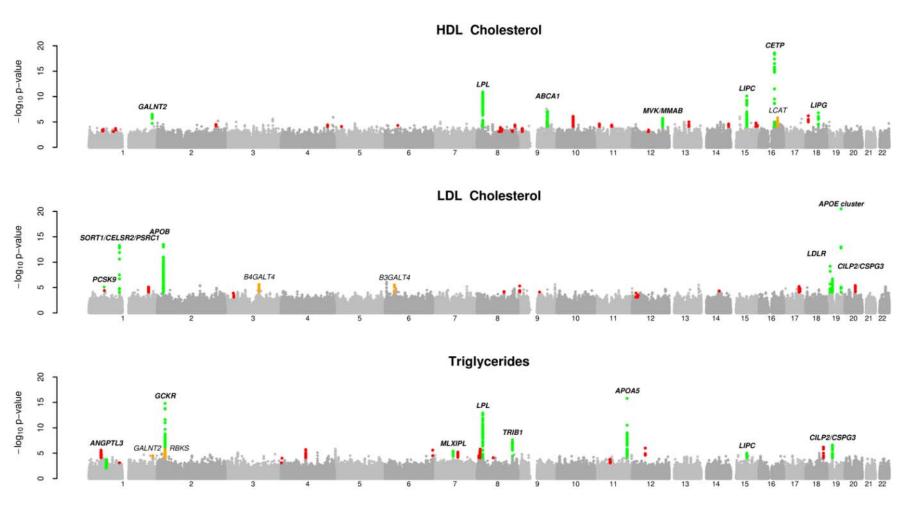
### Low Pass Sequencing

Gonçalo Abecasis
University of Michigan School of Public Health

### Genomewide Association Studies

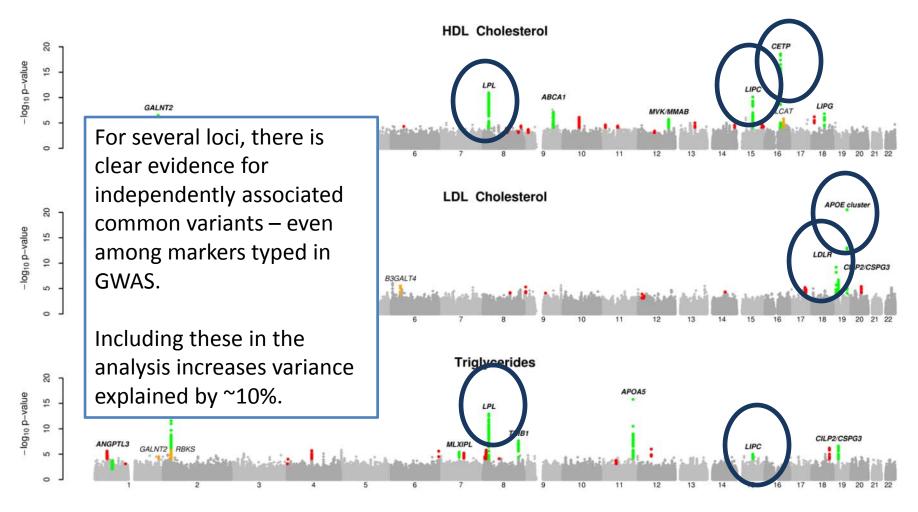
- Survey 500,000 SNPs in a large sample
- An effective way to skim the genome and ...
- ... find common variants associated with a trait of interest
- Rapid increase in number of known complex disease loci
  - For example, SardiNIA project has >25 publications and counting!
- Still, many questions remain unanswered.

# Questions that Might Be Answered With Complete Sequence Data...


- What is the contribution of each identified locus to a trait?
  - Likely that multiple variants, common and rare, will contribute
- What is the mechanism? What happens when we knockout a gene?
  - Most often, the causal variant will not have been examined directly
  - Rare coding variants will provide important insights into mechanisms
- What is the contribution of structural variation to disease?
  - These are hard to interrogate using current genotyping arrays.
- Are there additional susceptibility loci to be found?
  - Only subset of functional elements include common variants ...
  - Rare variants are more numerous and thus will point to additional loci

