Recap: The E-M algorithm

Expectation step (E-step)

- Given the current estimates of parameters $\lambda^{(t)}$, calculate the conditional distribution of latent variable z.
- Then the expected log-likelihood of data given the conditional distribution of z can be obtained

$$Q(\lambda | \lambda^{(t)}) = E_{z|x,\lambda^{(t)}} \left[\log p(x, z | \lambda) \right]$$

Maximization step (M-step)

- Find the parameter that maximize the expected log-likelihood

$$\lambda^{(t+1)} = \arg \max_{\lambda} Q(\lambda | \lambda^{(t)})$$

Recap - Local minimization methods

The problem with hill climbing is that it gets stuck on "local-maxima"

Recap - Global minimization with Simulated Annealing

Simulated Annealing can escape local minima with chaotic jumps

Recap - Simulated Annealing Recipes

1. Select starting temperature and initial parameter values
2. Randomly select a new point in the neighborhood of the original
3. Compare the two points using the Metropolis criterion
4. Repeat steps 2 and 3 until system reaches equilibrium state
 - In practice, repeat the process N times for large N.
5. Decrease temperature and repeat the above steps, stop when system reaches frozen state

Optimization Strategies

- Single Dimension
 - Golden Search
 - Parabolic Approximations
- Multiple Dimensions
 - Simplex Method
 - E-M Algorithm
 - Simulated Annealing
 - Gibbs Sampling

Gibbs Sampler

- Another MCMC Method
- Update a single parameter at a time
- Sample from conditional distribution when other parameters are fixed

Gibbs Sampler Algorithm

1. Consider a particular choice of parameter values $\lambda^{(t)}$.
2. Define the next set of parameter values by
 - Selecting a component to update, say i.
 - Sample value for $\lambda_i^{(t+1)}$, from $p(\lambda_i|x, \lambda_1, \cdots, \lambda_{i-1}, \lambda_{i+1}, \cdots, \lambda_k)$.
3. Increment t and repeat the previous steps.
An alternative Gibbs Sampler Algorithm

Consider a particular choice of parameter values \(\lambda^{(t)} \).

Define the next set of parameter values by

1. Sample value for \(\lambda_1^{(t+1)} \), from \(p(\lambda_1 | x, \lambda_2, \lambda_3, \cdots, \lambda_k) \).
2. Sample value for \(\lambda_2^{(t+1)} \), from \(p(\lambda_2 | x, \lambda_1, \lambda_3, \cdots, \lambda_k) \).
3. Sample value for \(\lambda_k^{(t+1)} \), from \(p(\lambda_k | x, \lambda_1, \lambda_2, \cdots, \lambda_{k-1}) \).

Increment \(t \) and repeat the previous steps.

Using conditional distributions

- Observed data \(\mathbf{x} = (x_1, \cdots, x_n) \)
- Parameters \(\lambda = (\pi_1, \cdots, \pi_k, \mu_1, \cdots, \mu_k, \sigma_1^2, \cdots, \sigma_k^2) \).
- Sample each \(\lambda_i \) from conditional distribution - not very straightforward

Using source of each observations

- Observed data \(\mathbf{x} = (x_1, \cdots, x_n) \)
- Parameters \(\mathbf{z} = (z_1, \cdots, z_n) \) where \(z_i \in \{1, \cdots, k\} \).
- Sample each \(z_i \) conditioned by all the other \(z \).

Update procedure in Gibbs sampler

\[
\Pr(z_j = i | x_j, \pi, \lambda) = \frac{\pi_i \mathcal{N}(x_j | \mu_i, \sigma_i^2)}{\sum_l \pi_l \mathcal{N}(x_j | \mu_l, \sigma_l^2)}
\]

- Calculate the probability that the observation is originated from a specific component.
- For a random \(j \in \{1, \cdots, n\} \), sample \(z_j \) based on the current estimates of mixture parameters.

