Biostatistics 615/815 - Statistical Computing
Lecture 1 : Introduction to Statistical Computing

Hyun Min Kang

September 6th, 2011
BIOSTAT 615/815 - Objectives

1. Equip the ability to IMPLEMENT computational/statistical IDEAS into working SOFTWARE PROGRAMs
 ✓ Understand the concept of algorithm
 ✓ Understand basic data structures and algorithms
 ✓ Practice the implementation of algorithms into programming languages
 ✓ Develop ability to make use of external libraries
BIOSTAT615/815 - Objectives

1. Equip the ability to IMPLEMENT computational/statistical IDEAS into working SOFTWARE PROGRAMs
2. Learn COMPUTATIONAL COST management in developing statistical methods.
 - Understand the practical importance of computation cost in many statistical inference applications.
 - Develop the ability to estimate computational time and memory required for an algorithm given data size.
 - Develop the ability to improve computation efficiency of existing algorithms and to optimize the cost/accuracy trade-off.
BIOSTAT615/815 - Objectives

1. Equip the ability to IMPLEMENT computational/statistical IDEAS into working SOFTWARE PROGRAMs.
2. Learn COMPUTATIONAL COST management in developing statistical methods.
3. Understand NUMERICAL and RANDOMIZED ALGORITHMS for statistical inference.
 - ✓ Learn numerical optimization methods for solving analytically intractable problems computationally.
 - ✓ Understand a variety of randomized algorithms for robust and efficient estimation of computationally intractable problems to obtain deterministic solution.
Why Is Statistical Computing Important?

1. Wherever there is a statistical application, that is where you’ll need computation.
 - For example, typical regression or maximum likelihood estimation requires nontrivial computational procedures.
 - R or SAS may do the computation for you, but you need to understand what they are doing exactly.
Why Is Statistical Computing Important?

1. Wherever there is a statistical application, that is where you’ll need computation.
 - For example, typical regression or maximum likelihood estimation requires nontrivial computational procedures.
 - R or SAS may do the computation for you, but you need to understand what they are doing exactly.

2. Computational efficiency is critical for large-scale data analysis
 - In many analyses of high throughput biological data, more accurate methods cannot be used in practice due to prohibitive computational cost.
 - Many statistical methods should work in principle if you have infinite time, but almost impossible to run with large-scale data due to exponential time complexity with data size.
 - Algorithmic understanding of statistical methods may turn apparently impossible task into a possible one.
What Will Be Covered?

1. C++ Basics and Introductory Algorithms
 - Computational Time Complexity
 - Sorting
 - Divide and Conquer Algorithms
 - Searching
 - Key Data Structure and Standard Template Libraries
 - Dynamic Programming
 - Hidden Markov Models
What Will Be Covered?

1. C++ Basics and Introductory Algorithms
2. Numerical Methods and Randomized Algorithms
 - Random Numbers
 - Matrix Operations and Least Square Methods
 - Importance Sampling
 - Expectation-Maximization
 - Markov-Chain Monte Carlo (MCMC) Methods
 - Simulated Annealing
 - Gibbs Sampling
Textbooks

- "Introduction to Algorithms" (Strongly Recommended)
 ✓ by Cormen, Leiserson, Rivest, and Stein (CLRS)

- "Numerical Recipes" (Recommended)
 ✓ by Press, Teukolsky, Vetterling, and Flannery

- "C++ Primer Plus" (Optional)
 ✓ by Stephen Prata
 ✓ Fifth Edition, Sams, 2004
Assignments and Grading

BIOSTAT 615

- Biweekly Assignments - 50%
- Midterm Exam - 25%
- Final Exam - 25%
Assignments and Grading

BIOSTAT 615
- Biweekly Assignments - 50%
- Midterm Exam - 25%
- Final Exam - 25%

BIOSTAT 815
- Biweekly Assignments - 33%
 - Expected to solve extra problems on top of 615 assignments
- Midterm Exam - 17%
- Final Exam - 17%
- Projects, to be completed in pairs - 33%
Target Audience for BIOSTAT615

- Target audience for BIOSTAT615 includes those with little or small programming experience, with strong motivation to learn programming statistical methods in C++ language.
Target Audience for BIOSTAT615

- Target audience for BIOSTAT615 includes those with little or small programming experience, with strong motivation to learn programming statistical methods in C++ language.