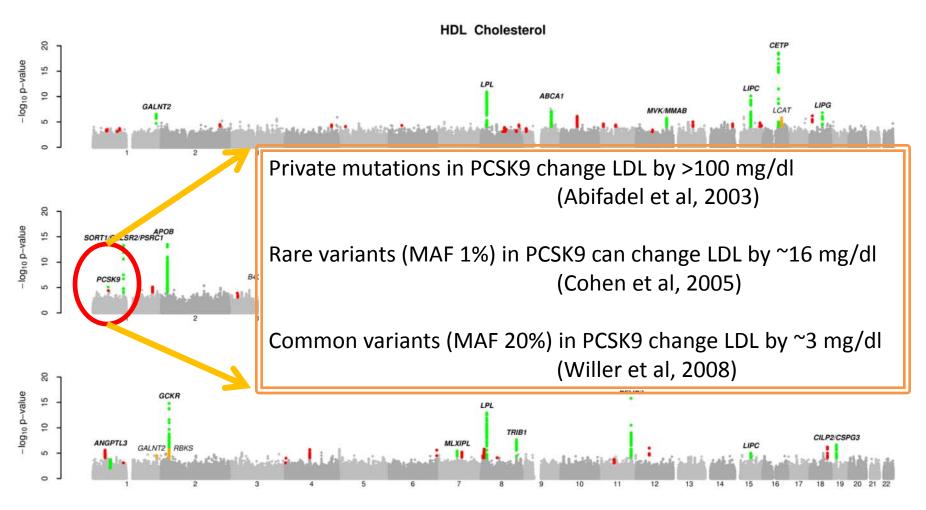
# What Is the Total Contribution of Each Locus?

Evidence that


Multiple Variants Will be Important

## Evidence for Multiple Variants Per Locus Example from Lipid Biology




Willer et al, *Nat Genet*, 2008 Kathiresan et al, *Nat Genet*, 2008, 2009

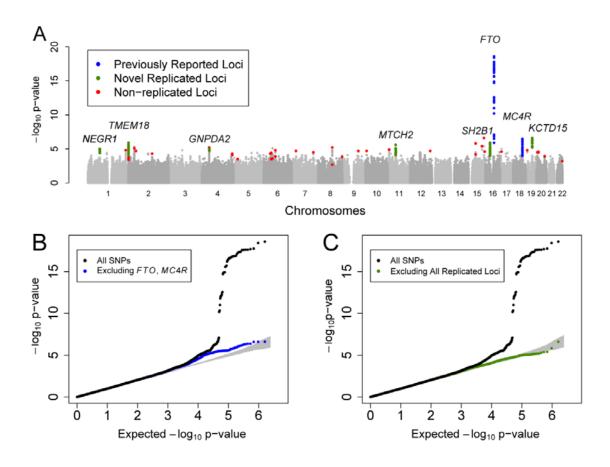
## Evidence for Multiple Variants Per Locus Example from Lipid Biology



Willer et al, *Nat Genet*, 2008 Kathiresan et al, *Nat Genet*, 2008, 2009

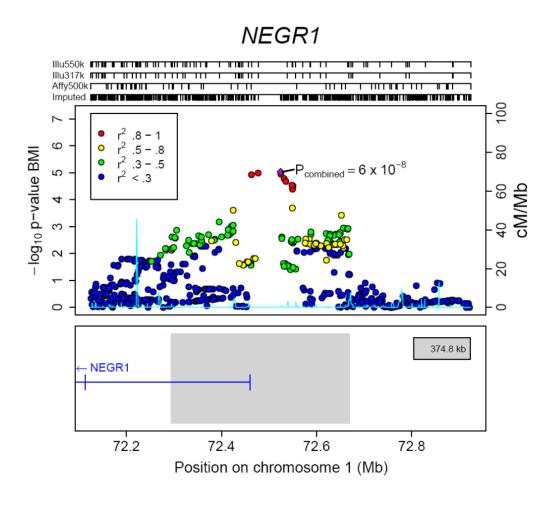
## Evidence for Multiple Variants Per Locus Example from Lipid Biology