Initialization

- Must start with an initial assignment of component labels for each observed data point.
- A simple choice is to start with random assignment with equal probabilities.
The Gibbs Sampler

- Select initial parameters
- Repeat a large number of times
 - Select an element
 - Update conditional on other elements

Update procedure in Gibbs sampler

\[
Pr(z_j = i | x_j, \pi, \lambda) = \frac{\pi_i \mathcal{N}(x_j | \mu_i, \sigma_i^2)}{\sum_i \pi_i \mathcal{N}(x_j | \mu_i, \sigma_i^2)}
\]

- Calculate the probability that the observation is originated from a specific component
- For a random \(j \in \{1, \cdots, n\} \), sample \(z_j \) based on the current estimates of mixture parameters.

Implementing Gaussian Mixture Gibbs Sampler

class normMixGibbs {
public:
 int k; // # of components
 int n; // # of data
 std::vector<double> data; // size n: observed data
 std::vector<double> labels; // size n: label assignment for each observation
 std::vector<double> pis; // size k: pis
 std::vector<double> means; // size k: means
 std::vector<double> sigmas; // size k: sds
 std::vector<int> counts; // size k: # of elements in each labels
 std::vector<double> sums; // size k: sum across each label
 std::vector<double> sumsqs; // size k: squared sum across each label
 normMixGibbs(std::vector<double>& _data, int _k); // constructor
 void initParams(); // initialize parameters
 void updateParams(int numObs); // update parameters
 void remove(int i); // remove elements
 void add(int i, int label); // add an element with new label
 int sampleLabel(double x); // sample the label of an element
 void runGibbs(); // run Gibbs sampler
};

Sampling label of selected value

// x is the data needs a new label assignment
int normMixGibbs::sampleLabel(double x) {
 double p = randu(0,1); // generate a random probability
 // evaluate the likelihood of the observations given parameters
 double lk = mixLLKFunc::dmix(x, pis, means, sigmas);
 // use randomized values to randomly assign labels
 // based on the likelihood contributed by each component,
 for(int i=0; i < k-1; ++i) {
 double pl = pis[i] * mixLLKFunc::dnorm(x,means[i],sigmas[i])/lk;
 if (p < pl) return i;
 p -= pl;
 }
 // evaluate only k-1 components and assign to the last one if not found
 return k-1;
}
Calculating the parameters at each update

- For each $i \in \{1, \cdots, k\}$
 - $n_i = \sum_{j=1}^{n} 1(z_j = i)$
 - $\pi_i = n_i / n$
 - $\mu_i = \sum_{j=1}^{n} x_j 1(z_j = i)$
 - $\sigma^2_i = \sum_{j=1}^{n} (x_j - \mu_i)^2 / n_i$

This procedure takes $O(n)$, which is quite expensive to run over a large number of iterations.

- Is it possible to reduce the time complexity to constant ($O(k)$)?

Removing and adding elements

// We want to remove object to calculate the conditional distribution
// excluding one component's label information
void normMixGibbs::remove(int i) {
 int l = labels[i];
 --counts[l];
 sums[l] -= data[i];
 sumsqs[l] -= (data[i]*data[i]);
 }

// Adding the removed object with newer label assignment
void normMixGibbs::add(int i, int label) {
 labels[i] = label;
 ++counts[label];
 sums[label] += data[i];
 sumsqs[label] += (data[i]*data[i]);
 }

The Gibbs Sampler

// update parameters for each components
// having counts, sums, sumsqs allows to reduce time complexity
void normMixGibbs::updateParams(int numObs) {
 for(int i=0; i < k; ++i) { // This takes O(k) complexity
 pis[i] = (double)counts[i]/(double)(numObs);
 means[i] = sums[i]/counts[i];
 sigmas[i] = sqrt((sumsqs[i]/counts[i] - means[i]*means[i])+1e-7);
 }
}

void normMixGibbs::runGibbs() {
 initParams(); // initialize label assignments
 for(int i=0; i < 1000000; ++i) { // repeat a large number of times
 int id = randn(0,n);
 // select a label to update
 if (counts[labels[id]] < MIN_COUNTS) continue; // avoid boundary conditions
 remove(id);
 updateParams(n-1); // update pis, means, sigmas
 int label = sampleLabel(data[id]); // sample new label conditionally
 add(id, label); // add the element back with new label

