Sibling Pair Linkage Tests

Biostatistics 666

Today

- Introduction to linkage analysis of affected siblings
- A simple disease model
- Probability of sampling affected relative pairs
- Linkage analysis with sibling pairs using Risch's Maximum LOD Score (MLS)
- Distribution of IBD in affected sibling pairs and Holman's "Possible Triangle Constraint"

Examplar Linkage Study

- Concannon et al (1998) Nature Genetics, 19:292-296
- Affected sibling pair study of type 1 diabetes
- Common chronic disease of childhood
- 292 affected sibpairs for initial screen
- 467 affected sibpairs for follow-up
- Highest LOD score reaches 34.2 near HLA on chr. 6
- At this locus, chromosomes carried by affected siblings are identical 73\% of the time.

Examplar Linkage Study Results

Concannon et al (1998) Nature Genetics, 19:292-296

Single Locus Disease Model

1. Allele frequencies

- For normal and susceptibility alleles

2. Penetrances

- Probability of disease for each genotype
- Useful in exploring behavior of linkage and association tests
- Simplification of reality, ignores other loci and the environment

Penetrance

- $f_{i j}=P($ Affected $\mid G=i j)$
- Probability someone with genotype ij is affected
- Models the marginal effect of each locus

Using Penetrances

- Allele frequency p
- Genotype penetrances f_{11}, f_{12}, f_{22}
- Probability of genotype given disease
- $P(G=i j \mid D)=$

Prevalence

- K =

Pairs of Individuals

- A genetic model can predict probability of sampling different affected relative pairs
- We will consider some simple cases:
- Unrelated individuals
- Parent-offspring pairs
- Monozygotic twins
- What do the pairs above have in common?
- HINT: Think about the amount of shared genetic material

What we might expect ...

Related individuals have similar genotypes

- For a genetic disease...
- Probability that two relatives are both affected must be greater or equal to the probability that two randomly sampled unrelated individuals are affected

Relative Risk and Prevalence

- In relation to affected proband, define
- K_{R} prevalence in relatives of type R
- $\lambda_{R}=K_{R} / K$ increase in risk for relatives of type R
- λ_{R} is a measure of the overall effect of a locus
- Useful for predicting power of linkage studies

Unrelated Individuals

- Probability of affected pair of unrelateds
$P(a$ and b affected $)=\mathrm{P}(a$ affected $) \mathrm{P}(b$ affected $)$

$$
\begin{aligned}
& =\mathrm{P}(\text { affected })^{2} \\
& =\left[p^{2} f_{11}+2 p(1-p) f_{12}+(1-p)^{2} f_{22}\right]^{2} \\
& =K^{2}
\end{aligned}
$$

- For any two related individuals, probability that both are affected should be greater

Monozygotic Twins

Probability of affected pair of identical twins

$$
\begin{aligned}
P(M Z \text { pair affected }) & =\sum_{G} P(G) P(a \text { affected } \mid G) P(b \text { affected } \mid G) \\
& =p^{2} f_{11}^{2}+2 p(1-p) f_{12}^{2}+(1-p)^{2} f_{22}^{2} \\
& =K_{M Z} K \\
& =\lambda_{M Z} K K
\end{aligned}
$$

- $\lambda_{M Z}$ will be greater than for any other relationship

Parent Offspring Pairs

Probability of affected parent-offspring pair

$$
\begin{aligned}
P & =P(\text { parent and child affected }) \\
& =\sum_{\mathrm{G}_{\mathrm{P}}} \sum_{\mathrm{G}_{0}} P\left(G_{P}, G_{O}\right) f_{G_{p}} f_{G_{o}} \\
& =\sum_{i} \sum_{j} \sum_{k} P(i, j, k) f_{i j} f_{i k} \\
& =p^{3} f_{11}^{2}+(1-p)^{3} f_{22}^{2}+p(1-p) f_{12}^{2}+2 p^{2}(1-p) f_{11} f_{12}+2 p(1-p)^{2} f_{22} f_{12} \\
& =K K_{O} \\
& =\lambda_{O} K K
\end{aligned}
$$

- λ_{0} will be between 1.0 and $\lambda_{M Z}$

IBD - Identity by Descent

- Sharing of segregating stretch of chromosome within a family
- If a stretch of chromosome is shared IBD, all variants within the stretch will be shared
- At any locus siblings share 0,1 or 2 alleles IBD
- Baseline probabilities of IBD 0, 1 and 2 are $1 / 4,1 / 2$ and $1 / 4$

For a single locus model...