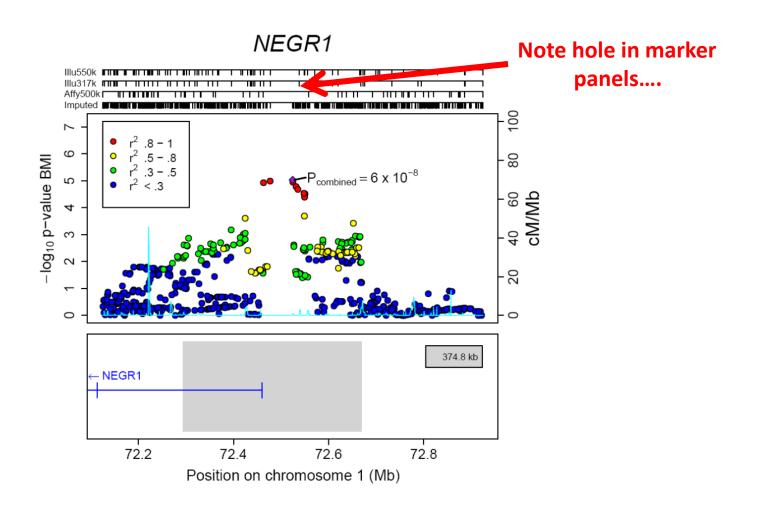

Willer et al, *Nat Genet*, 2008 Kathiresan et al, *Nat Genet*, 2008, 2009

# What is The Contribution of Structural Variants?

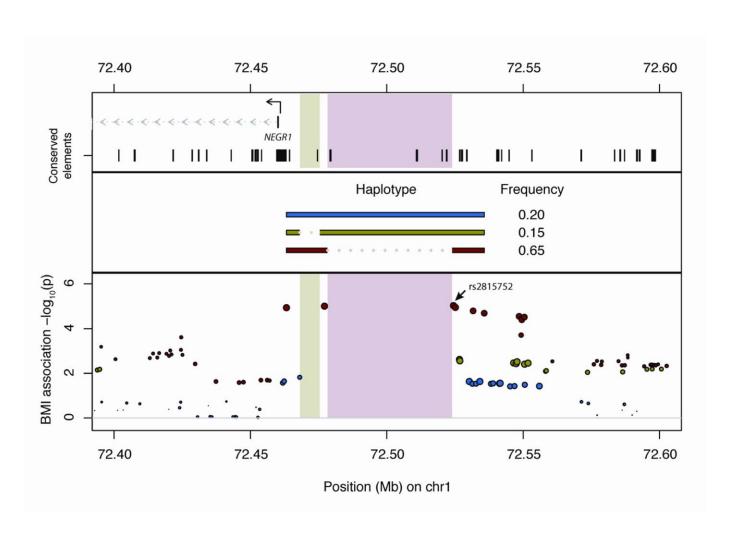
Current Arrays Interrogate 1,000,000s of SNPs,


but 100s of Structural Variants

### Evidence that Copy Number Variants Important Example from Genetics of Obesity



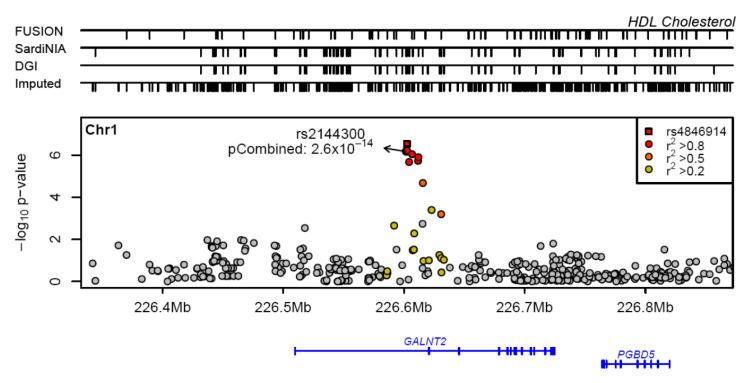

Seven of eight confirmed BMI loci show strongest expression in the brain...


### Evidence that Copy Number Variants Important Example from Genetics of Obesity



### Evidence that Copy Number Variants Important Example from Genetics of Obesity




### Associated Haplotype Carries Deletion



# What is the Mechanism? What Can We Learn From Rare Knockouts?

What We'd Like to Know Recent Example from John Todd's Group

### **HDL-C** Associated Locus



- GWAS allele with 40% frequency associated with ±1 mg/dl in HDL-C
- GALNT2 expression in mouse liver (Edmonson, Kathiresan, Rader)
  - Overexpression of GALNT2 or GaInt2 decreases HDL-C ~20%
  - Knockdown of GaInt2 increases HDL-C by ~30%

# Can Rare Variants Replace Model Systems? Example from Type 1 Diabetes

- Nejentsev, Walker, Riches, Egholm, Todd (2009)
   IFIH1, gene implicated in anti-viral responses, protects against T1D Science 324:387-389
- Common variants in IFIH1 previously associated with type 1 diabetes
- Sequenced IFIH1 in ~480 cases and ~480 controls
- Followed-up of identified variants in >30,000 individuals
- Identified 4 variants associated with type 1 diabetes including:
  - 1 nonsense variant associated with reduced risk
  - 2 variants in conserved splice donor sites associated with reduced risk
  - Result suggests disabling the gene protects against type 1 diabetes

### The Challenge

- Whole genome sequence data will greatly increase our understanding of complex traits
- Although a handful of genomes have been sequenced, this remains a relatively expensive enterprise
- Dissecting complex traits will require whole genome sequencing of 1,000s of individuals
- How to sequence 1,000s of individuals cost-effectively?