 if ((i > BURN_IN) && (i % THIN_INTERVAL == 0)) {
 // calculate summary statistics of the parameters to estimate
 }
 }
}
Initialization

```cpp
void normMixGibbs::initParams() {
    // set everything to zero
    for(int i=0; i < k; ++i) {  
        counts[i] = 0;
        sums[i] = sumsqs[i] = 0;
    }

    int r;
    for(int i=0; i < n; ++i) {
        r = randn(0, k);
        labels[i] = r;  // assign random labels at the beginning
        ++counts[r];  // update counts, sums, sumsqs accordingly
        sums[r] += data[i];
        sumsqs[r] += (data[i]*data[i]);
    }
}
```

Notes on Gibbs Sampler

- Previous optimizers settled on a minimum eventually
- The Gibbs sampler continues wandering through the stationary distribution
- Forever!

A running example

```bash
user@host:~> ./mixSimplex ./mix.dat
Minimum = 3043.46, at pi = 0.667271, between N(-0.0304604,1.00326) and N(5.01226,0.956009)

user@host:~> ./mixEM ./mix.dat
Minimum = 3043.46, at pi = 0.667842, between N(-0.0299457,1.00791) and N(5.0128,0.913825)

user@host:~> ./mixSA ./mix.dat
Minimum = 3043.46, at pi = 0.667793, between N(-0.030148,1.00478) and N(5.01245,0.91296)

user@host:~> ./mixGibbs ./mix.dat
Minimum = 3043.46, pi = 0.667772, between N(-0.0301499,1.00764) and N(5.01214,0.915481)
```

Drawing Inferences

- To draw inferences, summarize parameter values from stationary distribution
- For example, calculate the means or medians.
- Burn-in time required to converge to a reasonable solution before start collecting the estimated parameter values
Log-likelihoods changes

![Log-likelihood Changes](image1)

Mixing proportions

![Mixture proportion 1](image2)

Means

![Means](image3)

Standard deviations

![Sigmas](image4)
Advantages of Gibbs Samplers

- Gibbs sampler allows to obtain posterior distribution of parameters, conditioned on the observed data.
- Joint distribution between parameters can also be obtained.

Connecting Simulated Annealing and Gibbs Sampler

Both Methods are Markov Chains

- The distribution of $\lambda^{(t)}$ only depends on $\lambda^{(t-1)}$
- Update rule defines the transition probabilities between two states, requiring aperiodicity and irreducibility.

Both Methods are Metropolis-Hastings Algorithms

- Acceptance of proposed update is probabilistically determined by relative probabilities between the original and proposed states.

Metropolis-Hastings Acceptance Probability

- Let $\theta_{ij} = \Pr(q_t = j|q_{t-1} = i)$
- Let π_i and π_j be the relative probabilities of each state
- The Metropolis-Hastings acceptance probability is
 \[a_{ij} = \min \left(1, \frac{\pi_j \theta_{ji}}{\pi_i \theta_{ij}} \right) \]
- We need to know relative ratio between π_j and π_i.
- The equilibrium distribution $\Pr(q_t = i) = \pi_i$ will be reached.

Gibbs Sampler

- The Gibbs sampler ensures that $\pi_i \theta_{ij} = \pi_j \theta_{ji}$
- As a consequence,
 \[a_{ij} = \min \left(1, \frac{\pi_j \theta_{ji}}{\pi_i \theta_{ij}} \right) = 1 \]
Simulated Annealing

- Given a temperature parameter τ
- π_i are replaced with
 \[\pi_i^{(\tau)} = \frac{\pi_i^{1/\tau}}{\sum_j \pi_j^{1/\tau}} \]
- At high temperatures, the probability distribution between the states are flattened.
- At low temperatures, larger weights are given to high probability states

Summary

Today - Gibbs Sampler
- MCMC + Metropolis-Hasting Method
- Proposed updates per each parameter based on conditional distribution
- Effective way to obtain joint distribution between the parameters empirically

Next lecture
- Further applications of multidimensional optimization methods