$\lambda_{\text {IBD }=2}=\lambda_{M Z}$
$\lambda_{\text {IBD }=1}=\lambda_{O}$
$\lambda_{\text {IBD }=0}=1$
$K_{I B D=2}=K_{M Z}$
$K_{\text {IBD }=1}=K_{O}$
$K_{I B D=0}=K$

Model ignores contribution of other genes and environment

Simple model that allows for useful predictions

- Risk to half-siblings
- Risk to cousins
- Risk to siblings

Point of Situation

Probabilities of affected pairs for

- Unrelated Individuals
- Monozygotic Twins
- Parent-Offspring Pairs

Each of these shares a fixed number of alleles IBD ...

Affected Half-Siblings

- IBD sharing
- 0 alleles with probability 50%
- 1 allele with probability 50%
- This gives ...

$$
\begin{gathered}
\lambda_{H}=1 / 2 \lambda_{O}+1 / 2=1 / 2\left(\lambda_{O}+1\right) \\
K_{H}=1 / 2 K_{O}+1 / 2 K=1 / 2\left(K_{O}+K\right)
\end{gathered}
$$

Affected Sibpairs

- IBD sharing ...
- 0 alleles with probability 25\%
- 1 alleles with probability 50%
- 2 alleles with probability 25%

This gives ...
$\lambda_{S}=1 / 4 \lambda_{M Z}+1 / 2 \lambda_{O}+1 / 4=1 / 4\left(\lambda_{M Z}+2 \lambda_{O}+1\right)$ which implies

$$
\lambda_{M Z}=4 \lambda_{S}-2 \lambda_{o}-1
$$

Important Notes...

- We can use allele frequencies and penetrances to estimate probability of affected relative pairs
- Among sibling pairs, pairs with two alleles "identical-by-descent" have the highest probability of both being affected
- Most like "identical twins" for single locus models

Affected Sibpair Linkage Analyses

- Consider affected sibling pairs
- Consider one genetic marker at a time
- Are paired genotypes more similar than expected?
- Only a subset of all genetic markers must be examined

Likelihood Based Linkage Test

- Depends on three parameters $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$
${ }^{-}$Probability of sharing 0,1 and 2 alleles IBD
- Null likelihood uses $z_{0}=1 / 4, z_{1}=1 / 2, z_{2}=1 / 4$
- Alternative likelihood uses MLE for $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$
- Compare likelihoods with likelihood ratio test

Potential Sib-Pair Likelihood

Under the null hypothesis:

$$
L=(1 / 4)^{n_{\text {IBDO }}}(1 / 2)^{n_{B D D}}(1 / 4)^{n_{B D D}}
$$

Under the alternative hypothesis

$$
L=\left(\hat{z}_{0}\right)^{n_{\text {IBDO }}}\left(\hat{z}_{1}\right)^{n_{B D 1}}\left(\hat{z}_{2}\right)^{n_{\text {IBD } 2}}
$$

Likelihood Ratio Based Test Statistics

$$
\begin{aligned}
L O D & =\log _{10} \frac{L\left(\hat{z}_{0}, \hat{z}_{1}, \hat{z}_{2}\right)}{L\left(z_{0}=1 / 4, z_{1}=1 / 2, z_{2}=1 / 4\right)} \\
\chi^{2} & =2 \ln \frac{L\left(\hat{z}_{0}, \hat{z}_{1}, \hat{z}_{2}\right)}{L\left(z_{0}=1 / 4, z_{1}=1 / 2, z_{2}=1 / 4\right)} \\
& =2 \ln L\left(\hat{z}_{0}, \hat{z}_{1}, \hat{z}_{2}\right)-2 \ln L\left(z_{0}=1 / 4, z_{1}=1 / 2, z_{2}=1 / 4\right)
\end{aligned}
$$

In real life...

- Markers are only partially informative
- IBD sharing is equivocal
- Uncertainty can only be partly reduced by examining relatives
- Need an alternative likelihood
- Should allow for partially informative data

Desirable Properties

Models IBD probabilities $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$

- Probability of sharing 0,1 and 2 alleles IBD
- Uses partial information on IBD sharing

For unambiguous data, equivalent to previous likelihood

For A Single Family

$$
L_{i}=\sum_{j=0}^{2} P(I B D=j \mid \text { ASP }) P\left(\text { Genotypes }_{i} \mid I B D=j\right)=\sum_{j=0}^{2} z_{j} w_{i j}
$$

Risch (1990) defines

$$
w_{i j}=P\left(\text { Genotypes }_{i} \mid I B D=j\right)
$$

We only need proportionate $w_{i j}$

Likelihood and LOD Score

$L\left(z_{0}, z_{1}, z_{2}\right)=\prod_{i} \sum_{j} z_{j} w_{i j}$
$L O D=\log _{10} \prod_{i} \frac{\hat{z}_{0} w_{i 0}+\hat{z}_{1} w_{i 1}+\hat{z}_{2} w_{i 2}}{1 / 4 w_{i 0}+1 / 2 w_{i 1}+1 / 4 w_{i 2}}$

