
Material and Methods 

Standard Meta-Analysis Method 

A common approach in meta-analysis is to sum the Z-scores across studies, weighting 

them appropriately using the sample sizes (Stouffer et al. 1949). Suppose we have 𝐾 studies, 

with 𝑍𝑘 , 𝑘 = 1, … 𝐾, being the Z-score from the 𝑘𝑡ℎ study and 𝑁𝑘 the corresponding sample 

size. A standard meta-analysis uses weights 𝑤𝑘 , 𝑘 = 1, … 𝐾, to combine the estimates as 

follows: 

𝑍 =  ∑ 𝑤𝑘  𝑍𝑘

𝐾

𝑘=1

                          … Equation (1) 

The 𝑍𝑘’s are assumed to be have standard normal distribution under the null hypothesis 

of no association between trait and genetic marker. Hence, the variance of the combined Z-score 

is: 

Var(𝑍) =  ∑ 𝑤𝑘
2

𝐾

𝑘=1

                     … Equation (2) 

The weights are usually chosen based on per-study sample size so that larger studies have 

more weight (eg. 𝑤𝑘 =
√𝑁𝑘

√∑ 𝑁𝑙𝑙
). When the Z-scores are independent, these weights ensure that the 

combined Z-score is distributed as 𝑁(0,1) under the null. However, when the studies have 

overlapping samples, the variance (2) becomes: 

Var(𝑍) =  ∑ 𝑤𝑘
2

𝐾

𝑘=1

+ 2 ∑ ∑ 𝑤𝑘𝑤𝑙  Cov

𝐾

𝑙=𝑘+1

(𝑍𝑘, 𝑍𝑙) 

𝐾

𝑘=1

              … Equation (3) 

where the covariance terms Cov(𝑍𝑘, 𝑍𝑙) depend on overlap between each pair of studies. 

Thus, using standard weights no longer leads to a 𝑁(0,1) test statistic under the null. To account 



for this, we estimate this covariance and adjust the weights accordingly. The optimal weights can 

be shown to be (Lin and Sullivan 2009): 

[𝑤1, … 𝑤𝐾] = 𝑒𝑇Ω−1 𝑒𝑇Ω−1𝑒⁄                          … Equation (4) 

where 𝑒 is a 𝐾 x 1 vector of 1’s and Ω is the estimated covariance matrix of (𝑍1, … 𝑍𝐾).  

The covariance matrix Ω can be calculated easily if individual level data are available, or 

if the exact number of overlapping samples between each pair of studies is known. We consider 

the more general case where the number of overlapping samples is not known and use the pair-

wise correlation between Z-scores to estimate the overlap and adjust the weights as in (4).  

Meta-Analysis Correcting for Sample Overlap 

We develop a method to estimate the sample overlap and correct for it (Figure 4.1) using 

the correlation between Z-scores from each pair of studies. First, the Z-scores are stratified 

according to sample size at each marker because differences in the number of typed samples at 

each site could reflect success – or lack thereof – in genotyping across different studies. Second, 

we truncate the Z-scores using a cutoff value 𝑐 (|Z| < c) to remove the effect of strongly 

associated loci. Finally, we estimate the correlation from these stratified truncated observations, 

and use it to estimate the covariance matrix in (4) and meta-analyze using the modified weights. 

Correcting for Overlap in Meta-Analysis 

Suppose there are 𝐾 studies in a meta-analysis, and the Z-scores are combined in a 

weighted sum where 𝑤𝑘 is the weight for the 𝑘𝑡ℎ study. If we can estimate the covariance 

between Z-scores of each pair of studies in the meta-analysis, we can meta-analyze adjusting for 

covariance using modified weights as in (4) as follows: 

𝑍̂ =  
1

√∑ 𝑤𝑘
2

𝑘 + ∑ ∑ 𝑤𝑘𝑤𝑙 𝑟̂𝑘𝑙𝑙≠𝑘𝑘

 ∑ 𝑤𝑘𝑍𝑘

𝐾

𝑘=1

                      … Equation (5) 



where 𝑟̂𝑘𝑙 is the estimated correlation between the Z-scores of the 𝑘𝑡ℎ and 𝑙𝑡ℎ studies under the 

null.  