## **Next Generation Sequencing**

### Massive Throughput Sequencing

- Tools to generate sequence data evolving rapidly
- Commercial platforms produce gigabases of sequence rapidly and inexpensively
  - ABI SOLiD, Illumina Solexa, Roche 454, Complete Genomics, and others...
- Sequence data consist of thousands or millions of short sequence reads with moderate accuracy
  - -0.5-1.0% error rates per base may be typical

## Shotgun Sequence Reads



- Typical short read might be <25-100 bp long and not very informative on its own
- Reads must be arranged (aligned) relative to each other to reconstruct longer sequences

### Read Alignment

#### GCTAGCTGATAGCTAGCTGATGAGCCCGA

Short Read (30-100 bp)

#### 5'-ACTGGTCGATGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome (3,000,000,000 bp)

- The first step in analysis of human short read data is to align each read to genome, typically using a hash table based indexing procedure
- This process now takes no more than a few hours per million reads ...
- Analyzing these data without a reference human genome would require much longer reads or result in very fragmented assemblies

### Calling Consensus Genotype - Details

- Each aligned read provides a small amount of evidence about the underlying genotype
  - Read may be consistent with a particular genotype ...
  - Read may be less consistent with other genotypes ...
  - A single read is never definitive
- This evidence is cumulated gradually, until we reach a point where the genotype can be called confidently
- I will next outline a simple approach ...



TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATGAGCCCGATCGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

Sequence Reads



5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A, read mapped) = 1.0

P(reads | A/C, read mapped) = 1.0

P(reads | C/C, read mapped)= 1.0



Sequence Reads

5'-ACTGGTCGATGCTAGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

**P(reads | A/A, read mapped)** = P(C observed | A/A, read mapped)

P(reads | A/C, read mapped) = P(C observed | A/C, read mapped)

P(reads | C/C, read mapped) = P(C observed | C/C, read mapped)



Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A, read mapped) = 0.01

P(reads | A/C, read mapped) = 0.50

P(reads | C/C, read mapped) = 0.99



Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A, read mapped) = 0.0001

P(reads | A/C, read mapped) = 0.25

P(reads | C/C, read mapped) = 0.98



GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A, read mapped) = 0.000001

P(reads | A/C, read mapped) = 0.125

P(reads | C/C, read mapped) = 0.97



**ATAGCTAG**ATAGCTGATGAGCCCGATCGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

**P(reads | A/A , read mapped) =** 0.00000099

P(reads | A/C, read mapped) = 0.0625

P(reads | C/C, read mapped) = 0.0097



TAGCTGATAGCTAGATGAGCCCGAT

**ATAGCTAGA**TAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

**P(reads|A/A, read mapped)**= 0.00000098

P(reads | A/C, read mapped) = 0.03125

P(reads | C/C, read mapped) = 0.000097



TAGCTGATAGCTAGATGAGCCCGAT

**ATAGCTAGA**TAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

$$P(Genotype|reads) = \frac{P(reads|Genotype)Prior(Genotype)}{\sum_{G} P(reads|G)Prior(G)}$$

Combine these likelihoods with a prior incorporating information from other individuals and flanking sites to assign a genotype.

### Ingredients That Go Into Prior

- Most sites don't vary
  - P(non-reference base) ~ 0.001
- When a site does vary, it is usually heterozygous
  - P(non-reference heterozygote) ~ 0.001 \* 2/3
  - P(non-reference homozygote) ~ 0.001 \* 1/3
- Mutation model
  - Transitions account for most variants ( $C \leftrightarrow T$  or  $A \leftrightarrow G$ )
  - Transversions account for minority of variants

Individual Based Prior

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATGAGCCCGATCGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

**Sequence Reads** 

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A) = 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads | A/C) = 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads | C/C) = 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825

**Individual Based Prior:** Every site has 1/1000 probability of varying.

Individual Based Prior

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

**Sequence Reads** 

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A) = 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads | A/C) = 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads | C/C) = 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825

**Individual Based Prior:** Every site has 1/1000 probability of varying.

Population Based Prior



TAGCTGATAGCTAGATGAGCCCGAT

**ATAGCTAGATAGCTGATGAGCCCGATCGCTAGCTC** 

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

**Sequence Reads** 

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A) = 0.00000098 Prior(A/A) = 0.04 Posterior(A/A) = <.001

P(reads | A/C) = 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999

P(reads | C/C) = 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001

**Population Based Prior:** Use frequency information from examining others at the same site. In the example above, we estimated P(A) = 0.20

Population Based Prior

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATGAGCCCGATCGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

**Sequence Reads** 

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A) = 0.00000098 Prior(A/A) = 0.04

Posterior(A/A) = <.001

**P(reads | A/C)=** 0.03125

Prior(A/C) = 0.32

Posterior(A/C) = 0.999

**P(reads | C/C)**= 0.000097

Prior(C/C) = 0.64

Posterior(C/C) = <.001

**Population Based Prior:** Use frequency information from examining others at the same site. In the example above, we estimated P(A) = 0.20



TAGCTGATAGCTAGATGAGCCCGAT

**ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC** 

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

**P(reads | A/A, read mapped)**= 0.00000098

P(reads | A/C, read mapped) = 0.03125

**P(reads|C/C, read mapped)=** 0.000097

Combine these likelihoods with a prior incorporating information from other individuals and flanking sites to assign a genotype.