- Audiences should be familiar with the concept of probability distribution, hypothesis testing, and linear regression (BIOSTAT601 is not strictly required).
Target Audience for BIOSTAT615

- Target audience for BIOSTAT615 includes those with little or small programming experience, with strong motivation to learn programming statistical methods in C++ language.

- Audiences should be familiar with the concept of probability distribution, hypothesis testing, and linear regression (BIOSTAT615 is not strictly required).

- Even if you have no experience in C/C++/Java, you can follow the class, but you will need to expect to spend additional hours to accomplish the homework, especially for the first few weeks of the course.
Target Audience for BIOSTAT815

- Target Audience for BIOSTAT815 includes those with decent programming experience, with strong motivation to practice advanced methods in statistical computing throughout the lectures and the course project.
- Audiences should be familiar with programming languages, so that they can accomplish additional problem and class project.
- List of suggested projects will be announced in the next lecture.
Choice of Programming Language for Homework Assignments

- Strongly recommend to use C++.

Choice of Programming Language for Homework Assignments

- Strongly recommend to use C++.
- If you want to use other programming languages, C and Java are accepted, but you will likely to spend additional hours to port the problems code into your preferred languages.
Honor code

- Honor code is strongly enforced throughout the course. Remember that one of the main objective of the course is to equip the ability to implement statistical methods ON YOUR OWN.
Honor code

- Honor code is strongly enforced throughout the course. Remember that one of the main objectives of the course is to equip the ability to implement statistical methods ON YOUR OWN.

- You are NOT allowed to share any piece of your homework with your colleagues electronically (e.g. via E-mail or IM)
Honor code

- Honor code is strongly enforced throughout the course. Remember that one of the main objectives of the course is to equip the ability to implement statistical methods ON YOUR OWN.

- You are NOT allowed to share any piece of your homework with your colleagues electronically (e.g. via E-mail or IM)

- You may partially help debugging your colleagues’ homework by sharing your trial and errors, but you may provide help only verbally in person. The help should affect only non-significant fraction of the homework. If significant fraction of your homework or course project is contributed by someone else, you must notify to your instructor so that only your contribution can be reflected into the assessment.
Honor code

- Honor code is strongly enforced throughout the course. Remember that one of the main objective of the course is to equip the ability to implement statistical methods ON YOUR OWN.

- You are NOT allowed to share any piece of your homework with your colleagues electronically (e.g. via E-mail or IM)

- You may partially help debugging your colleagues’ homework by sharing your trial and errors, but you may provide help only verbally in person. The help should affect only non-significant fraction of the homework. If significant fraction of your homework or course project is contributed by someone else, you must notify to your instructor so that only your contribution can be reflected into the assessment.

- If a break of honor code is identified, your entire homework (or exam) will be graded as zero, while incomplete submission of homework assignment will be considered for partial credit.
Office hours

- Friday 9:00-10:30AM.
- Utilize this time slot actively for questions.

Course Web Page

- Visit
 - http://genome.sph.umich.edu/wiki/Biostatistics_615/815
 - or http://goo.gl/9DoFo
Algorithms

An Informal Definition

- An **algorithm** is a sequence of well-defined computational steps
- that takes a set of values as **input**
- and produces a set of values as **output**
Algorithms

An Informal Definition

- An algorithm is a sequence of well-defined computational steps
- that takes a set of values as input
- and produces a set of values as output

Key Features of Good Algorithms

- Correctness
 - Algorithms must produce correct outputs across all legitimate inputs
Algorithms

An Informal Definition

- An **algorithm** is a sequence of well-defined computational steps
- that takes a set of values as **input**
- and produces a set of values as **output**

Key Features of Good Algorithms

- **Correctness**
 - ✓ Algorithms must produce correct outputs across all legitimate inputs
- **Efficiency**
 - ✓ Time efficiency: Consume as small computational time as possible.
 - ✓ Space efficiency: Consume as small memory / storage as possible
Algorithms

An Informal Definition

- An **algorithm** is a sequence of well-defined computational steps
- that takes a set of values as **input**
- and produces a set of values as **output**

Key Features of Good Algorithms

- Correctness
 - ✓ Algorithms must produce correct outputs across all legitimate inputs
- Efficiency
 - ✓ Time efficiency: Consume as small computational time as possible.
 - ✓ Space efficiency: Consume as small memory / storage as possible
- Simplicity
 - ✓ Concise to write down & Easy to interpret.
The "Old MacDonald" Song