Using Truncated Z-scores to Estimate Covariance 

We assume that (a) effect sizes at trait associated loci do not vary from study to study, a 

condition that should be approximately true given our assumption that all studies are of the same 

ancestry and (b) the degree of overlap is uniform across markers after accounting for sample size 

stratification. Furthermore, we assume that the Z-scores for a pair of studies have a bivariate 

normal distribution. Suppose that the trait under consideration is independent of genetic effects. 

Then the Z-scores are standard normally distributed for each study, and sample correlation of 

paired Z-scores can be used to estimate the correlation parameter of the bivariate normal 

distribution. 

(
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𝑍𝑗
) ∼ 𝑁 ((

0

0
) , (

1 𝜌
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𝜌𝑖𝑗 1
))                      … Equation (6) 

 

However, Z-scores at trait associated loci are expected to show positive correlation even 

in independent samples and using the sample correlation between observed Z-scores would lead 

to an over-estimation of the correlation. We also expect most traits for GWAS to be complex 

polygenic traits where there may be many variants with small effect sizes.  

To exclude potentially causal loci, we use a cutoff 𝑐, and use markers with Z-scores in 

the interval (−𝑐, 𝑐) to estimate the correlation. For example, using 𝑐 = 1 uses about 68% of the 

markers while excluding the more significant loci. We assume a truncated normal distribution on 

the Z-scores to estimate the maximum likelihood estimate of correlation, and use this to estimate 

the overlap. The likelihood of the observed Z-scores between studies 𝑖 and 𝑗 is: 



𝐿 = ∏
𝜙(𝒁𝒊𝒎, 𝒁𝒋𝒎| 𝜌𝑖𝑗)

𝑃(|𝒁𝒊𝒎| < 𝑐, |𝒁𝒋𝒎| < 𝑐 | 𝜌𝑖𝑗)
𝑚

                      … Equation (7) 

where 𝑚 ranges over all the markers present in both studies, and the Z-scores are assumed to 

follow a bivariate normal distribution with mean 0, variance 1 and correlation 𝜌𝑖𝑗 . 

The estimated correlation obtained from (7) is then used in (5) to  meta-analyze the 

studies by modifying the weights to for overlap. 

Stratification Based on Sample Size of Marker 

For a pair of studies, if all markers are present in both studies, the overlap number is the 

same for each marker. However, it may happen that sample size varies across markers as some 

markers may be present only in a sub-cohort of a study. For example, Figure 4.2 describes a 

simple scenario where a pair of studies have a cohort overlapping (cohort 2). Markers absent in 

this overlapping cohort 2 would have an overlap of 0, and so they should be meta-analyzed 

without correcting for overlap. However, markers present in the overlapping cohort should be 

meta-analyzed after correcting for an overlap the size of cohort 2. 

Two problems arise if the overlapping number varies by marker. First, the estimated total 

covariance is biased downward by the markers where there is no overlap and we may apply an 

insufficient adjustment at many markers, leading to false signals. Secondly, when applying a 

constant correction for overlap, we may over-correct at markers with no overlap and lose power. 

 Ideally, clustering methods such as k-means clustering can be used to stratify the total 

sample size at each marker and works well when comparing a pair of studies. When many 

studies are included in a meta-analysis there may be a broad range of sample sizes (Figure 4.3) 

and using less refined clustering improves computational efficiency. Thus, we use markers that 

have at least 50% of total sample size, and bin them using relatively broad bin sizes. Then we 



estimate the correlation at each stratified level using (7) to estimate the overlap for that group of 

markers, and then correctly meta-analyze using (5). 

Using Pair-wise Correlation of Z-scores to Estimate Effective Overlap Size 

Consider a pair of studies with sample sizes 𝑛1 and 𝑛2, and suppose that the trait under 

investigation is independent of genetic effects. Then, we expect the Z-scores to be distributed as 

𝑁(0,1) for both studies. Let 𝑛12 be the number of samples overlapping between the two studies. 

