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Genomewide Association Studies

Survey 500,000 SNPs in a large sample

An effective way to skim the genome and ...
... find common variants associated with a trait of interest

Rapid increase in number of known complex disease loci
— For example, SardiNIA project has >25 publications and counting!

Still, many questions remain unanswered.



Questions that Might Be Answered
With Complete Sequence Data...

What is the contribution of each identified locus to a trait?
— Likely that multiple variants, common and rare, will contribute

What is the mechanism? What happens when we knockout a gene?
— Most often, the causal variant will not have been examined directly
— Rare coding variants will provide important insights into mechanisms

What is the contribution of structural variation to disease?
— These are hard to interrogate using current genotyping arrays.

Are there additional susceptibility loci to be found?
— Only subset of functional elements include common variants ...
— Rare variants are more numerous and thus will point to additional loci



What Is the Total Contribution of
Each Locus?

Evidence that
Multiple Variants Will be Important
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Evidence for Multiple Variants Per Locus
Example from Lipid Biology

15 20

10

15 20

10

15 20

10

GALNT2

. P

1

APOB
SORT1/CELSR2/PSRC1
PCSKs
5 1 [ ]
1
GCKR
ANGPTL3

GALNTZ § RBKS

B4GALT4

HDL Cholesterol

LPL
ABCAT

LDL Cholesterol

B3GALT4

[ ] .

6 8 9 10

Triglycerides
LPL
TRIB1
MLXIPL
s n
6 8 9 10

APOAS

CETP
LiPC
! ¢ LIP
MVK/MMAB LCAT - .G
i 1 L y
']
12 13 14 15 16 17 18 18 20 21 2
APOE cluster
LDLR
* CILP2CSPG3
" . - l
12 13 14 15 16 17 18 18 20 21 22
CILP2/CSPG3
. LiPC s )
. i ]
12 13 14 15 16 17 18 19 20 21 22

Willer et al, Nat Genet, 2008
Kathiresan et al, Nat Genet, 2008, 2009



—logyg p-value —logp p-value

~logyg p-value

Evidence for Multiple Variants Per Locus
Example from Lipid Biology
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For several loci, there is
clear evidence for
independently associated
common variants — even
among markers typed in
GWAS.

Including these in the
analysis increases variance

explained by ~10%.
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Evidence for Multiple Variants Per Locus
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Rare variants (MAF 1%) in PCSK9 can change LDL by ~16 mg/dI
= L 'l (Cohen et al, 2005)

Common variants (MAF 20%) in PCSK9 change LDL by ~3 mg/dI
(Willer et al, 2008)
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What is The Contribution of
Structural Variants?

Current Arrays Interrogate
1,000,000s of SNPs,

but 100s of Structural Variants



Evidence that Copy Number Variants Important
Example from Genetics of Obesity
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Seven of eight confirmed BMI loci show strongest expression in the brain...

Willer et al, Nature Genetics, 2009



Evidence that Copy Number Variants Important
Example from Genetics of Obesity
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Evidence that Copy Number Variants Important
Example from Genetics of Obesity

NEGR1 Note hole in marker
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Associated Haplotype Carries Deletion
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What is the Mechanism?
What Can We Learn From Rare Knockouts?

What We’d Like to Know
Recent Example from John Todd’s Group



HDL-C Associated Locus

HDL Cholesterol
FUSION 1 11 T 1
SardiNIA = R L L L L L L T T T 1T
DGl SR L L (L L L L T
Imputed
Chr1 rs2144300 B 4846914

. i = ] >0.8
o © - pCombined: 2.6x10 4 ;2>0_5
S © ?>0.2
g )
S
o %o
o o o ©
o _ o
_I - OD % %0 2 oo % N )

o 0 o ;". ;o' (] )
o <40 0%%%% @%84%0% 00 % OOO ..‘-:.':-0.:5,;523?:52 08,5 e Sig3®
L) L] L]
226.4Mb 226.5Mb 226.6Mb 226.7Mb 226.8Mb
GALNT2

