

Biostatistics 666

Previous Series of Lectures: Introduction to Coalescent Models

- Computationally efficient framework
 - Alternative to forward simulations
 - Amenable to analytical solutions
- Predictions about sequence variation
 - Number of polymorphisms
 - Frequency of polymorphisms
 - Distribution of polymorphisms across haplotypes

Next Series of Lectures

- Estimating allele and haplotype frequencies from genotype data
 - Maximum likelihood approach
 - Application of an E-M algorithm

Challenges

- Using information from related individuals
- Allowing for non-codominant genotypes
- Allowing for ambiguity in haplotype assignments

Maximum Likelihood

- A general framework for estimating model parameters
- Find the set of parameter values that maximize the probability of the observed data

• Applicable to many different problems

Example: Allele Frequencies

- Consider...
 - A sample of *n* chromosomes
 - X of these are of type "a"
 - Parameter of interest is allele frequency...

$$L(p \mid n, X) = \binom{n}{X} p^{X} (1-p)^{n-X}$$

Evaluate for various parameters

р	1-р	L
0.0	1.0	0.000
0.2	0.8	0.088
0.4	0.6	0.251
0.6	0.4	0.111
0.8	0.2	0.006
1.0	0.0	0.000
For $n = 10$ and $X = 4$		

Likelihood Plot

In this case

- The likelihood tells us the data is most probable if p = 0.4
- The likelihood curve allows us to evaluate alternatives...
 - Is p = 0.8 a possibility?
 - Is p = 0.2 a possibility?

Example: Estimating 4N μ

 Consider S polymorphisms in sample of n sequences...

$$L(\theta \mid n, S) = P_n(S \mid \theta)$$

Where P_n is calculated using the Q_n and P₂ functions defined previously

Maximum Likelihood Estimation

- Two basic steps...
 - a) Write down likelihood function

 $L(\theta \,|\, x) \propto f(x \,|\, \theta)$

- b) Find value of $\hat{\theta}$ that maximizes $L(\theta \mid x)$
- In principle, applicable to any problem where a likelihood function exists

Comparing Estimators

- How do MLEs rate in terms of ...
 - Unbiasedness
 - Consistency
 - Efficiency

 For a review, see Garthwaite, Jolliffe, Jones (1995) Statistical Inference, Prentice Hall

Analytical Solutions

- Write out log-likelihood ...
 - $\ell(\theta \,|\, data) = \ln L(\theta \,|\, data)$
- Calculate derivative of likelihood

 $d\ell(\theta \,|\, data)$

d heta

Find zeros for derivative function

Information

• The second derivative is also extremely useful

$$I_{\theta} = -E \left[\frac{d^{2}\ell(\theta \mid data)}{d\theta^{2}} \right]$$
$$V_{\hat{\theta}} = \frac{1}{I_{\theta}}$$

- The speed at which log-likelihood decreases
- Provides an asymptotic variance for estimates

Allele Frequency Estimation ...

- When individual chromosomes are observed this does not seem tricky...
- What about with genotypes?
- What about with parent-offspring pairs?

Coming up ...

- We will walk through allele frequency estimation in three distinct settings:
 - Samples single chromosomes …
 - Samples of unrelated Individuals ...
 - Samples of parents and offspring ...

I. Single Alleles Observed

• Consider...

- A sample of *n* chromosomes
- X of these are of type "a"
- Parameter of interest is allele frequency...

$$L(p \mid n, X) = \binom{n}{X} p^{X} (1-p)^{n-X}$$

Some Notes

• The following two likelihoods are just as good:

$$L(p;X,n) = \binom{n}{X} p^{X} (1-p)^{n-X}$$
$$L(p;x_{1},x_{2}...x_{n},n) = \prod_{i=1}^{n} p^{x_{i}} (1-p)^{1-x_{i}}$$

 For ML estimation, constant factors in likelihood don't matter

Analytic Solution

The log-likelihood

$$\ln L(p \mid n, X) = \ln \binom{n}{X} + X \ln p + (n - X) \ln(1 - p)$$

The derivative

 $\frac{d\ln L(p \mid X)}{dp} = \frac{X}{p} - \frac{n - X}{1 - p}$

Find zero …

Samples of Individual Chromosomes

- The natural estimator (where we count the proportion of sequences of a particular type) and the MLE give identical solutions
- Maximum likelihood provides a justification for using the "natural" estimator

II. Genotypes Observed

- Use notation n_{ij} to denote the number of individuals with genotype i / j
- Sample of n individuals

Genotype Counts				
Genotype	A_1A_1	A_1A_2	A_2A_2	Total
Observed Counts	n ₁₁	n ₁₂	n ₂₂	n=n ₁₁ +n ₁₂ +n ₂₂
Frequency	р ₁₁	р ₁₂	P ₂₂	1.0

Allele Frequencies by Counting...