- http://www.youtube.com/watch?v=hDt_MhIKpLM
A Generalization of "Old MacDonald" Song

Input

- **animals** cow, sheep, pig, duck, horse
- **noises** moo, baa, oink, quack, neigh
A Generalization of "Old MacDonald" Song

Input

animals cow, sheep, pig, duck, horse
noises moo, baa, oink, quack, neigh

Output

1 Sing "Old MacDonald had a farm E I E I O"
2 Sing "And on that farm he had a animals[1] E I E I O"
4 Sing "Old MacDonald had a farm E I E I O"
5
Algorithm **SingOldMacDonald**

Data: animals\([1 \cdots n]\), noises\([1 \cdots n]\)

Result: An “Old MacDonald” Song with *animals* and *noises*

for \(i = 1\) to \(n\) do

Sing "Old MacDonald had a farm, E I E I O”;
Sing "And on that farm he had some *animals*\([i]\), E I E I O”;
Sing "With a *noises*\([i]\) *noises*\([i]\) here, and a *noises*\([i]\) *noises*\([i]\) there”;
Sing "Here a *noise*\([i]\), there a *noise*\([i]\), everywhere a *noise*\([i]\) *noise*\([i]\)”;
for \(j = i - 1\) downto 1 do

Sing "*noise*\([j]\) *noise*\([j]\) here, *noise*\([j]\) *noise*\([j]\) there”;
Sing "Here a *noise*\([j]\), there a *noise*\([j]\), everywhere a *noise*\([j]\) *noise*\([j]\)”;
end

Sing "Old MacDonald had a farm, E I E I O.”;
end

(adapted from Jeff Erickson(UIUC)’s class notes)
Analysis of Algorithm \texttt{SingOldMacDonald}

Correctness

- Need a formal definition of the “Old MacDonald” song for proof.
- Proof by induction
 - By showing the algorithm produces the same song with the formal definition (details are omitted)
Analysis of Algorithm \texttt{SingOldMacDonald}

Time Complexity

- Count how many words the algorithm produces
- For each i
 - First four lines produces 41 words
 - Two lines of inner loop produces 16 words for each j
 - The last line produces 10 words

\[
T(n) = \sum_{i=1}^{n} \left(51 + \sum_{j=1}^{i-1} 16 \right) = 43n + 8n^2 \text{ words are produced.}
\]

- Asymptotic complexity is quadratic: $T(n) = \Theta(n^2)$
 - When n is sufficiently large, a single order magnitude increase of n results in two orders of magnitude increase in $T(n)$.
Summary - Algorithm **SingOldMacDonald**

- An informal toy example of an algorithm.
- Algorithm as a series of instructions to produce expected output given input data.
- Generalized to handle a variety set of well-defined inputs.
- Fairly high-level description of algorithm - “Sing” is the unit function of the algorithm.
Sorting
Sorting - A Classical Algorithmic Problem

The Sorting Problem

Input A sequence of \(n \) numbers. \(A[1 \cdots n] \)

Output A permutation (reordering) \(A'[1 \cdots n] \) of input sequence such that \(A'[1] \leq A'[2] \leq \cdots \leq A'[n] \)
Sorting - A Classical Algorithmic Problem

The Sorting Problem

Input A sequence of n numbers. $A[1 \cdots n]$

Output A permutation (reordering) $A'[1 \cdots n]$ of input sequence such that $A'[1] \leq A'[2] \leq \cdots \leq A'[n]$

Sorting Algorithms

- Insertion Sort
- Selection Sort
- Bubble Sort
- Shell Sort
- Merge Sort
- Heapsort
- Quicksort
- Counting Sort
- Radix Sort
- Bucket Sort
- And much more..
http://www.sorting-algorithms.com
Today - Insertion Sort

http://www.sorting-algorithms.com/insertion-sort
Key Idea of Insertion Sort

- For \(k \)-th step, assume that elements \(a[1], \ldots, a[k-1] \) are already sorted in order.
- Locate \(a[k] \) between index 1, \(\ldots, k \) so that \(a[1], \ldots, a[k] \) are in order
- Move the focus to \(k+1 \)-th element and repeat the same step
Algorithm **INSERTIONSORT**