HHHHH PGBDS5

e GWAS allele with 40% frequency associated with +1 mg/dl in HDL-C

e GALNT2 expression in mouse liver (Edmonson, Kathiresan, Rader)
e Qverexpression of GALNT2 or Galnt2 decreases HDL-C ~20%
e Knockdown of Galnt2 increases HDL-C by ~30%



Can Rare Variants Replace Model Systems?
Example from Type 1 Diabetes

 Nejentsev, Walker, Riches, Egholm, Todd (2009)
IFIH1, gene implicated in anti-viral responses, protects against T1D
Science 324:387-389

e Common variants in IFIH1 previously associated with type 1 diabetes

e Sequenced IFIH1 in ~480 cases and ~480 controls
 Followed-up of identified variants in >30,000 individuals

e |dentified 4 variants associated with type 1 diabetes including:
— 1 nonsense variant associated with reduced risk
— 2 variants in conserved splice donor sites associated with reduced risk
— Result suggests disabling the gene protects against type 1 diabetes



The Challenge

Whole genome sequence data will greatly increase our
understanding of complex traits

Although a handful of genomes have been sequenced,
this remains a relatively expensive enterprise

Dissecting complex traits will require whole genome
sequencing of 1,000s of individuals

How to sequence 1,000s of individuals cost-effectively?



Next Generation Sequencing



Massive Throughput Sequencing

* Tools to generate sequence data evolving rapidly

e Commercial platforms produce gigabases of
sequence rapidly and inexpensively

— ABI SOLID, lllumina Solexa, Roche 454, Complete
Genomics, and others...

e Sequence data consist of thousands or millions of
short sequence reads with moderate accuracy

— 0.5 -1.0% error rates per base may be typical



Shotgun Sequence Reads

pAGCTA

cTAcCt
TCOAT
ACT

A
CTGATGAGCCCGATCECT CTAGCTCG T

e Typical short read might be <25-100 bp long and
not very informative on its own

 Reads must be arranged (aligned) relative to each
other to reconstruct longer sequences



Read Alignment

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Short Read (30-100 bp)

5-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome (3,000,000,000 bp)

The first step in analysis of human short read data is to align each read to
genome, typically using a hash table based indexing procedure

This process now takes no more than a few hours per million reads ...

Analyzing these data without a reference human genome would require
much longer reads or result in very fragmented assemblies



Calling Consensus Genotype - Details

e Each aligned read provides a small amount of evidence
about the underlying genotype

— Read may be consistent with a particular genotype ...
— Read may be less consistent with other genotypes ...
— A single read is never definitive

e This evidence is cumulated gradually, until we reach a
point where the genotype can be called confidently

e | will next outline a simple approach ...



Shotgun Sequence Data

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

A/C Predicted Genotype



Shotgun Sequence Data

Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A, read mapped)= 1.0
P(reads|A/C, read mapped)= 1.0

P(reads|C/C, read mapped)= 1.0

Possible Genotypes



Shotgun Sequence Data

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A, read mapped)= P(C observed|A/A, read mapped)
P(reads|A/C, read mapped)= P(C observed|A/C, read mapped)

P(reads|C/C, read mapped)= P(C observed|C/C, read mapped)

Possible Genotypes



Shotgun Sequence Data

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A, read mapped)=0.01
P(reads|A/C, read mapped)= 0.50

P(reads|C/C, read mapped)= 0.99

Possible Genotypes



Shotgun Sequence Data

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A, read mapped)= 0.0001
P(reads|A/C, read mapped)= 0.25

P(reads|C/C, read mapped)= 0.98

Possible Genotypes



Shotgun Sequence Data

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A , read mapped)= 0.000001
P(reads|A/C, read mapped)=0.125

P(reads|C/C, read mapped)= 0.97

Possible Genotypes



Shotgun Sequence Data

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A , read mapped)= 0.00000099
P(reads|A/C, read mapped)= 0.0625

P(reads|C/C, read mapped)= 0.0097

Possible Genotypes



Shotgun Sequence Data

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A , read mapped)= 0.00000098
P(reads|A/C, read mapped)= 0.03125

P(reads|C/C, read mapped)= 0.000097

Possible Genotypes



Shotgun Sequence Data

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|Genotype)Prior(Genotype)

P —
(Genotype|reads) > P(reads|G)Prior(G)

Combine these likelihoods with a prior incorporating information from other
individuals and flanking sites to assign a genotype.



