e^{-\bar{X}} \sim \mathcal{N} \left(g(\lambda), [g'(\lambda)]^2 \frac{\lambda}{n} \right)$

$\sim \mathcal{N} \left(e^{-\lambda}, e^{-2\lambda} \frac{\lambda}{n} \right)$
Solution - Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$
Solution - Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$

$$W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0) = \overline{Z}_n$$
Solution - Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$

\[
W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0) = \overline{Z}_n
\]

$Z_i \sim \text{Bernoulli}(E(Z))$
Solution - Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$

$$W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0) = \bar{Z}_n$$

$$Z_i \sim \text{Bernoulli}(E(Z))$$

$$E(Z) = \Pr(X = 0) = e^{-\lambda}$$
Define $Z_i = I(X_i = 0)$

$$W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0) = \overline{Z}_n$$

$Z_i \sim$ Bernoulli($E(Z)$)

$$E(Z) = \Pr(X = 0) = e^{-\lambda}$$

$$\text{Var}(Z) = e^{-\lambda}(1 - e^{-\lambda})$$
Solution - Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$

$$W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0) = \bar{Z}_n$$

$Z_i \sim$ Bernoulli$(E(Z))$

$E(Z) = Pr(X = 0) = e^{-\lambda}$

$Var(Z) = e^{-\lambda}(1 - e^{-\lambda})$

By CLT,

$$W_n = \bar{Z}_n \sim AN (E(Z), Var(Z)/n)$$
Solution - Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$

$$W_n = \frac{1}{n} \sum_{i=1}^{n} I(X_i = 0) = \bar{Z}_n$$

$Z_i \sim \text{Bernoulli}(E(Z))$

$$E(Z) = Pr(X = 0) = e^{-\lambda}$$

$$\text{Var}(Z) = e^{-\lambda}(1 - e^{-\lambda})$$

By CLT,

$$W_n = \bar{Z}_n \sim \mathcal{A}\mathcal{N} \left(E(Z), \frac{\text{Var}(Z)}{n} \right)$$

$$\sim \mathcal{A}\mathcal{N} \left(e^{-\lambda}, \frac{e^{-\lambda}(1 - e^{-\lambda})}{n} \right)$$
Solution - Calculating ARE

\[
\text{ARE}(W_n, V_n) = \frac{e^{-2\lambda} \lambda/n}{e^{-\lambda} (1 - e^{-\lambda})/n}
\]
Solution - Calculating ARE

\[\text{ARE}(W_n, V_n) = \frac{e^{-2\lambda} \lambda/n}{e^{-\lambda}(1 - e^{-\lambda})/n} \]

\[= \frac{\lambda}{e^{\lambda}(1 - e^{-\lambda})} \]

Therefore, \(W_n \) is less efficient than \(V_n \) (MLE), and ARE attains maximum at \(\lambda = 0 \).
Solution - Calculating ARE

\[
\text{ARE}(W_n, V_n) = \frac{e^{-2\lambda} \lambda / n}{e^{-\lambda} (1 - e^{-\lambda}) / n} \\
= \frac{\lambda}{e^\lambda (1 - e^{-\lambda})} \\
= \frac{\lambda}{e^\lambda - 1}
\]
Solution - Calculating ARE

\[\text{ARE}(W_n, V_n) = \frac{e^{-2\lambda} \lambda/n}{e^{-\lambda}(1 - e^{-\lambda})/n} \]

\[= \frac{\lambda}{e^\lambda(1 - e^{-\lambda})} \]

\[= \frac{\lambda}{e^\lambda - 1} \]

\[= \frac{\lambda}{\left(1 + \lambda + \frac{\lambda^2}{2} + \frac{\lambda^3}{3!} + \cdots\right) - 1} \]
Solution - Calculating ARE

\[
\text{ARE}(W_n, V_n) = \frac{e^{-2\lambda} \frac{\lambda}{n}}{e^{-\lambda} \left(1 - e^{-\lambda}\right) / n} = \frac{\lambda}{e^\lambda \left(1 - e^{-\lambda}\right)} = \frac{\lambda}{e^\lambda - 1} \\
\leq 1 \quad (\forall \lambda \geq 0)
\]
Solution - Calculating ARE

\[
\text{ARE}(W_n, V_n) = \frac{e^{-2\lambda} \frac{\lambda}{n}}{e^{-\lambda} \left(1 - e^{-\lambda}\right) / n} \leq 1 \quad (\forall \lambda \geq 0)
\]

Therefore \(W_n = \frac{1}{n} \sum I(X_i = 0) \) is less efficient than \(V_n \) (MLE), and ARE attains maximum at \(\lambda = 0 \).
Asymptotic Efficiency

Definition: Asymptotic Efficiency for iid samples

A sequence of estimators W_n is asymptotically efficient for $\tau(\theta)$ if for all $\theta \in \Omega$,
Asymptotic Efficiency