Data: An unsorted list $A[1 \cdots n]$

Result: The list $A[1 \cdots n]$ is sorted

```
for j = 2 to n do
    key = A[j];
    i = j - 1;
    while i > 0 and A[i] > key do
        A[i + 1] = A[i];
        i = i - 1;
    end
    A[i + 1] = key;
end
```
Correctness of **InsertionSort**

Loop Invariant

At the start of each iteration, \(A[1\cdots j - 1] \) is loop invariant iff:

- \(A[1\cdots j - 1] \) consist of elements originally in \(A[1\cdots j - 1] \).
- \(A[1\cdots j - 1] \) is in sorted order.
Correctness of InsertionSort

Loop Invariant

At the start of each iteration, \(A[1 \cdots j - 1] \) is loop invariant iff:

- \(A[1 \cdots j - 1] \) consist of elements originally in \(A[1 \cdots j - 1] \).
- \(A[1 \cdots j - 1] \) is in sorted order.

A Strategy to Prove Correctness

Initialization Loop invariant is true prior to the first iteration

Maintenance If the loop invariant is true at the start of an iteration, it remains true at the start of next iteration

Termination When the loop terminates, the loop invariant gives us a useful property to show the correctness of the algorithm
Correctness Proof (Informal) of INSERTIONSORT

Initialization

Correctness Proof (Informal) of **INSERTIONSORT**

Initialization

Maintenance
- If \(A[1 \cdot \cdot j - 1] \) maintains loop invariant at iteration \(j \), at iteration \(j + 1 \):
 - \(A[j + 1 \cdot \cdot n] \) is unmodified, so \(A[1 \cdot \cdot j] \) consists of original elements.
 - \(A[1 \cdot \cdot i] \) remains sorted because it has not modified.
 - \(A[i + 2 \cdot \cdot j] \) remains sorted because it shifted from \(A[i + 1 \cdot \cdot j - 1] \)
 - \(A[i] \leq A[i + 1] \leq A[i + 2] \), thus \(A[1 \cdot \cdot j] \) is sorted and loop invariant
Correctness Proof (Informal) of INSERTIONSORT

Initialization

Maintenance

If \(A[1 \cdots j - 1] \) maintains loop invariant at iteration \(j \), at iteration \(j + 1 \):

- \(A[j + 1 \cdots n] \) is unmodified, so \(A[1 \cdots j] \) consists of original elements.
- \(A[1 \cdots i] \) remains sorted because it has not modified.
- \(A[i + 2 \cdots j] \) remains sorted because it shifted from \(A[i + 1 \cdots j - 1] \)
- \(A[i] \leq A[i + 1] \leq A[i + 2] \), thus \(A[1 \cdots j] \) is sorted and loop invariant

Termination

- When the loop terminates \((j = n + 1) \), \(A[1 \cdots j - 1] = A[1 \cdots n] \) maintains loop invariant, thus sorted.
Worst Case Analysis

\[
\begin{align*}
\text{for } j = 2 & \text{ to } n \\
& \text{ do} \\
& \quad \text{key} = A[j]; \\
& \quad i = j - 1; \\
& \quad \text{while } i > 0 \text{ and } A[i] > \text{key} \\
& \quad \text{ do} \\
& \quad \quad A[i + 1] = A[i]; \\
& \quad \quad i = i - 1; \\
& \quad \text{end} \\
& \quad A[i + 1] = \text{key}; \\
\end{align*}
\]

\[
T(n) = \frac{c_4 + c_5 + c_6}{2} n^2 + \frac{2(c_1 + c_2 + c_3 + c_7)}{2} + c_4 - c_5 - c_6 n - (c_2 + c_3 + c_4 + c_7) \\
= \Theta(n^2)
\]
Summary - Insertion Sort

- One of the most intuitive sorting algorithm
- Correctness can be proved by induction using loop invariant property
- Time complexity is $O(n^2)$.
Tower of Hanoi

Problem

Input
- A (leftmost) tower with \(n \) disks, ordered by size, smallest to largest
- Two empty towers

Output
Move all the disks to the rightmost tower in the original order

Condition
- One disk can be moved at a time.
- A disk cannot be moved on top of a smaller disk.