Ingredients That Go Into Prior

 Most sites don’t vary
— P(non-reference base) ~ 0.001

e When a site does vary, it is usually heterozygous
— P(non-reference heterozygote) ~ 0.001 * 2/3
— P(non-reference homozygote) ~ 0.001 * 1/3

e Mutation model
— Transitions account for most variants (C<>T or A<&>G)
— Transversions account for minority of variants



Shotgun Sequence Data

Individual Based Prior

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

Prior(A/A) = 0.00034
Prior(A/C) = 0.00066
Prior(C/C) = 0.99900

Individual Based Prior: Every site has 1/1000 probability of varying.



Shotgun Sequence Data

Individual Based Prior

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A)= 0.00000098 Prior(A/A)=0.00034 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) =0.175

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825

Individual Based Prior: Every site has 1/1000 probability of varying.



Shotgun Sequence Data

Population Based Prior

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

Prior(A/A) = 0.04
Prior(A/C) =0.32
Prior(C/C) = 0.64

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20



Shotgun Sequence Data

Population Based Prior

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A)= 0.00000098 Prior(A/A)=0.04 Posterior(A/A) = <.001
P(reads|A/C)=0.03125 Prior(A/C) =0.32 Posterior(A/C) = 0.999
P(reads|C/C)= 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20



Shotgun Sequence Data

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome
P(reads|A/A, read mapped)= 0.00000098

P(reads|A/C, read mapped)= 0.03125

P(reads|C/C, read mapped)= 0.000097

Combine these likelihoods with a prior incorporating information from other
individuals and flanking sites to assign a genotype.



How Low Coverage Analysis Works...

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A , read mapped)= 0.00000098
P(reads|A/C, read mapped)= 0.03125
P(reads|C/C, read mapped)= 0.000097

Making a genotype call requires combining sequence data with prior information.
Individual Based Prior: Every site has 1/1000 probability of varying or so.
Population Based Prior: Use frequency information from examining others at the same site.
Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.



Sequence Based Genotype Calls

e Individual Based Prior
— Assumes all sites have an equal probability of showing polymorphism
— Specifically, assumption is that about 1/1000 bases differ from reference
— If reads where error free and sampling Poisson ...
— ... 14x coverage would allow for 99.8% genotype accuracy
— ... 30x coverage of the genome needed to allow for errors and clustering



Sequence Based Genotype Calls

e Individual Based Prior
— Assumes all sites have an equal probability of showing polymorphism
— Specifically, assumption is that about 1/1000 bases differ from reference
— If reads where error free and sampling Poisson ...
— ... 14x coverage would allow for 99.8% genotype accuracy
— ... 30x coverage of the genome needed to allow for errors and clustering

* Population Based Prior
— Uses frequency information obtained from examining other individuals
— Calling very rare polymorphisms still requires 20-30x coverage of the genome
— Calling common polymorphisms requires much less data



Sequence Based Genotype Calls

e Individual Based Prior
— Assumes all sites have an equal probability of showing polymorphism
— Specifically, assumption is that about 1/1000 bases differ from reference
— If reads where error free and sampling Poisson ...
— ... 14x coverage would allow for 99.8% genotype accuracy
— ... 30x coverage of the genome needed to allow for errors and clustering

* Population Based Prior
— Uses frequency information obtained from examining other individuals
— Calling very rare polymorphisms still requires 20-30x coverage of the genome
— Calling common polymorphisms requires much less data

e Haplotype Based Prior or Imputation Based Analysis
— Compares individuals with similar flanking haplotypes
— Calling very rare polymorphisms still requires 20-30x coverage of the genome
— Can make accurate genotype calls with 2-4x coverage of the genome
— Accuracy improves as more individuals are sequenced



Recipe For Imputation With Shotgun
Sequence Data

Start with some plausible configuration for each
individual

Use Markov model to update one individual
conditional on all others

Repeat previous step many times

Generate a consensus set of genotypes and
haplotypes for each individual



Silly Cartoon View of Shot Gun Data

O 0 00 <
- b b

<< o

CO

P .T
O OO - -0
— Q00

O <<

[T N OO
OO ‘FOO
Ok -0 =
FFOO - 0o
O+ FO
< -0 < <
G..
- L <
.CC . . .C .C

.C . .CC . .C .C
OO0 OOO O - -0
O - O
‘- cQOFF - FFO
O I
‘- b OO
RO QO
.A .A
=k - s OO
O - .

