#### **Functional Genomics**

Nov 29, 2017 Sarah Gagliano Sarah.Gagliano@umich.edu

Biostat666: Statistical methods in human genetics

## Goals for this lecture

Provide an overview of functional genomics

Understand its importance/uses in the context of GWAS

### Outline

Functional Genomics 101

 Using functional genomics to prioritize risk variants

### Outline

Functional Genomics 101

 Using functional genomics to prioritize risk variants

## DNA $\rightarrow$ mRNA $\rightarrow$ amino acids chain (protein)

Transcription

**Translation** 

The "Central Dogma" of Biology

Coding variation





Coding variation







Coding variation

**₩** phenotype









Coding variation

phenotype







Coding variation



phenotype

# Most GWAS hits are non-coding



#### Scientists Find 'Junk DNA' Useful After All



Come on! Help me find it, I think this one controls hair loss!

# ENCODE Project creates a map of functional regions

Non-coding regions are not "junk"!





Figure from Ecker et al. (2012) Nature, 489: 52-55



Figure from Ecker et al. (2012) Nature, 489: 52-55

# Marks associated with closed vs. open chromatin



# **Histone Modifications**

# Histone marks define functional regions



# **Enhancer-Promoter Looping**



Fig 2b from Cavalli & Misteli (2012) *Nature Structural & Molec Bio* 

# **Detecting Histone Modifications**

1. Wet lab

2. Impute

ChiP-seq to map out histone marks

Newer:
Chromatin
conformation
capture
techniques (e.g.
Hi-C)



http://mmg-233-2013-genetics-genomics.wikia.com/wiki/ Chromatin\_Immunoprecipitatio n\_(ChIP)

### Correlations across marks per sample



# Correlations across samples per mark



#### Use correlations btwn marks & btwn samples



#### Access to Histone Modifications

Roadmap Epigenomics Project (lots of tissues)

ENCODE (lots of cell lines)

PsychENCODE (brain from control and/or psychiatric samples)

UCSC Genome Browser to visualize

# eQTLs

# What is an expression quantitative trait locus?

**Expression quantitative trait loci** (eQTLs) = DNA loci that regulate expression levels of RNAs





Adapted from: Wolen AR, Miles MF. Identifying gene networks underlying the neurobiology of ethanol and alcoholism. Alcohol Res. 2012;34(3):306-17.

#### RNA-seq to identify eQTLs



#### Access to eQTLs

GTEx (44 tissues with eQTLs) http://www.gtexportal.org/

UKBEC (10 brain tissues with eQTLs) http://braineac.org/

Individual studies

# **DNA** methylation

# 5-methyl-Cytosine





TSG= tumor suppressor gene





Nature Reviews | Genetics

# DNA Methylation changes over time



# DNA Methylation changes over time



3-year-old twins

50-year-old twins











## Arrays to assess DNA CH<sub>3</sub>

Illumina HumanMethylation450K

Illumina EPIC (>850K CH<sub>3</sub> sites)

- >90% content on 450K
- New: CH<sub>3</sub> sites in ENCODE
   open chromatin & enhancers

## (Gold Standard) Bisulfite Conversion of gDNA

#### Step 1

#### Denaturation

Incubation at 95°C fragments genomic DNA

#### Step 2

#### Conversion

Incubation with sodium bisulfite at 65°C and low pH (5-6) deaminates cytosine residues in fragmented DNA

#### Step 3

#### Desulphonation

Incubation at high pH at room temperature for 15 min removes the sulfite moeity, generating uracil

5-Methylcytosine (5-mC)

5-mC and 5-hmC (not shown) are not susceptible to bisulfite conversion and remain intact

## Genetic variation $\rightarrow$ gene regulation



**y** phenotype

Non-coding variation

### Genetic variation







Non-coding variation

phenotype

### Genetic variation







Non-coding variation



# **Key Points**

- Most variants identified through GWAS are noncoding
- Non-coding DNA help regulate transcription (e.g. histone marks, eQTLs, DNA methylation)
- Functional annotations are dynamic

## Outline

Functional Genomics 101

 Using functional genomics to prioritize risk variants

# GWAS hits overlap with functional regions



(Franke et al. 2010) N SNPs= 938,703 N inds= 6,333 cases & 15,056 controls

Figure from Maurano et al. (2012) *Science*, 337: 1190-1195

# GWAS hits overlap with functional regions





(Franke et al. 2010) N SNPs= 938,703 N inds= 6,333 cases & 15,056 controls (Sotoodehnia et al. 2010) N SNPs ~2.5 M N inds~ 40K

## Use functional info to identify hits



## Machine Learning Steps



## Supervised vs. Unsupervised

# Supervised vs. Unsupervised

Class assignment (data are labelled)

Pattern discovery (data aren't labelled)

## A simple ML application



Find novel TFBS based on annotated TFBS in the JASPAR database vs. non-TFBS sequences

Find novel TFBS based on annotated TFBS in the JASPAR database vs. non-TFBS sequences

Identify clusters of similar tumors in cancer patients

Find novel TFBS based on annotated TFBS in the JASPAR database vs. non-TFBS sequences

Identify clusters of similar tumors in cancer patients

Identify risk variants from other variants trained on genomic characteristics for *Human Gene Mutation Database* SNPs vs. 1KG (GWAVA, Ritchie et al. 2014)