How many moves are needed?
A Working Example

http://www.youtube.com/watch?v=aGlU2G-DC8c
Think Recursively

Key Idea

- Suppose that we know how to move $n - 1$ disks from one tower to another tower.
- And concentrate on how to move the largest disk.
Think Recursively

Key Idea

- Suppose that we know how to move $n - 1$ disks from one tower to another tower.
- And concentrate on how to move the largest disk.

How to move the largest disk?

- Move the other $n - 1$ disks from the leftmost to the middle tower
- Move the largest disk to the rightmost tower
- Move the other $n - 1$ disks from the middle to the rightmost tower
A Recursive Algorithm for the Tower of Hanoi Problem

Algorithm **TOWEROfHANOI**

Data: \(n : \) \# disks, \((s, i, d) :\) source, intermediate, destination towers

Result: \(n \) disks are moved from \(s \) to \(d \)

```plaintext
if \( n == 0 \) then
    do nothing;
else
    TOWEROfHANOI(\( n - 1, s, d, i \));
    move disk \( n \) from \( s \) to \( d \);
    TOWEROfHANOI(\( n - 1, i, s, d \));
end
```
How the Recursion Works

\[(3, L, M, R)\]
How the Recursion Works

(2, L, R, M) → (3, L, M, R)
How the Recursion Works

(1, L, M, R)

(2, L, R, M)

(3, L, M, R)
How the Recursion Works
How the Recursion Works

(0, L, R, M)

(1, L, M, R)

(2, L, R, M)

(3, L, M, R)
How the Recursion Works

(0,L,R,M) → (1,L,M,R) → (2,L,R,M) → (3,L,M,R)
How the Recursion Works

(0, L, R, M) -> (1, L, M, R) -> (2, L, R, M) -> (3, L, M, R)

Disk1
L -> R
How the Recursion Works
How the Recursion Works

(3, L, M, R) → (2, L, R, M) → (1, L, M, R) → (0, L, R, M) → Disk1 L -> R

(3, L, M, R) → (2, L, R, M) → (1, L, M, R) → (0, M, L, R) → Disk2 L -> M
How the Recursion Works

- (3, L, M, R)
- (2, L, R, M)
- (1, L, M, R)
- (1, R, L, M)
- (0, L, R, M)
- (0, M, L, R)
- Disk 1: L -> R
- Disk 2: L -> M
How the Recursion Works

(3, L, M, R)

(2, L, R, M)

(1, L, M, R) (1, R, L, M)

(0, L, R, M) (0, M, L, R) (0, R, M, L)

Disk1
L -> R

Disk2
L -> M
How the Recursion Works

(3, L, M, R)

(2, L, R, M)

(1, L, M, R)
(1, R, L, M)

(0, L, R, M)
(0, M, L, R)
(0, R, M, L)

Disk1
L -> R

Disk2
L -> M
How the Recursion Works
How the Recursion Works
How the Recursion Works

(3, L, M, R)

(2, L, R, M)

(1, L, M, R) (1, R, L, M)

(0, L, R, M) (0, M, L, R) (0, R, M, L) (0, L, R, M)

Disk1 L -> R

Disk2 L -> M

Disk1 R -> M
How the Recursion Works
How the Recursion Works

Diagram showing the process of recursion with nodes and arrows indicating the flow of operations.
How the Recursion Works

Diagram showing the recursion process with labels and arrows indicating the flow of data or operations.
How the Recursion Works
How the Recursion Works

Overview

Syllabus

Sorting

Recursion

Implementation

Summary

Hyun Min Kang

Biostatistics 615/815 - Lecture 1

September 6th, 2011
How the Recursion Works
How the Recursion Works

Overview
Syllabus
Algorithms
Sorting
Recursion
Implementation
Summary

Hyun Min Kang
Biostatistics 615/815 - Lecture 1
September 6th, 2011 36 / 49
How the Recursion Works
How the Recursion Works
How the Recursion Works
How the Recursion Works

Diagram showing the recursive process with nodes representing different states and arrows indicating the transitions between these states.
How the Recursion Works