### How Low Coverage Analysis Works...



TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A, read mapped) = 0.00000098 P(reads | A/C, read mapped) = 0.03125 P(reads | C/C, read mapped) = 0.000097

Making a genotype call requires combining sequence data with prior information.

**Individual Based Prior:** Every site has 1/1000 probability of varying or so.

Population Based Prior: Use frequency information from examining others at the same site.

**Haplotype Based Prior:** Examine other chromosomes that are similar at locus of interest.

# Sequence Based Genotype Calls

#### Individual Based Prior

- Assumes all sites have an equal probability of showing polymorphism
- Specifically, assumption is that about 1/1000 bases differ from reference
- If reads where error free and sampling Poisson ...
- ... 14x coverage would allow for 99.8% genotype accuracy
- ... 30x coverage of the genome needed to allow for errors and clustering

# Sequence Based Genotype Calls

#### Individual Based Prior

- Assumes all sites have an equal probability of showing polymorphism
- Specifically, assumption is that about 1/1000 bases differ from reference
- If reads where error free and sampling Poisson ...
- ... 14x coverage would allow for 99.8% genotype accuracy
- ... 30x coverage of the genome needed to allow for errors and clustering

### Population Based Prior

- Uses frequency information obtained from examining other individuals
- Calling very rare polymorphisms still requires 20-30x coverage of the genome
- Calling common polymorphisms requires much less data

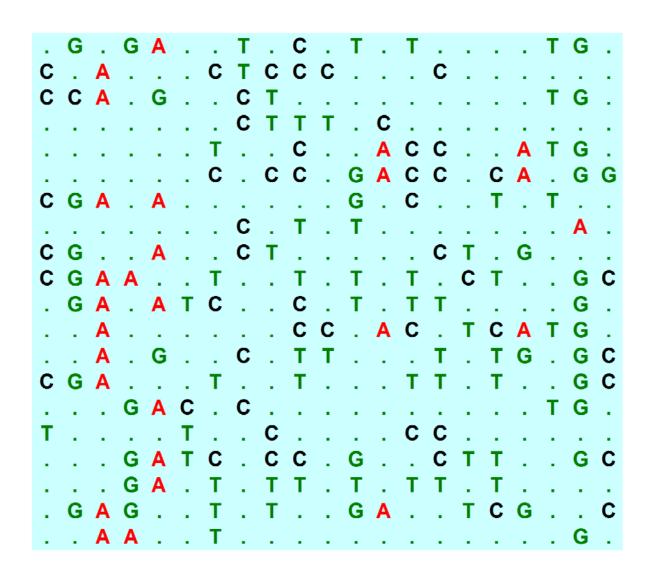
# Sequence Based Genotype Calls

#### Individual Based Prior

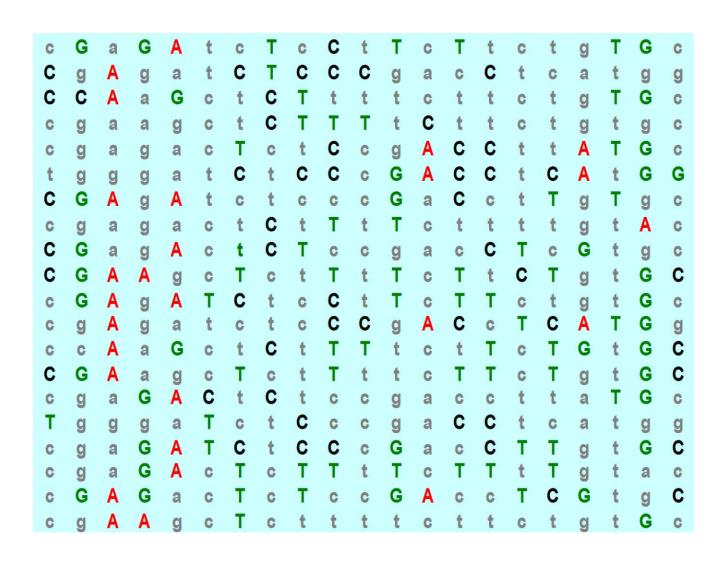
- Assumes all sites have an equal probability of showing polymorphism
- Specifically, assumption is that about 1/1000 bases differ from reference
- If reads where error free and sampling Poisson ...
- ... 14x coverage would allow for 99.8% genotype accuracy
- ... 30x coverage of the genome needed to allow for errors and clustering

### Population Based Prior

- Uses frequency information obtained from examining other individuals
- Calling very rare polymorphisms still requires 20-30x coverage of the genome
- Calling common polymorphisms requires much less data


### Haplotype Based Prior or Imputation Based Analysis

- Compares individuals with similar flanking haplotypes
- Calling very rare polymorphisms still requires 20-30x coverage of the genome
- Can make accurate genotype calls with 2-4x coverage of the genome
- Accuracy improves as more individuals are sequenced