Definition: Asymptotic Efficiency for iid samples

A sequence of estimators W_n is asymptotically efficient for $\tau(\theta)$ if for all $\theta \in \Omega$,

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$$

Note: $\frac{[\tau'(\theta)]^2}{I(\theta)}$ is the C-R bound for unbiased estimators of $\tau(\theta)$.
Asymptotic Efficiency

Definition: Asymptotic Efficiency for iid samples

A sequence of estimators \(W_n \) is asymptotically efficient for \(\tau(\theta) \) if for all \(\theta \in \Omega \),

\[
\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N} \left(0, \frac{[\tau'(\theta)]^2}{I(\theta)} \right)
\]

\[\iff\]
\[W_n \sim \mathcal{AN} \left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)} \right) \]
Asymptotic Efficiency

Definition: Asymptotic Efficiency for iid samples

A sequence of estimators \(W_n \) is asymptotically efficient for \(\tau(\theta) \) if for all \(\theta \in \Omega \),

\[
\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N} \left(0, \frac{[\tau'(\theta)]^2}{I(\theta)} \right)
\]

\[\iff \quad W_n \sim \mathcal{AN} \left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)} \right) \]

\[I(\theta) = E \left[\left\{ \frac{\partial}{\partial \theta} \log f(X|\theta) \right\}^2 | \theta \right] \]
Asymptotic Efficiency

Definition: Asymptotic Efficiency for iid samples

A sequence of estimators W_n is asymptotically efficient for $\tau(\theta)$ if for all $\theta \in \Omega$,

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} N\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$$

$$\iff W_n \sim \mathcal{AN}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)$$

$$I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f(X|\theta)\right\}^2 | \theta\right]$$

$$= -E\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta) | \theta\right] \text{ (if interchangeability holds)}$$
Asymptotic Efficiency

Definition: Asymptotic Efficiency for iid samples

A sequence of estimators W_n is asymptotically efficient for $\tau(\theta)$ if for all $\theta \in \Omega$,

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} N\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$$

$$\iff W_n \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)$$

$$I(\theta) = E \left[\left\{\frac{\partial}{\partial \theta} \log f(X|\theta)\right\}^2 | \theta\right]$$

$$= -E \left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)| \theta\right] \quad (\text{if interchangeability holds})$$

Note: $\frac{[\tau'(\theta)]^2}{nI(\theta)}$ is the C-R bound for unbiased estimators of $\tau(\theta)$.
Asymptotic Efficiency of MLEs

Theorem 10.1.12

Let \(X_1, \cdots, X_n \) be iid samples from \(f(x|\theta) \). Let \(\hat{\theta} \) denote the MLE of \(\theta \). Under same regularity conditions, \(\hat{\theta} \) is consistent and asymptotically normal for \(\theta \), i.e.

\[
\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}
\left(0, \frac{1}{I(\theta)}\right)
\text{for every } \theta \in \Omega
\]
Theorem 10.1.12

Let X_1, \cdots, X_n be iid samples from $f(x|\theta)$. Let $\hat{\theta}$ denote the MLE of θ. Under same regularity conditions, $\hat{\theta}$ is consistent and asymptotically normal for θ, i.e.

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N} \left(0, \frac{1}{I(\theta)} \right) \text{ for every } \theta \in \Omega$$

And if $\tau(\theta)$ is continuous and differentiable in θ, then

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N} \left(0, \frac{[\tau'(\theta)]}{I(\theta)} \right)$$

$$\implies \tau(\hat{\theta}) \sim \mathcal{AN} \left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)} \right)$$
Theorem 10.1.12

Let \(X_1, \cdots, X_n \) be iid samples from \(f(x|\theta) \). Let \(\hat{\theta} \) denote the MLE of \(\theta \). Under same regularity conditions, \(\hat{\theta} \) is consistent and asymptotically normal for \(\theta \), i.e.

\[
\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}(0, \frac{1}{I(\theta)}) \text{ for every } \theta \in \Omega
\]

And if \(\tau(\theta) \) is continuous and differentiable in \(\theta \), then

\[
\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N} \left(0, \frac{[\tau'(\theta)]}{I(\theta)} \right)
\]

\[
\implies \tau(\hat{\theta}) \sim \mathcal{AN} \left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)} \right)
\]

Again, note that the asymptotic variance of \(\tau(\hat{\theta}) \) is Cramer-Rao lower bound for unbiased estimators of \(\tau(\theta) \).
Summary

Today

- Central Limit Theorem
- Slutsky Theorem
- Delta Method
- Asymptotic Relative Efficiency
Summary

Today

- Central Limit Theorem
- Slutsky Theorem
- Delta Method
- Asymptotic Relative Efficiency

Next Lecture

- Hypothesis Testing