Recursion

Implementation

Overview

Syllabus

Algorithms

Sorting

Summary

Hyun Min Kang

Biostatistics 615/815 - Lecture 1

September 6th, 2011
How the Recursion Works

Overview

Hyun Min Kang
How the Recursion Works

1. Initial Call: (3, L, M, R)
 - Disk 1: L -> R
 - Disk 2: L -> M
 - Disk 3: L -> R

2. Recursive Calls:
 - (2, L, R, M)
 - Disk 1: L -> R
 - Disk 2: L -> M
 - Disk 3: R -> M
 - (1, L, M, R)
 - Disk 1: L -> R
 - Disk 2: M -> L
 - Disk 3: L -> R
 - (2, M, L, R)
 - Disk 1: L -> R
 - Disk 2: L -> M
 - Disk 3: R -> M
 - (1, M, R, L)
 - Disk 1: M -> L
 - Disk 2: L -> M
 - Disk 3: L -> R
 - (1, L, M, R)
 - Disk 1: L -> R
 - Disk 2: M -> L
 - Disk 3: L -> R

The process continues recursively until the base case is reached.
How the Recursion Works
Analysis of TowerOfHanoi Algorithm

Correctness

- Proof by induction - Skipping

- \(T(n) \): Number of disk movements required
- \(T(0) = 0 \)
- \(T(n) = 2T(n-1) + 1 \)
- \(T(n) = 2^n - 1 \)
- If \(n = 64 \) as in the legend, it would require \(2^{64} \approx 18,446,744,073,709,551,615 \) turns to finish, which is equivalent to roughly 585 billion years if one move takes one second.
Analysis of Tower Of Hanoi Algorithm

Correctness

- Proof by induction - Skipping

Time Complexity

- $T(n)$: Number of disk movements required
 - $T(0) = 0$
 - $T(n) = 2T(n - 1) + 1$
 - $T(n) = 2^n - 1$

- If $n = 64$ as in the legend, it would require $2^{64} - 1 = 18,446,744,073,709,551,615$ turns to finish, which is equivalent to roughly 585 billion years if one move takes one second.
UNIX / gcc environment

- Instructor’s preference
- UNIX environment will be commonly used in large-scale data analysis, so it would be good to be familiar with it.
- Ways to set up UNIX environment
 - Install Linux (e.g. Ubuntu) locally to your computer
 - Download and install Xcode in Mac OS X, and use terminal to access UNIX interface.
 - Install Cygwin to a windows machine (mimics UNIX environment)
 - Connect to U-M login service via SSH using PuTTY or similar software (Refer to http://www.itd.umich.edu/login/ for details)
- Learning Unix-cultured editors such as vi or emacs is also recommended.
Example C++ Development Environment

1. UNIX / gcc environment
2. Windows / Microsoft Visual C++
3. Windows / Borland C++ Builder
4. Mac OS X / Xcode development environment
Overview

Syllabus

Algorithms

Sorting

Recursion

Implementation

Summary

Getting Started with C++

Writing helloWorld.cpp

```cpp
#include <iostream> // import input/output handling library

int main(int argc, char** argv) {
    std::cout << "Hello, World" << std::endl;
    return 0; // program exits normally
}
```

Hyun Min Kang
Biostatistics 615/815 - Lecture 1
September 6th, 2011
40 / 49
Getting Started with C++

Writing helloWorld.cpp

```cpp
#include <iostream> // import input/output handling library

int main(int argc, char** argv) {
    std::cout << "Hello, World" << std::endl;
    return 0; // program exits normally
}
```

Compiling helloWorld.cpp

Install Cygwin (Windows), Xcode (MacOS), or nothing (Linux).

```
user@host:~/$ g++ -o helloWorld helloWorld.cpp
```

Getting Started with C++

Writing helloWorld.cpp

```cpp
#include <iostream> // import input/output handling library

int main(int argc, char** argv) {
    std::cout << "Hello, World" << std::endl;
    return 0; // program exits normally
}
```

Compiling helloWorld.cpp

Install Cygwin (Windows), Xcode (MacOS), or nothing (Linux).

```
user@host:~/$ g++ -o helloWorld helloWorld.cpp
```

Running helloWorld

```
user@host:~/$ ./helloWorld
Hello, World
```
Implementing **TowerOfHanoi** Algorithm in C++

towerOfHanoi.cpp

```cpp
#include <iostream>
#include <cstdlib>

// recursive function of towerOfHanoi algorithm
void towerOfHanoi(int n, int s, int i, int d) {
    if ( n > 0 ) {
        towerOfHanoi(n-1,s,d,i); // recursively move n-1 disks from s to i
        // Move n-th disk from s to d
        std::cout << "Disk " << n << " : " << s << " -> " << d << std::endl;
        towerOfHanoi(n-1,i,s,d); // recursively move n-1 disks from i to d
    }
}

// main function
int main(int argc, char** argv) {
    int nDisks = atoi(argv[1]); // convert input argument to integer
    towerOfHanoi(nDisks, 1, 2, 3); // run TowerOfHanoi(n=nDisks, s=1, i=2, d=3)
    return 0;
}
```
Running **TOWEROFHANOI** Implementation