"TFOOFKF - -O
OO
O -0
Q- k- O
= s s O
3 SN R
X SN BN RO
- I G- - i ¢ <L <
00 - -0 - O
c . . .C . . .



Cartoon View of Shot Gun Data
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Simulation Results: Common Sites

e Detection and genotyping of Sites with MAF >5%
(2116 simulated sites/Mb)

— Detected Polymorphic Sites: 2x coverage
— 100 people 2102 sites/Mb detected
— 200 people 2115 sites/Mb detected
— 400 people 2116 sites/Mb detected

— Error Rates at Detected Sites: 2x coverage

— 100 people 98.5% accurate, 90.6% at hets
— 200 people 99.6% accurate, 99.4% at hets
— 400 people 99.8% accurate, 99.7% at hets

Yun Li



Simulation Results: Rarer Sites

e Detection and genotyping of Sites with MAF 1-2%
(425 simulated sites/Mb)

— Detected Polymorphic Sites: 2x coverage
— 100 people 139 sites/Mb detected
— 200 people 213 sites/Mb detected
— 400 people 343 sites/Mb detected

— Error Rates at Detected Sites: 2x coverage

— 100 people 98.6% accurate, 92.9% at hets
— 200 people 99.4% accurate, 95.0% at hets
— 400 people 99.6% accurate, 95.9% at hets

Yun Li



Paired End Sequencing

Population of DNA fragments of known size (mean + stdev)
D @& phired end sequences



Paired End Sequencing

Paired Reads
D

Initial alignment to the reference genome

e’ e e

Paired end resolution




Detecting Structural Variation

Read depth

— Regions where depth is different from expected
* Expectation defined by comparing to rest of genome ...
e ...or, even better, by comparing to other individuals

Split reads

— If reads are longer, it may be possible to find reads that span the
structural variation

Discrepant pairs

— If we find pairs of reads that appear to map significantly closer or
further apart than expected, could indicate an insertion or deletion

— For this approach, “physical coverage” which is the sum of read length
and insert size is key

De Novo Assembly



1000 Genomes Project:
Initial Analysis of Pilot Datasets



1,135 samples at 4x in 2009/10
(this will later expand to 2,000 samples)
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Major population groups comprised of subpopulations of ~100 individuals each



1000 Genomes Project: Pilots

Pilot 1: 2-4x coverage of 180 people
Pilot 2: 20x coverage of 2 trios
Pilot 3: targeted sequencing of 1000 genes

December 2008: Initial trio analysis (including 340 Gb of sequence)
January 2009: Initial analysis of low coverage samples (576 Gb)

11,479,146 unique SNPs
— 6,405,006 SNPs already in dbSNP 129
— 5,074,140 new SNPs deposited into dbSNP

May 2009: Updated trio analysis (700 Gb)
May 2009: Updated analysis of low coverage samples (1.9 Tb)

ftp://ftp.1000genomes.ebi.ac.uk/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/




1000 Genome Projects: Data Processing

Unit (one file per ...)  Who? (italics if not done yet)
1. Submit [ Primary data SRF | lane production centres
2. Extract Primary data fastq | lane DCC
v
3. Map sample | Sample alignment SAM | lane Sanger to DCC
: Mismatch table | [QC data | lane Sanger to DCC
4. Recalibrate
Recalibrated data fastq | lane Sanger to DCC
v
5. Map | Lane alignment SAM | lane Data Processing
6. Merge and i i X libra Data Processin
reiriove dups — Library allgr;ment SAM | ry g
7. Merge |_Platform 3“9*""'”97“ SAM | platform/individual Data Processing
8. Calc likelihoods |_Platform likeﬁhoods GLF | platform/individual Data Processing
9. Combine I'hoods | [ Individual likelihoods GLF | individual Data Processing
10. Apply priors | Posterior prol:abilities GLF individual Data Processing
11. Call SNPs/indels | | Candidate SNPs/indels experiment/population Data Processing
12. Call genotypes | Genotypes/haplotypes individual Data Processing
13. Collect read = )
o —»  Anomalous read pairs library Structural Variation
pair info
13. Collect depth ~ —»|___ Depth information library Structural Variation
info :
| Structural variants experiment and Structural Variation
14. Call SVs individual