# Recipe For Imputation With Shotgun Sequence Data

- Start with some plausible configuration for each individual
- Use Markov model to update one individual conditional on all others
- Repeat previous step many times
- Generate a consensus set of genotypes and haplotypes for each individual

## Silly Cartoon View of Shot Gun Data



### Cartoon View of Shot Gun Data



### Simulation Results: Common Sites

 Detection and genotyping of Sites with MAF >5% (2116 simulated sites/Mb)

Detected Polymorphic Sites: 2x coverage

```
100 people2102 sites/Mb detected
```

200 people2115 sites/Mb detected

400 people2116 sites/Mb detected

Error Rates at Detected Sites: 2x coverage

```
- 100 people 98.5% accurate, 90.6% at hets
```

200 people
 99.6% accurate, 99.4% at hets

400 people
 99.8% accurate, 99.7% at hets

### Simulation Results: Rarer Sites

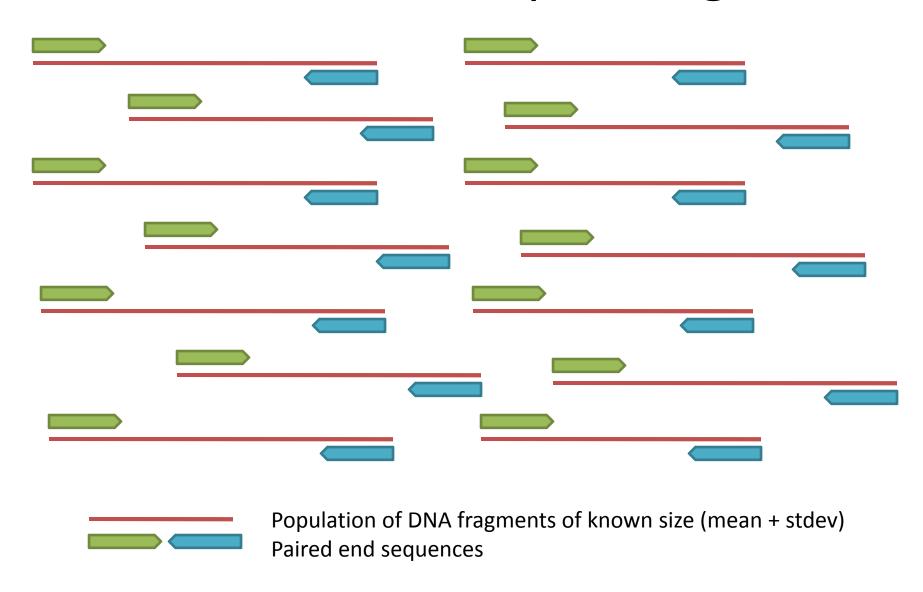
 Detection and genotyping of Sites with MAF 1-2% (425 simulated sites/Mb)

Detected Polymorphic Sites: 2x coverage

```
100 people139 sites/Mb detected
```

200 people213 sites/Mb detected

400 people 343 sites/Mb detected


Error Rates at Detected Sites: 2x coverage

```
- 100 people 98.6% accurate, 92.9% at hets
```

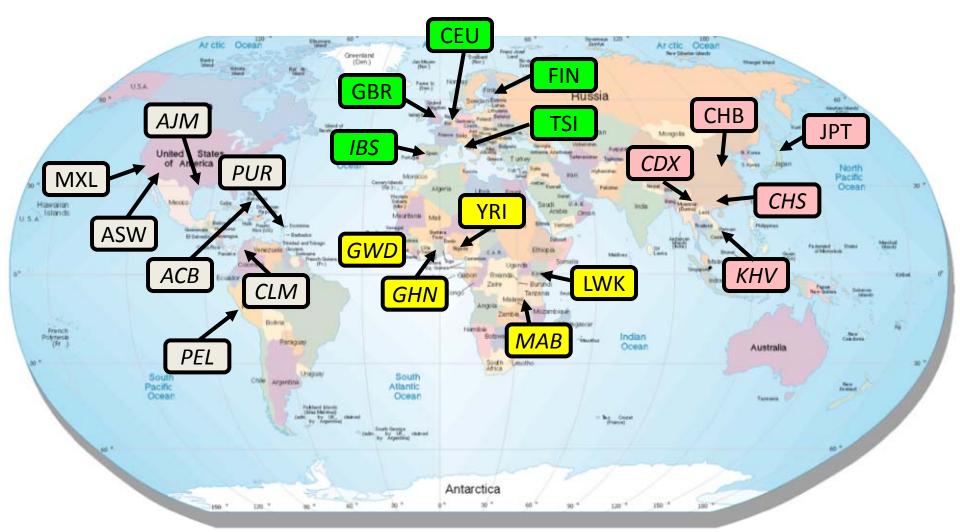
200 people
 99.4% accurate, 95.0% at hets