 A natural estimate for allele frequencies is to calculate the proportion of individuals carrying each allele

Allele Counts					
Genotype	A ₁	A ₂	Total		
Observed Counts	$n_1 = 2n_{11} + n_{12}$	$n_2 = 2n_{22} + n_{12}$	$2n=n_1+n_2$		
Frequency	p ₁ =n ₁ /2n	p ₂ =n ₂ /2n	1.0		

MLE using genotype data...

• Consider a sample such as ...

Genotype Counts					
Genotype	A_1A_1	A_1A_2	A_2A_2	Total	
Observed Counts	n ₁₁	n ₁₂	n ₂₂	n=n ₁₁ +n ₁₂ +n ₂₂	
Frequency	р ₁₁	р ₁₂	р ₂₂	1.0	

• The likelihood as a function of allele frequencies is ...

$$L(p;n) = \frac{n!}{n_{11}! n_{12}! n_{22}!} (p^2)^{n_{11}} (2pq)^{n_{12}} (q^2)^{n_{22}}$$

Which gives...

Log-likelihood and its derivative $\ell = \ln L = (2n_{11} + n_{12}) \ln p_1 + (2n_{22} + n_{12}) \ln (1 - p_1) + C$ $\frac{d\ell}{dp_1} = \frac{2n_{11} + n_{12}}{p_1} - \frac{2n_{22} + n_{12}}{(1 - p_1)}$ Giving the MLE as ... $\hat{p}_1 = \frac{(2n_{11} + n_{12})}{2(n_{11} + n_{12} + n_{22})}$

Samples of Unrelated Individuals

- Again, natural estimator (where we count the proportion of alleles of a particular type) and the MLE give identical solutions
- Maximum likelihood provides a justification for using the "natural" estimator

III. Parent-Offspring Pairs

	_				
Parent	A_1A_1	A_1A_2	A_2A_2		
A_1A_1	a ₁	a ₂	0	a ₁ +a ₂	
A_1A_2	a ₃	a ₄	a_5	a ₃ +a ₄ +a ₅	
A_2A_2	0	a ₆	a ₇	a ₆ +a ₇	
	a ₁ +a ₃	a ₂ +a ₄ +a ₆	a ₅ +a ₇	N pairs	

 $\ln L =$

$$p_{2} = 1 - p_{1}$$

$$B = 3a_{1} + 2(a_{2} + a_{3}) + a_{4} + (a_{5} + a_{6})$$

$$C = (a_{2} + a_{3}) + a_{4} + 2(a_{5} + a_{6}) + 3a_{7}$$

$$\hat{p}_1 = \frac{B}{(B+C)}$$

Samples of Parent Offspring-Pairs

 The natural estimator (where we count the proportion of alleles of a particular type) and the MLE no longer give identical solutions

In this case, we expect the MLE to be more accurate

Comparing Sampling Strategies

• We can compare sampling strategies by calculating the information for each one

$$\begin{split} I_{\theta} &= -E \Bigg[\frac{d^2 \ell(\theta \mid data)}{d\theta^2} \Bigg] \\ V_{\hat{\theta}} &= \frac{1}{I_{\theta}} \end{split}$$

Which one to you expect to be most informative?

Other Likelihoods

- Allele frequencies when individuals are...
 - Diagnosed for Mendelian disorder
 - Genotyped at two neighboring loci
 - Phenotyped for the ABO blood groups
- Many other interesting problems...
- ... but some have no analytical solution

- Examples of Maximum Likelihood
- Allele Frequency Estimation
 - Allele counts
 - Genotype counts
 - Pairs of Individuals

- Excoffier and Slatkin (1995)
 - Mol Biol Evol 12:921-927
- Introduces the E-M algorithm
- Widely used for maximizing likelihoods in genetic problems

Unbiasedness

An estimator is unbiased if

 $\mathbf{\Lambda}$

$$E(\theta) = \theta$$
$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

- Multiple unbiased estimators may exist
- Other properties may be desirable

Consistency

• An estimator is consistent if $P(|\hat{\theta} - \theta| > \varepsilon) \rightarrow 0 \text{ as } n \rightarrow \infty$

- for any ε
 - Estimate converges to true value in probability with increasing sample size

