Analysis of structural variation

Alistair Ward - Boston College
What is structural variation?

• What differentiates SV from short variants?
• What are the major SV types?
• Summary of MEI detection
What is an SV?

• Often considered to be >1kb or larger

• Practically, often considered >= read length
What is an SV?

- Often considered to be >1kb or larger
- Practically, often considered >= read length

Diagram:

- Sample and reference sequences with:
 - A short deletion where mapping can span the gap and can be detected with short variant detectors.
 - A structural variation where mapping cannot span the gap and cannot generally be detected with short variant detectors.
SV types

Deletion

If inserted sequence/deletion ≈ 50bp -> indel

Novel insertion

sequence ≈ 50bp
-> Copy number variation

Mobile element insertion

The mobile element sequence is ubiquitous in the genome
SV types

Tandem duplication

Reference

Sample

Interspersed duplication

Reference

Sample

Duplications cause problems for mappers. From which copy of the duplicated sequence did the read originate?
SV types

Inversion

Mappers will not be able to place reads correctly in the inversion, or across the breakpoints.

Mappers will be able to place reads in the translocated sequence, but fail at the breakpoints.
Mobile element insertions (MEIs)

• Retrotransposons comprise nearly 50% of the human genome

• Implicated in a number of diseases, (Crohn’s disease, haemophilia, …)

• non-LTR transposons are still active in the human genome

• Why can’t we use short variant detectors to find MEIs?
MEI detection

MEIs are repetitive

* sequencing technologies are closing this gap!
Map reads from MEIs

Map a read originating in a MEI:

chromosome 3 (for example)

chromosome 18 (for example)

* sequencing technologies are closing this gap!
Map reads from MEIs

Map a read originating in a MEI:

chromosome 3 (for example)

chromosome 18 (for example)

What did we learn? - Not much
Map reads from MEIs

Map a read originating in a MEI:

chromosome 3 (for example)

chromosome 18 (for example)

What did we learn? - Not much

But remember, we have read pairs!

The DNA fragment isn’t so small!
Update to mapping strategy

There are well over 1,000,000 Alu elements in the human genome

Recall our mapping strategy?

read → Hash read and find clusters in the reference

If clusters in MEI sequence, don’t bother looking in the genome
Evidence for non-reference MEI

Search for fragments with one mate uniquely mapped and the other falling within an MEI

Demand fragments spanning into MEI from both the 3’ and the 5’ end
‘Spanning in’ evidence

1000 Genomes Pilot Project data

A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans, Stewart et. al., (2011)
Span across a (non)-reference MEI

Search for mappings with abnormally short or long fragment lengths
‘Spanning across’ evidence

A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans, Stewart et. al., (2011)
Split read evidence

Attempt to:

a) map unmapped mate to reference in a window based on anchor position and fragment length distribution

b) map unmapped mate to known MEI sequences
Summary

• Modify mapping to explicitly look for MEI mappings (Mosaik is set up to do this)

• Collate evidence from read pair and split read signals

• Leverage population to improve coverage

• Use local graph alignment to aid in genotyping