Recap: Root Finding with C++

```cpp
double binaryZero(myFunc foo, double lo, double hi, double e) {
    for (int i = 0; i < +1;) {
        double d = hi - lo; // f(lo) < 0, f(hi) > 0, d can be positive or negative
double point = lo + d * 0.5; // d is + for increasing func, - for decreasing
        double fpoint = foo(point); // evaluate the value of the function
        if (fpoint < 0.0) {
            d = lo - point; lo = point; //
        } else {
            d = point - hi; hi = point;
        }
    // e is tolerance level (higher e makes it faster but less accurate)
    if (fabs(d) < e || fpoint == 0.0) {
        std::cout << "Iteration " << i << ", point = " << point
        << ", d = " << d << std::endl;
        return point;
    }
}
```

Recap: Improvements to Root Finding

Approximation using linear interpolation

\[
f^*(x) = f(a) + (x - a) \frac{f(b) - f(a)}{b - a}
\]

Root Finding Strategy

- Select a new trial point such that \(f^*(x) = 0 \)

Announcements

Homework and Grading

- Homework #5 announced
- Homework grading is still pending

Thursday March 24th

- Mary Kate Trost will introduce us a very useful C++ library
Recap: Detailed Minimization Strategy

1. Find 3 points such that
 - $a < b < c$
 - $f(b) < f(a)$ and $f(b) < f(c)$

2. Then search for minimum by
 - Selecting trial point in the interval
 - Keep minimum and flanking points

Recap: Golden Search

```cpp
double goldenSearch(myFunc foo, double a, double b, double c, double e) {
    int i = 0;
    double fb = foo(b);
    while (fabs(c-a) > fabs(b*e)) {
        double x = b + goldenStep(a, b, c);
        double fx = foo(x);
        if (fx < fb) {
            (x > b) ? (a = b) : (c = b);
            b = x; fb = fx;
        } else {
            (x < b) ? (a = x) : (c = x);
        }
        ++i;
    }
    std::cout << "i = " << i << " b = " << b << " f(b) = " << foo(b) << std::endl;
    return b;
}
```

Today

A better single-dimensional optimization

- Parabolic interpolation
- Adaptive method

Multi-dimensional optimization

- Simplex algorithm
Better optimization using local approximation

- Root finding example
 - Binary search reduces the search space by constant factor 1/2
 - Linear approximation may reduce the search space more rapidly for most well-defined functions
- Minimization problem
 - Golden search reduces the search space by 38%
 - Using a quadratic approximation of the function may achieve better optimization results

Parabola

Brent

Mixture

Simplex

Summary

Approximation using parabola

Parabolic Approximation

\[f^*(x) = Ax + Bx + C \]

The value minimizes \(f^*(x) \) is

\[x_{\text{min}} = -\frac{B}{2A} \]

This strategy is called "inverse parabolic interpolation"

Fitting a parabola

- Can be fitted with three points
- Points must not be co-linear
- \(f(x_1) = f(x_1), f^*(x_2) = f(x_2), f^*(x_3) = f(x_3) \).

\[
\begin{align*}
C &= f(x_1) - Ax_1^2 - Bx_1 \\
B &= \frac{A(x_2^2 - x_1^2) + f(x_1) - f(x_2)}{x_1 - x_2} \\
A &= \frac{f(x_3) - f(x_2)}{(x_3 - x_2)(x_3 - x_1)} - \frac{f(x_1) - f(x_2)}{(x_1 - x_2)(x_3 - x_1)}
\end{align*}
\]
Avoiding degenerate case

- Fitted minimum could overlap with one of original points
- Ensure that each new point is distinct from previously examined points

Minimum for a Parabola

- General expression for finding minimum of a parabola fitted through three points

\[x_{\text{min}} = x_2 - \frac{1}{2} \left(x_2 - x_1 \right)^2 \left(f(x_2) - f(x_1) \right) - \left(x_2 - x_3 \right)^2 \left(f(x_2) - f(x_1) \right) \]

Fitting a Parabola

// Returns the distance between b and the abscissa for the // fitted minimum using parabolic interpolation
double parabola_step(double a, double fa, double b, double fb, double c, double fc) {
 double p = (b - a) * (fb - fc);
 double q = (b - c) * (fb - fa);
 double x = (b - c) * q - (b - a) * p;
 double y = 2.0 * (p - q);
 // Check that q is not zero
 if (fabs(y) < ZEPS)
 return golden_step(a, b, c);
 else
 return x / y;
}

Avoiding degenerate steps

double adjust_step(double a, double b, double c, double step, double e) {
 double min_step = fabs(e * b) + ZEPS;
 if (fabs(step) < min_step)
 return step > 0 ? min_step : -min_step;
 // If the step ends up to close to previous points,
 // return zero to force a golden ratio step ...
 if (fabs(b + step - a) <= e || fabs(b + step - c) <= e)
 return 0.0;
 return step;
}
Generating New Points