Mean Squared Error

MSE is defined as

$$MSE(\hat{\theta}) = E\left(\left\{\left(\hat{\theta} - \bar{\theta}\right) + \left(\bar{\theta} - \theta\right)\right\}^{2}\right)$$
$$= var(\hat{\theta}) + bias(\hat{\theta})^{2}$$

 If MSE → 0 as n → ∞ then the estimator must be consistent

The reverse is not true

Efficiency

• The relative efficiency of two estimators is the ratio of their variances

if
$$\frac{\operatorname{var}(\hat{\theta}_2)}{\operatorname{var}(\hat{\theta}_1)} > 1$$
 then $\hat{\theta}_1$ is more efficient

 Comparison only meaningful for estimators with equal biases

Sufficiency

- Consider...
 - Observations $X_1, X_2, \dots X_n$
 - Statistic $T(X_1, X_2, \dots, X_n)$
- T is a sufficient statistic if it includes all information about parameter θ in the sample
 - Distribution of X_i conditional on T is independent of θ
 - Posterior distribution of θ conditional on T is independent of X_i

Minimal Sufficient Statistic

- There can be many alternative sufficient statistics.
- A statistic is a minimal sufficient statistic if it can be expressed as a function of every other sufficient statistic.

Typical Properties of MLEs

Bias

Can be biased or unbiased

Consistency

Subject to regularity conditions, MLEs are consistent

Efficiency

Typically, MLEs are asymptotically efficient estimators

Sufficiency

• Often, but not always

• Cox and Hinkley, 1974

Generic Approaches

- Suitable for when analytical solutions are impractical
- Bracketing
- Simplex Method
- Newton-Rhapson

Bracketing

- Find 3 points such that
 - $\theta_a < \theta_b < \theta_c$
 - $L(\theta_b) > L(\theta_a)$ and $L(\theta_b) > L(\theta_c)$
- Search for maximum by
 - Select trial point in interval
 - Keep maximum and flanking points

Bracketing

The Simplex Method

- Calculate likelihoods at simplex vertices
 - Geometric shape with k+1 corners
 - E.g. a triangle in k = 2 dimensions
- At each step, move the high vertex in the direction of lower points

Simple but inefficient approach

Consider

- Parameters $\theta = (\theta_1, \theta_2, ..., \theta_k)$
- Likelihood function L (θ ; x)

Maximize θ with respect to each θ_i in turn
 Cycle through parameters

Steepest Descent

- Consider
 - Parameters $\theta = (\theta_1, \theta_2, ..., \theta_k)$
 - Likelihood function L (θ ; x)
- Score vector

$$S = \frac{d \ln(L)}{d\theta} = \left(\frac{d \ln(L)}{d\theta_1}, \dots, \frac{d \ln(L)}{d\theta_k}\right)$$

Find maximum along $\theta + \delta S$

Local Approximations to Log-Likelihood Function

In the neighboorhood of $\boldsymbol{\theta}_i$

$$\ell(\boldsymbol{\theta}) \approx \ell(\boldsymbol{\theta}_i) + S(\boldsymbol{\theta} - \boldsymbol{\theta}_i) - \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_i)^t \mathbf{I}_{\theta} (\boldsymbol{\theta} - \boldsymbol{\theta}_i)$$

where

 $\ell(\mathbf{\theta}) = \ln L(\mathbf{\theta}) \quad \text{is the loglikelihood function}$ $\mathbf{S} = d\ell(\mathbf{\theta}_i) \quad \text{is the score vector}$ $\mathbf{I}_{\theta} = -d^2\ell(\mathbf{\theta}_i) \quad \text{is the observed information matrix}$

Newton's Method

Maximize the approximation $\ell(\boldsymbol{\theta}) \approx \ell(\boldsymbol{\theta}_i) + \mathbf{S}(\boldsymbol{\theta} - \boldsymbol{\theta}_i) - \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_i)^t \mathbf{I}(\boldsymbol{\theta} - \boldsymbol{\theta}_i)$ by setting its derivative to zero... $\mathbf{S} - \mathbf{I}(\boldsymbol{\theta} - \boldsymbol{\theta}_i) = \mathbf{0}$ and get a new trial point $\boldsymbol{\theta}_{i+1} = \boldsymbol{\theta}_i + \mathbf{I}^{-1}\mathbf{S}$

Fisher Scoring

 Use expected information matrix instead of observed information:

instead of

 $-\frac{d^2\ell(\theta\,|\,data)}{d\theta^2}$

Compared to Newton-Rhapson:

Converges faster when estimates are poor.

Converges slower when close to MLE.