- 400 people 99.6% accurate, 95.9% at hets

# Paired End Sequencing



# Paired End Sequencing

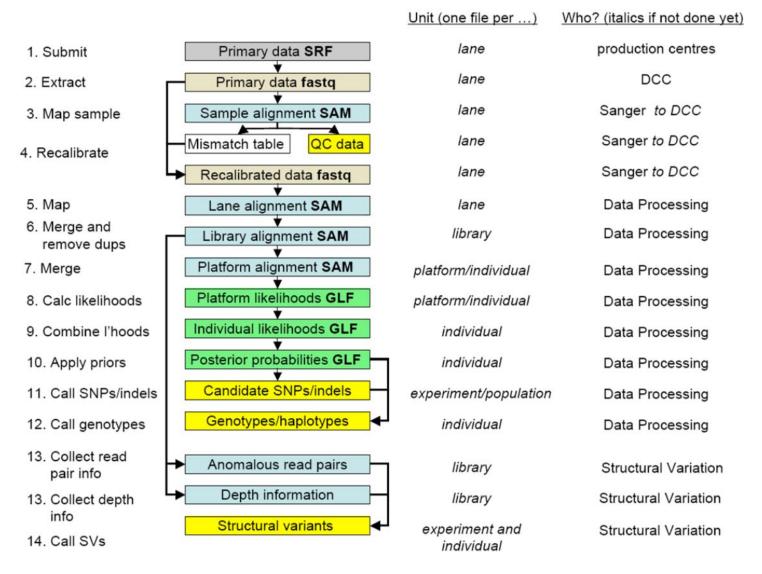

Paired Reads Initial alignment to the reference genome Paired end resolution

## **Detecting Structural Variation**

- Read depth
  - Regions where depth is different from expected
    - Expectation defined by comparing to rest of genome ...
    - ... or, even better, by comparing to other individuals
- Split reads
  - If reads are longer, it may be possible to find reads that span the structural variation
- Discrepant pairs
  - If we find pairs of reads that appear to map significantly closer or further apart than expected, could indicate an insertion or deletion
  - For this approach, "physical coverage" which is the sum of read length and insert size is key
- De Novo Assembly

# 1000 Genomes Project: Initial Analysis of Pilot Datasets

# 1,135 samples at 4x in 2009/10 (this will later expand to 2,000 samples)



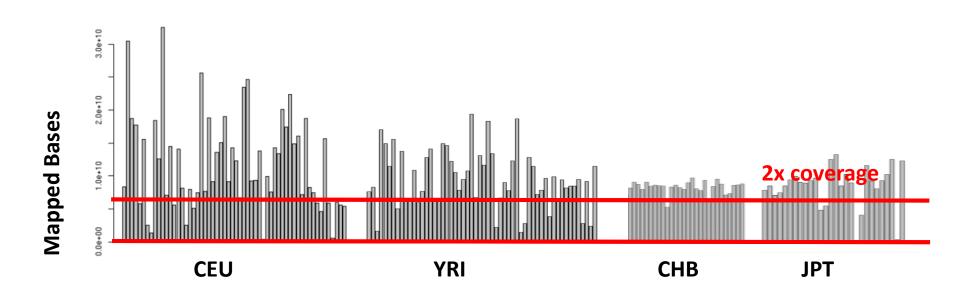

Major population groups comprised of subpopulations of ~100 individuals each

## 1000 Genomes Project: Pilots

- Pilot 1: 2-4x coverage of 180 people
- Pilot 2: 20x coverage of 2 trios
- Pilot 3: targeted sequencing of 1000 genes
- December 2008: Initial trio analysis (including 340 Gb of sequence)
- January 2009: Initial analysis of low coverage samples (576 Gb)
- 11,479,146 unique SNPs
  - 6,405,006 SNPs already in dbSNP 129
  - 5,074,140 new SNPs deposited into dbSNP
- May 2009: Updated trio analysis (700 Gb)
- May 2009: Updated analysis of low coverage samples (1.9 Tb)
- ftp://ftp.1000genomes.ebi.ac.uk/
- ftp://ftp-trace.ncbi.nih.gov/1000genomes/

## 1000 Genome Projects: Data Processing




Slide courtesy Richard Durbin

# 1000 Genomes Project: Deeply Sequenced Trio (CEU)

- NA12878 (child) sequenced to 65x depth (33x Illumina, 20x SOLiD, 12x 454)
  - Parents sequenced to 26x, 33x
- Calls made at 90.5% of all sites in the reference genome (Q30)
  - Depth filter excludes ~3% of genome
  - Map quality filter excludes ~6% of genome
- 2,985,516 non-reference calls in NA12878
- Where are calls being made?
  - 99.5% of HapMap III sites (with 99.93% concordance)
  - 98.0% of sites in MIR repeats
  - 98.0% of sites in L2 repeats
  - 91.6% of sites in protein coding exons
  - 78.1% of sites in L1 repeats
  - 70.9% of sites in Alu repeats
  - 28.3% of sites in segmental duplications (with an excess of SNPs!)