Find novel TFBS based on annotated TFBS in the JASPAR database vs. non-TFBS sequences

Identify clusters of similar tumors in cancer patients

Identify risk variants from other variants trained on genomic characteristics for *Human Gene Mutation Database* SNPs vs. 1KG (GWAVA, Ritchie et al. 2014)

Segment the genome into X chromatin states using chromatin mark patterns (Segway, Hoffman et al. 2012)



# A Bayesian Method to Incorporate Hundreds of Functional Characteristics with Association Evidence to Improve Variant Prioritization

Sarah A. Gagliano<sup>1,2</sup>, Michael R. Barnes<sup>3</sup>, Michael E. Weale<sup>4,9</sup>, Jo Knight<sup>1,2,5,8,9</sup>

### TECHNICAL REPORTS

nature genetics

A general framework for estimating the relative pathogenicity of human genetic variants

Martin Kircher<sup>1,5</sup>, Daniela M Witten<sup>2,5</sup>, Preti Jain<sup>3,4</sup>, Brian J O'Roak<sup>1,4</sup>, Gregory M Cooper<sup>3</sup> & Jay Shendure<sup>1</sup>

#### **BRIEF COMMUNICATIONS**

# Functional annotation of noncoding sequence variants

Graham R S Ritchie<sup>1,2</sup>, Ian Dunham<sup>1</sup>, Eleftheria Zeggini<sup>2</sup> & Paul Flicek<sup>1,2</sup>

#### TECHNICAL REPORTS

nature genetics

A method to predict the impact of regulatory variants from DNA sequence

Dongwon Lee<sup>1,4</sup>, David U Gorkin<sup>1,3,4</sup>, Maggie Baker<sup>1</sup>, Benjamin J Strober<sup>2</sup>, Alessandro L Asoni<sup>2</sup>, Andrew S McCallion<sup>1</sup> & Michael A Beer<sup>1,2</sup>

## Support Vector Machines

Maximum-margin separating hyperplane in multi-dimensional space



# Which line provides the best classifier?



# Which line provides the best classifier?



# The "Soft Margin"



# The "Soft Margin"



# Linearly nonseparable? Kernel Trick



1. Kernel function to project the data in 2-D to 4-D space

# Linearly nonseparable? Kernel Trick



1. Kernel function to project the data in 2-D to 4-D space 2. Project SVM hyperplane in 4-D to original 2-D space

- 1. Classifier
- 2. SVM protocol
- 3. Some results

### TECHNICAL REPORTS

nature genetics

A general framework for estimating the relative pathogenicity of human genetic variants

Martin Kircher<sup>1,5</sup>, Daniela M Witten<sup>2,5</sup>, Preti Jain<sup>3,4</sup>, Brian J O'Roak<sup>1,4</sup>, Gregory M Cooper<sup>3</sup> & Jay Shendure<sup>1</sup>

# 1. Classifier

## Simulated vs. Observed variants

Simulated (14.7 million variants):

Empirical model of sequence evolution with local adjustment of mutation rates

## Simulated vs. Observed variants

Simulated (14.7 million variants):

- Empirical model of sequence evolution with local adjustment of mutation rates

Observed (14.7 million variants):

 Human derived allele >95% (exposed to many generations of natural selection)

1% reserved for testing

## Ancestral Allele (AA) and Derived Allele (DA)



## Peppered Moth Evolution



Ancestral

Derived

No pollution

## Peppered Moth Evolution





Ancestral

Derived

No pollution

**Pollution** 

## 2. SVM Protocol

## Kircher's use of SVM

- Linear kernel
- Prior feature selection (univariate analysis)
- Imputed missing values
- Boolean variables for categorical variables
- Interaction terms (include the few that improve the two-feature linear regression models)

## 3. Some results

### Performance in GWAS



## deltaSVM

- 1. Classifier
- 2. SVM protocol
- 3. Some results

 Takes into account tissuespecificity

### TECHNICAL REPORTS

nature genetics

A method to predict the impact of regulatory variants from DNA sequence

Dongwon Lee<sup>1,4</sup>, David U Gorkin<sup>1,3,4</sup>, Maggie Baker<sup>1</sup>, Benjamin J Strober<sup>2</sup>, Alessandro L Asoni<sup>2</sup>, Andrew S McCallion<sup>1</sup> & Michael A Beer<sup>1,2</sup>



Celltypespecific annots for training celltypespecific models

## deltaSVM

- 1. Classifier
- 2. SVM protocol
- 3. Some results

 Takes into account tissuespecificity

### TECHNICAL REPORTS

nature genetics

A method to predict the impact of regulatory variants from DNA sequence

Dongwon Lee<sup>1,4</sup>, David U Gorkin<sup>1,3,4</sup>, Maggie Baker<sup>1</sup>, Benjamin J Strober<sup>2</sup>, Alessandro L Asoni<sup>2</sup>, Andrew S McCallion<sup>1</sup> & Michael A Beer<sup>1,2</sup>

delta SVM
values for 3
experimentally
validated SNPs

human prostate adenocarcinoma

Hepatocytes (main cell in liver)



# Key Points

- GWAS variants are enriched for functional information in a tissue-specific manner
- Machine learning can be used to find patterns in functional data to identify novel variants associated with disease