- Use parabolic interpolation by default
- Check whether improvement is slow
- If step sizes are not decreasing rapidly enough, switch to golden section

Overall

The main function simply has to
- Generate new points using building blocks
- Update the triplet bracketing the minimum
- Check for convergence

Adaptive calculation of step size

def calculate_step(double a, double fa, double b, double fb, double c, double fc, double last_step, double e) {
 double step = parabola_step(a, fa, b, fb, c, fc);
 step = adjust_step(a, b, c, step, e);
 if (fabs(step) > fabs(0.5 * last_step) || step == 0.0)
 step = golden_step(a, b, c);
 return step;
}

Overall Minimization Routine

def find_minimum(myFunc foo, double a, double b, double c, double e) {
 double fa = foo(a), fb = foo(b), fc = foo(c);
 double step1 = (c - a) * 0.5, step2 = (c - a) * 0.5;
 while (fabs(c - a) > fabs(b * e) + ZEPS) {
 double step = calculate_step (a, fa, b, fb, c, fc, step2, e);
 double x = b + step;
 double fx = foo(x);
 if (fx < fb) {
 if (x > b) { a = b; fa = fb; }
 else { c = b; fc = fb; }
 b = x; fb = fx;
 }
 else {
 if (x < b) { a = x; fa = fx; }
 else { c = x; fc = fx; }
 step2 = step1; step1 = step;
 }
 }
 return b;
}
Important Characteristics

• Parabolic interpolation often converges faster
 • The preferred algorithm
• Golden search provides worst-case performance guarantee
 • A fall-back for uncooperative functions
• Switch algorithms when convergence is slow
• Avoid testing points that are too close

More advanced strategy: Brent’s algorithm

• Track 6 points (not all distinct)
 • The bracket boundaries \((a, b)\)
 • The current minimum \(x\)
 • The second and third smallest value \((w, v)\)
 • The new points to be examined \(u\)
• Parabolic interpolation
 • Using \((x, w, v)\) to propose new value for \(u\).
 • Additional care is required to ensure \(u\) falls between \(a\) and \(b\).

Recommended Reading

• Numerical Recipes in C++
• Chapter 10.0 - 10.3

Multidimensional Optimization: A mixture distribution

- Density
 - Value
A general mixture distribution

\[p(x; \pi, \phi, \eta) = \sum_{i=1}^{k} \pi_i f(x; \phi_i, \eta) \]

- \(x \): observed data
- \(\pi \): mixture proportion of each component
- \(f \): the probability density function
- \(\phi \): parameters specific to each component
- \(\eta \): parameters shared among components
- \(k \): number of mixture components

Gaussian MLE in single-dimensional space

\[p(x; \mu, \sigma^2) = \mathcal{N}(x; \mu, \sigma^2) \]

Given \(x \), what is the MLE parameters of \(\mu \) and \(\sigma^2 \)?
- Analytical solution does exist
 - \(\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} \)
 - \(\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i - \hat{\mu})^2}{n} \)

MLE in Gaussian mixture

Parameter estimation in Gaussian mixture
- No analytical solution
- Numerical optimization required
- Multi-dimensional optimization problem
 - \(\mu_1, \mu_2, \ldots, \mu_k \)
 - \(\sigma_1^2, \sigma_2^2, \ldots, \sigma_k^2 \)

Possible approaches
- Simplex Method
- Expectation Maximization
- Markov-Chain Monte Carlo
The Simplex Method

- Calculate likelihoods at simplex vertices
 - Geometric shape with \(k + 1 \) corners
 - A triangle in \(k = 2 \) dimensions
- Simplex crawls
 - Towards minimum
 - Away from maximum
- Probably the most widely used optimization method

How the Simplex Method Works

Simplex Method in Two Dimensions

- Evaluate functions at three vertices
 - The highest (worst) point
 - The next highest point
 - The lowest (best) point
- Intuition
 - Move away from high point, towards low point

Direction for Optimization
Reflection

This is the default new trial point

Reflection and Expansion

If reflection results in new minimum...

Move further along minimization direction

Contraction (1-dimension)

Try a smaller step

If x' is still the worst point...

Contraction

"passing through the eye of a needle"

If a simple contraction doesn't improve things, then try moving all points towards the current minimum
Summary : The Simplex Method

- **Original Simplex**
- **Reflection**
- **Contraction**
- **Reflection and Expansion**
- **Multiple Contraction**

Today

- Single-dimensional minimization
 - Minimization using Parabola
 - Adaptive minimization using parabola and golden search
 - A taste of Brent’s method
- Multi-dimensional optimization
 - Gaussian mixture example
 - Simplex algorithm

Upcoming lectures

Next Lecture
- Special lecturer: Mary Kate Trost
- Practical lessons in C++

Next week
- Details of simplex algorithm
- Expectation-Maximization algorithm