Running towerOfHanoi

```
user@host:~/$ ./towerOfHanoi 3
Disk 1 : 1 -> 3
Disk 2 : 1 -> 2
Disk 1 : 3 -> 2
Disk 3 : 1 -> 3
Disk 1 : 2 -> 1
Disk 2 : 2 -> 3
Disk 1 : 1 -> 3
```
Implementing **InsertionSort** Algorithm

insertionSort.cpp - main() function

```cpp
#include <iostream>
#include <vector>

void printArray(std::vector<int>& A); // declared here, defined later
void insertionSort(std::vector<int>& A); // declared here, defined later

int main(int argc, char** argv) {
    std::vector<int> v; // contains array of unsorted/sorted values
    int tok; // temporary value to take integer input
    while ( std::cin >> tok ) // read an integer from standard input
        v.push_back(tok) // and add to the array
    std::cout << "Before sorting:");
    printArray(v); // print the unsorted values
    insertionSort(v); // perform insertion sort
    std::cout << "After sorting:");
    printArray(v); // print the sorted values
    return 0;
}

Hyun Min Kang  
Biostatistics 615/815 - Lecture 1  
September 6th, 2011 43 / 49
Implementing **InsertionSort** Algorithm

**insertionSort.cpp - printArray() function**

```cpp
// print each element of array to the standard output
void printArray(std::vector<int>& A) {
 // call-by-reference : will explain later
 for (int i = 0; i < A.size(); ++i) {
 std::cout << A[i];
 }
 std::cout << std::endl;
}
```

Hyun Min Kang
Implementing **InsertionSort** Algorithm

```cpp
// perform insertion sort on A
void insertionSort(std::vector<int>& A) { // call-by-reference
 for(int j=1; j < A.size(); ++j) { // 0-based index
 int key = A[j]; // key element to relocate
 int i = j-1; // index to be relocated
 while((i >= 0) && (A[i] > key)) { // find position to relocate
 A[i+1] = A[i]; // shift elements
 --i; // update index to be relocated
 }
 A[i+1] = key; // relocate the key element
 }
}
```
Running **INSERTIONSORT** Implementation

### Test with small-sized data (in Linux)

```
user@host:~/$ seq 1 20 | shuf | ./insertionSort
Before sorting: 18 9 20 3 1 8 5 19 7 16 17 12 2 15 14 10 13 6 11 4
After sorting: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
```

### Running time evaluation with large data

```
user@host:~/$ time sh -c 'seq 1 100000 | shuf | ./insertionSort > /dev/null'
real 0m24.615s
user 0m24.650s
sys 0m0.000s
user@host:~/$ time sh -c 'seq 1 100000 | shuf | /usr/bin/sort -n > /dev/null'
real 0m0.238s
user 0m0.250s
sys 0m0.020s
```

**/usr/bin/sort** is orders of magnitude faster than **insertionSort**
Summary

- Algorithms are sequences of computational steps transforming inputs into outputs
- **Insertion Sort**
  - ✓ An intuitive sorting algorithm
  - ✓ Loop invariant property
  - ✓ $\Theta(n^2)$ time complexity
  - ✓ Slower than default sort application in Linux.
- A recursive algorithm for the Tower of Hanoi problem
  - ✓ Recursion makes the algorithm simple
  - ✓ Exponential time complexity
- **C++** Implementation of the above algorithms.
Homework 0

- Implement the following two programs and send the output screenshots to the instructor (hmkang at umich dot edu) by E-mail
  1. HelloWorld.cpp
  2. TowerOfHanoi.cpp

- Briefly describe your operating system and C++ development environment with your submission

- This homework will not be graded, but mandatory to submit for everyone who wants to take the class for credit

- No due date, but homework 0 must be submitted prior to submitting any other homework.
Reading Materials

- CLRS Chapter 1-2 (pp. 3-42)

What to expect

- C++ Programming 101
- Fisher’s exact test