Slide courtesy Richard Durbin



1000 Genomes Project:
Deeply Sequenced Trio (CEU)

NA12878 (child) sequenced to 65x depth (33x lllumina, 20x SOLID, 12x 454)
— Parents sequenced to 26x, 33x

Calls made at 90.5% of all sites in the reference genome (Q30)
— Depth filter excludes ~¥3% of genome
— Map quality filter excludes ~6% of genome

2,985,516 non-reference calls in NA12878

Where are calls being made?
— 99.5% of HapMap lll sites (with 99.93% concordance)
— 98.0% of sites in MIR repeats
— 98.0% of sites in L2 repeats
— 91.6% of sites in protein coding exons
— 78.1% of sites in L1 repeats
— 70.9% of sites in Alu repeats
— 28.3% of sites in segmental duplications (with an excess of SNPs!)



Individuals Sequenced at Low Depth

e |n addition to the two trios, sequence data now available
for 178 individuals

 These samples typically have 2-4x sequence depth and
are, individually, less informative

 However, combined analyses of the sample set can be very
informative
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Shallow Sequencing Great in Simulations...
What About in Practice?

— Predictions: Detection Rate, 2x coverage

— 100 people 99.3% of sites with MAF > 5%
— 200 people 99.9% of sites with MAF > 5%
— 400 people >99.9% of sites with MAF > 5%

— Predictions: Accuracy, 2x coverage

— 100 people 98.5% accurate, 90.6% at hets
— 200 people 99.6% accurate, 99.4% at hets
— 400 people 99.8% accurate, 99.7% at hets

— Predictions: 60 individuals Matching Observed Depths
— 91% accurate at heterozygous sites (Actual: 92%)
— 98% accurate at homozygous sites (Actual: 98%)



Durbin, Le Quang

Discovering Most Alleles
That Occur >5 Times in Sequenced Samples

WN#SNP in HapMap2  —Discovery rate
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Implications for
Whole Genome Sequencing Studies

e Suppose we could afford 2,000x data (6,000 GB)
 We could sequence 67 individuals at 30x

Sequencing of 67 individuals at 30x depth

Minor Allele Frequency 06-10% 10-20% 20-50% >6%
Proportion of Detected Sites 59.3% 90.1% 86.9%  100.0%
Genotyping Accuracy 100.0% 100.0% 100.0%  100.0%
... Heterozygous Sites Only 100.0% 100.0% 100.0%  100.0%
Correlation with Truth () 89.8% 99.9% 89.9%  100.0%

Effective Sample Size (n-r) 67 &7 67 &7



Implications for
Whole Genome Sequencing Studies

e Suppose we could afford 2,000x data (6,000 GB)
 We could sequence 1000 individuals at 2x

Sequencing of 1000 individuals at 2x depth

Minor Allele Frequency 056-1.0% 1.0-2.0% 2.0-5.0% >6%
Proportion of Detected Sites 79.6% 98.8% 100.0% 100.0%
Genotyping Accuracy 99.6% 99.5% 99.5% 99.8%
.... Hoterozygous Sites Only 78.8% 89.5% 95.9% 99.8%
Correlation with Truth (%) 96.7% 76.1% 88.2% 97.8%

Effective Sample Size (n-r?) 567 761 882 978



Whole Genome Sequencing Studies

Suppose we could afford 2,000x data (6,000 GB)
We could sequence 1000 exomes at 100x

How much enrichment of functional variants should we
expect in exons?

— For rare Mendelian variants, extreme enrichment ...
— For common variants, enrichment appears mild ...

Hybrid that combines deep exome re-sequencing and
shallow examination of rest of genome may emerge