The MLS statistic is the LOD evaluated at the MLEs of $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$

P(Marker Genotype|IBD State)

Relative		IBD		
I	II	0	1	2
(a,b)	(c,d)	$4 \mathrm{pap}_{2} \mathrm{p}_{\text {c }} \mathrm{PPd}^{\text {d }}$	0	0
(a,a)	(b,c)	$2 \mathrm{pa}^{2} \mathrm{prpp}_{\mathrm{c}}$	0	0
(a,a)	(b,b)	$\mathrm{pa}^{2} \mathrm{pb}^{2}{ }^{\text {a }}$	0	0
(a,b)	(a,c)	$4 \mathrm{~Pa}^{2} \mathrm{~Pb}^{2} \mathrm{P}_{\mathrm{c}}$	$\mathrm{pap}_{2} \mathrm{p}_{\mathrm{c}}$	0
(a,a)	(a,b)	$2 \mathrm{pa}_{2}{ }^{3} \mathrm{~Pb}_{2}$	$\mathrm{p}_{2}{ }^{2} \mathrm{~Pb}^{2}$	0
(a,b)	(a,b)	$4 \mathrm{pa}^{2} \mathrm{pb}^{4}{ }^{2}$	$\left(\mathrm{papb}^{2}{ }^{2} \mathrm{pa}^{2}{ }^{2} \mathrm{~Pb}^{\text {a }}\right.$)	$2 \mathrm{pap}^{2}{ }_{\text {b }}$
(a,a)	(a,a)	Pa^{4}	$\mathrm{Pa}^{3}{ }^{\text {a }}$	Pa^{2}
Prior P	bility	1/4	1/2	1/4

These probabilities apply to pair of individuals, when no other genotypes in the family are known.

Example scoring for \mathbf{w}_{ij}

In this case, relative weights depend on allele frequency.

More examples for sc oring: \mathbf{w}_{ij}

2,2
2,2
In these cases, multiple weights are non-zero (but equal) for each family.

How to maximize likelihood?

- If all families are informative
- Use sample proportions of IBD=0, 1, 2
- If some families are uninformative
${ }^{-}$Use an E-M algorithm
- At each stage generate complete dataset with fractional counts
- Iterate until estimates of LOD and z parameters are stable

Assigning Partial Counts in E-M

$$
\begin{aligned}
P(I B D & =j \mid \text { Genotypes })= \\
& =\frac{P(I B D=j \mid \text { ASP }) P(\text { Genotypes } \mid I B D=j)}{L_{i}} \\
& =\frac{P(I B D=j \mid A S P) P(\text { Genotypes } \mid I B D=j)}{\sum_{k=0}^{2} P(I B D=k \mid A S P) P(\text { Genotypes } \mid I B D=k)} \\
& =\frac{Z_{j} w_{i j}}{\sum_{k=0}^{2} z_{k} w_{i k}}
\end{aligned}
$$

Example

Assume a bi-allelic marker where the two alleles have identical frequencies.

Example of E-M Steps

Parameters				Equivocal Families								Other		
$\mathbf{z 0}$	$\mathbf{z 1}$	$\mathbf{z 2}$	IBD=0	IBD=1	IBD=2	IBD=2	LOD	LODi	LODu					
0.250	0.500	0.250	0.56	2.22	2.22	5	0.00	0.00	0.00					
0.056	0.222	0.722	0.08	0.66	4.26	5	3.19	2.30	0.89					
0.008	0.066	0.926	0.01	0.17	4.82	5	4.01	2.84	1.16					
0.001	0.017	0.982	0.00	0.04	4.96	5	4.20	2.97	1.23					
0.000	0.004	0.996	0.00	0.01	4.99	5	4.25	3.00	1.24					
0.000	0.001	0.999	0.00	0.00	5.00	5	4.26	3.01	1.25					
0.000	0.000	1.000	0.00	0.00	5.00	5	4.26	3.01	1.25					

Properties of Pair Analyses Explored by Risch

Effect of marker informativeness

- Effect of adding relative genotypes
- Size of genetic effect

Degree of relationship

Marker Informativeness

Proportion of LOD Retained

Marker Informativeness Gene of Modest Effect ($\lambda_{0}=3$)

Expected LOD Score

Marker Informativeness Gene of Larger Effect ($\lambda_{0}=10$)

Expected LOD Score

Genotypes of Other Family Members

- Genotyping only pair decreases LOD score by
- Up to 33\% if only sib-pairs are genotyped
- Up to 60\% for second degree relatives
- Up to 70\% for third degree relatives
- Genotyping effort decreases by
- 50\% if only sib-pairs are typed
- 60\% if only second degree relatives typed
- 75% if only third degree relatives typed

Point of Situation ...