Now, the Z-scores for each study can be considered as a weighted sum of the Z-scores for the 

overlapping and non-overlapping parts. Assuming the weights are proportional to the sample size 

as follows: 

𝑍1 = √(1 − 𝑝1)𝑍𝐴 + √𝑝1𝑍𝐶                      … Equation (8) 

𝑍2 = √(1 − 𝑝2)𝑍𝐴 + √𝑝2𝑍𝐶                       … Equation (9) 

where the weights used are 𝑝1 = 𝑛12/𝑛1 and 𝑝2 = 𝑛12/𝑛2, that is, the overlap proportions in 

each study and 𝑍𝐴, 𝑍𝐵, 𝑍𝐶 are standard normal variables. Then, 

Cov(𝑍1, 𝑍2) = 𝐸(𝑍1𝑍2) =  √𝑝1𝑝2                         … Equation (10) 

Thus, as the Z-scores have variance 1, 

Cor(𝑍1, 𝑍2) =  √𝑝1𝑝2 = 𝑛12/√𝑛1𝑛2                         … Equation (11) 

Hence, the effective overlapping number can be estimated using the sample correlation 𝑟12 

between the Z-scores of the 2 studies as follows: 

𝑛̂12 =  √𝑛1𝑛2𝑟12                             … Equation (12) 

In case of GWAS where the trait is not independent of genetic effects, the estimated correlation 

from (7) can be used in (12) to get an estimate of the effective sample size.   



Observe that (12) estimates the effective sample overlap which may be different from the 

actual sample overlap. For example, for two case-control studies 𝑘 and 𝑙, the estimated 

correlation corresponds to: 

Cor(𝑍𝑘 , 𝑍𝑙) ≈

(𝑛𝑘𝑙0√
𝑛𝑘1𝑛𝑙1
𝑛𝑘0𝑛𝑙0

+ 𝑛𝑘𝑙1√
𝑛𝑘0𝑛𝑙0
𝑛𝑘1𝑛𝑙1

)

√𝑛𝑘𝑛𝑙

       … Equation (13) 

where 1 refers to cases and 0 to controls (Lin and Sullivan 2009). 

Hence, the estimated effective overlap sample size (𝑛̂𝑘𝑙 =  √𝑛𝑘𝑛𝑙𝑟̂𝑘𝑙) may correspond to 

a range of actual overlap numbers. We can readily derive two extreme possibilities. First, when 

the overlap is restricted to the cases, √
𝑛𝑘1𝑛𝑙1

𝑛𝑘0𝑛𝑘1
𝑛̂𝑘𝑙 is a point estimate of the number of overlapping 

samples. Second, when the overlap is restricted to the controls, √
𝑛𝑘0𝑛𝑙0

𝑛𝑘1𝑛𝑙1
𝑛̂𝑘𝑙 is an alternative point 

estimate of the overlap. 

Similar issues may arise in GWAS for quantitative traits if overlap proportions vary by 

phenotype values. For example, if overlap is concentrated in participants with extremely high 

phenotype, the estimated effective overlap may be an over-estimate. Note that while the 

estimated correlation may correspond to a range of overlap proportions, the adjustments to the 

weights in (5) are still valid. 

Meta-Analysis of Multiple Studies 

Multiple studies are meta-analyzed sequentially, that is, each new study is meta-analyzed 

with the result from meta-analyzing the previous studies. For each marker for a pair of studies 𝑖 

and 𝑗, we meta-analyze them as described above and calculated the following quantities: 

Total Weight 𝑊 = √𝑤𝑖
2 + 𝑤𝑗

2 + 2 ∗ 𝑤𝑖𝑤𝑗𝑟𝑖𝑗 



Effective Sample Size 𝑁 = 𝑛𝑖 + 𝑛𝑗 − 𝑛𝑖𝑗 

𝑍 =
1

𝑊
(𝑤𝑖𝑍𝑖 + 𝑤𝑗𝑍𝑗) 

Observe that this ensures that the order the studies are analyzed in doesn’t affect the results. 
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