## Individuals Sequenced at Low Depth

- In addition to the two trios, sequence data now available for 178 individuals
- These samples typically have 2-4x sequence depth and are, individually, less informative
- However, combined analyses of the sample set can be very informative



# Shallow Sequencing Great in Simulations... What About in Practice?

Predictions: Detection Rate, 2x coverage

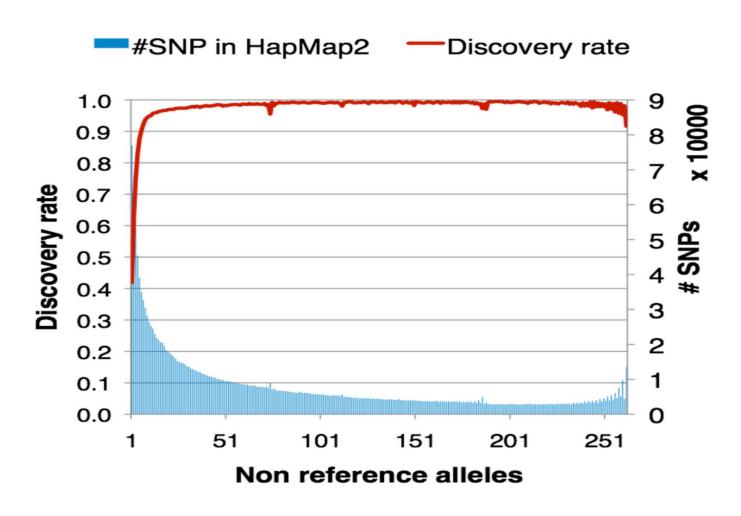
- 100 people 99.3% of sites with MAF > 5%

— 200 people 99.9% of sites with MAF > 5%

— 400 people >99.9% of sites with MAF > 5%

### Predictions: Accuracy, 2x coverage

100 people
 98.5% accurate, 90.6% at hets


200 people
 99.6% accurate, 99.4% at hets

400 people
 99.8% accurate, 99.7% at hets

### Predictions: 60 individuals Matching Observed Depths

- 91% accurate at heterozygous sites (Actual: 92%)
- 98% accurate at homozygous sites (Actual: 98%)

# **Discovering Most Alleles** That Occur >5 Times in Sequenced Samples



# Implications for Whole Genome Sequencing Studies

- Suppose we could afford 2,000x data (6,000 GB)
- We could sequence 67 individuals at 30x

#### Sequencing of 67 individuals at 30x depth

| Minor Allele Frequency                   | 0.5 – 1.0% | 1.0 – 2.0% | 2.0 – 5.0% | >5%    |
|------------------------------------------|------------|------------|------------|--------|
| Proportion of Detected Sites             | 59.3%      | 90.1%      | 96.9%      | 100.0% |
| Genotyping Accuracy                      | 100.0%     | 100.0%     | 100.0%     | 100.0% |
| Heterozygous Sites Only                  | 100.0%     | 100.0%     | 100.0%     | 100.0% |
| Correlation with Truth (r <sup>2</sup> ) | 99.8%      | 99.9%      | 99.9%      | 100.0% |
| Effective Sample Size (n·r²)             | 67         | 67         | 67         | 67     |

# Implications for Whole Genome Sequencing Studies

- Suppose we could afford 2,000x data (6,000 GB)
- We could sequence 1000 individuals at 2x

#### Sequencing of 1000 individuals at 2x depth

| Minor Allele Frequency                   | 0.5 – 1.0% | 1.0 – 2.0% | 2.0 – 5.0% | >5%    |
|------------------------------------------|------------|------------|------------|--------|
| Proportion of Detected Sites             | 79.6%      | 98.8%      | 100.0%     | 100.0% |
| Genotyping Accuracy                      | 99.6%      | 99.5%      | 99.5%      | 99.8%  |
| Heterozygous Sites Only                  | 78.8%      | 89.5%      | 95.9%      | 99.8%  |
| Correlation with Truth (r <sup>2</sup> ) | 56.7%      | 76.1%      | 88.2%      | 97.8%  |
| Effective Sample Size (n·r²)             | 567        | 761        | 882        | 978    |

## Whole Genome Sequencing Studies

- Suppose we could afford 2,000x data (6,000 GB)
- We could sequence 1000 exomes at 100x
- How much enrichment of functional variants should we expect in exons?
  - For rare Mendelian variants, extreme enrichment ...
  - For common variants, enrichment appears mild ...
- Hybrid that combines deep exome re-sequencing and shallow examination of rest of genome may emerge