- Noted that affected siblings are more likely to share two alleles identical by descent

Derived a likelihood based linkage test that compares sharing probabilities to null defaults

- Let's examine these probabilities in more detail ...

Next

Predicting distribution of IBD

- Modeling marginal effect of a single locus
- Relative risk ratio (λ_{R})

The Possible Triangle for Sibling Pairs

- Plausible IBD values for affected siblings
- Refinement of the model of Risch (1990)

Recurrence Risks vs. IBD

$$
\lambda_{I B D=2}=\lambda_{M Z}=\frac{P(\text { affected } \mid I B D=2 \text { with affected relative })}{P(\text { affected })}
$$

$$
\lambda_{I B D=1}=\lambda_{O}=\frac{P(\text { affected } \mid I B D=1 \text { with affected relative })}{P(\text { affected })}
$$

$$
\lambda_{I B D=0}=1=\frac{P(\text { affected } \mid I B D=0 \text { with affected relative })}{P(\text { affected })}
$$

Bayes' Theorem: Predicting IBD Sharing

$P(I B D=i \mid$ affected pair $)=$

$$
\begin{aligned}
& =\frac{P(I B D=i) P(\text { affected pair } \mid I B D=i)}{\sum_{j} P(I B D=j) P(\text { affected pair } \mid I B D=j)} \\
& =\frac{P(I B D=i) \lambda_{I B D=i}}{\sum_{j} P(I B D=j) \lambda_{I B D=j}}
\end{aligned}
$$

Sibpairs
 Expected Values for z_{0}, z_{1}, z_{2}

$$
\begin{aligned}
& z_{0}=0.25 \frac{1}{\lambda_{s}} \\
& z_{1}=0.50 \frac{\lambda_{o}}{\lambda_{s}} \\
& z_{2}=0.25 \frac{\lambda_{\mathrm{MZ}}}{\lambda_{s}}
\end{aligned}
$$

$1 \leq \lambda_{o} \leq \lambda_{s} \leq \lambda_{M Z}$ for any genetic model

Possible Triangle

$$
z_{0}
$$

Possible Triangle

Z_{0}

Intuition

- Under the null
- True parameter values are (114, 12, 1/4)
- Estimates will wobble around this point
- Under the alternative
- True parameter values are within triangle
- Estimates will wobble around true point

Idea (Holmans, 1993)

Testing for linkage

- Do IBD patterns suggest a gene is present?
- Focus on situations where IBD patterns are compatible with a genetic model
- Restrict maximization to possible triangle

The possible triangle method

1. Estimate $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$ without restrictions
2. If estimate of $z_{1}>1 / 2$ then \ldots
a) Repeat estimation with $z_{1}=1 / 2$
b) If this gives $z_{0}>1 / 4$ then revert to null (MLS=0)
3. If estimates imply $2 z_{0}>z_{1}$ then ...
a) Repeat estimation with $z_{1}=2 z_{0}$
b) If this gives $z_{0}>1 / 4$ then revert to null (MLS=0)
4. Otherwise, leave estimates unchanged.

Possible Triangle

Holman's Example:

IBD	Pairs
0	8
1	60
2	32

MLS $=4.22$ (overall)
MLE $=(0.08,0.60,0.32)$
MLS $=3.35$ (triangle)
MLE $=(0.10,0.50,0.40)$

MLS Combined With Possible Triangle

- Under null, true \mathbf{z} is a corner of the triangle
- Estimates will often lie outside triangle
- Restriction to the triangle decreases MLS
- MLS threshold for fixed type I error decreases
- Under alternative, true \mathbf{z} is within triangle
- Estimates will lie outside triangle less often
- MLS decreases less
- Overall, power should be increased

Example

- Type I error rate of 0.001
- LOD of 3.0 with unrestricted method - Risch (1990)
- LOD of 2.3 with possible triangle constraint
- Holmans (1993)
- For some cases, almost doubles power

Recommended Reading

Holmans (1993)
Asymptotic Properties of
Affected-Sib-Pair Linkage Analysis
Am J Hum Genet 52:362-374

- Introduces possible triangle constraint
- Good review of MLS method

Recommended Reading

- Risch (1990)
- Linkage Strategies for Genetically Complex Traits. III. The Effect of Marker Polymorphism on Analysis of Affected Relative Pairs
- Am J Hum Genet 46:242-253
- Introduces MLS method for linkage analysis
- Still, one of the best methods for analysis pair data
- Evaluates different sampling strategies
- Results were later corrected by Risch (1992)

