Sibling Pair Linkage Tests

Biostatistics 666

Today ...

- Introduction to linkage analysis of affected siblings
- A simple disease model
 - Probability of sampling affected relative pairs
- Linkage analysis with sibling pairs using Risch's Maximum LOD Score (MLS)
- Distribution of IBD in affected sibling pairs and Holman's "Possible Triangle Constraint"

Examplar Linkage Study

- Concannon et al (1998) Nature Genetics, **19:**292-296
- Affected sibling pair study of type 1 diabetes
 - Common chronic disease of childhood
 - 292 affected sibpairs for initial screen
 - 467 affected sibpairs for follow-up
- Highest LOD score reaches 34.2 near HLA on chr. 6
 - At this locus, chromosomes carried by affected siblings are identical 73% of the time.

Examplar Linkage Study Results

Concannon et al (1998) Nature Genetics, 19:292-296

Single Locus Disease Model

- 1. Allele frequencies
 - For normal and susceptibility alleles
- 2. Penetrances
 - Probability of disease for each genotype
- Useful in exploring behavior of linkage and association tests
 - Simplification of reality, ignores other loci and the environment

Penetrance

•
$$f_{ij} = P(Affected | G = ij)$$

Probability someone with genotype *ij* is affected

Models the marginal effect of each locus

Using Penetrances

- Allele frequency p
- Genotype penetrances f_{11} , f_{12} , f_{22}
- Probability of genotype given disease
 - P(G = ij | D) =
- Prevalence
 - K =

Pairs of Individuals

- A genetic model can predict probability of sampling different affected relative pairs
- We will consider some simple cases:
 - Unrelated individuals
 - Parent-offspring pairs
 - Monozygotic twins
 - What do the pairs above have in common?
 - HINT: Think about the amount of shared genetic material

What we might expect ...

Related individuals have similar genotypes

• For a genetic disease...

 Probability that two relatives are both affected must be greater or equal to the probability that two randomly sampled unrelated individuals are affected

Relative Risk and Prevalence

- In relation to affected proband, define
 - K_R prevalence in relatives of type R
 - $\lambda_R = K_R/K$ increase in risk for relatives of type R
- λ_R is a measure of the overall effect of a locus
 Useful for predicting power of linkage studies

Unrelated Individuals

- Probability of affected pair of unrelateds
 - P(a and b affected) = P(a affected)P(b affected)

= P(affected)²
=
$$\left[p^2 f_{11} + 2p(1-p)f_{12} + (1-p)^2 f_{22}\right]^2$$

= K^2

 For any two related individuals, probability that both are affected should be greater

Monozygotic Twins

Probability of affected pair of identical twins

 $P(MZ \text{ pair affected}) = \sum_{G} P(G)P(a \text{ affected} | G)P(b \text{ affected} | G)$ $= p^{2}f_{11}^{2} + 2p(1-p)f_{12}^{2} + (1-p)^{2}f_{22}^{2}$ $= K_{MZ}K$ $= \lambda_{MZ}KK$

• λ_{MZ} will be greater than for any other relationship

Parent Offspring Pairs

Probability of affected parent-offspring pair

$$P = P(parent \text{ and } child \text{ affected})$$

= $\sum_{G_p} \sum_{G_0} P(G_p, G_0) f_{G_p} f_{G_0}$
= $\sum_i \sum_j \sum_k P(i, j, k) f_{ij} f_{ik}$
= $p^3 f_{11}^2 + (1-p)^3 f_{22}^2 + p(1-p) f_{12}^2 + 2p^2 (1-p) f_{11} f_{12} + 2p(1-p)^2 f_{22} f_{12}$
= KK_o
= $\lambda_o KK$

• λ_o will be between 1.0 and λ_{MZ}

IBD – Identity by Descent

- Sharing of segregating stretch of chromosome within a family
- If a stretch of chromosome is shared IBD, all variants within the stretch will be shared
- At any locus siblings share 0, 1 or 2 alleles IBD
 - Baseline probabilities of IBD 0, 1 and 2 are $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$

For a single locus model...

$$\lambda_{IBD=2} = \lambda_{MZ}$$
$$\lambda_{IBD=1} = \lambda_{O}$$
$$\lambda_{IBD=0} = 1$$

 $K_{IBD=2} = K_{MZ}$

 $K_{IRD-1} = K_O$

 $K_{IBD=0} = K$

- Model ignores contribution of other genes and environment
- Simple model that allows for useful predictions
 - Risk to half-siblings
 - Risk to cousins
 - Risk to siblings

Point of Situation

- Probabilities of affected pairs for
 - Unrelated Individuals
 - Monozygotic Twins
 - Parent-Offspring Pairs
- Each of these shares a fixed number of alleles IBD ...

Affected Half-Siblings

- IBD sharing
 - 0 alleles with probability 50%
 - 1 allele with probability 50%
- This gives ...

$$\lambda_{H} = \frac{1}{2} \lambda_{O} + \frac{1}{2} = \frac{1}{2} (\lambda_{O} + 1)$$
$$K_{H} = \frac{1}{2} K_{O} + \frac{1}{2} K = \frac{1}{2} (K_{O} + K)$$

Affected Sibpairs

- IBD sharing ...
 - 0 alleles with probability 25%
 - 1 alleles with probability 50%
 - 2 alleles with probability 25%
- This gives ...

$$\lambda_{S} = \frac{1}{4} \lambda_{MZ} + \frac{1}{2} \lambda_{O} + \frac{1}{4} = \frac{1}{4} (\lambda_{MZ} + 2\lambda_{O} + 1)$$

which implies

$$\lambda_{MZ} = 4\lambda_S - 2\lambda_O - 1$$

Important Notes...

- We can use allele frequencies and penetrances to estimate probability of affected relative pairs
- Among sibling pairs, pairs with two alleles "identical-by-descent" have the highest probability of both being affected
 - Most like "identical twins" for single locus models

Affected Sibpair Linkage Analyses

- Consider affected sibling pairs
- Consider one genetic marker at a time
- Are paired genotypes more similar than expected?
- Only a subset of all genetic markers must be examined

Likelihood Based Linkage Test

- Depends on three parameters z₀, z₁, z₂
 Probability of sharing 0, 1 and 2 alleles IBD
- Null likelihood uses $z_0 = \frac{1}{4}$, $z_1 = \frac{1}{2}$, $z_2 = \frac{1}{4}$
- Alternative likelihood uses MLE for z₀, z₁, z₂
 - Compare likelihoods with likelihood ratio test

Potential Sib-Pair Likelihood

Under the null hypothesis:

$$L = (\frac{1}{4})^{n_{IBD0}} (\frac{1}{2})^{n_{IBD1}} (\frac{1}{4})^{n_{IBD2}}$$

Under the alternative hypothesis

$$L = (\hat{z}_0)^{n_{IBD0}} (\hat{z}_1)^{n_{IBD1}} (\hat{z}_2)^{n_{IBD2}}$$

Likelihood Ratio Based Test Statistics

$$LOD = \log_{10} \frac{L(\hat{z}_0, \hat{z}_1, \hat{z}_2)}{L(z_0 = \frac{1}{4}, z_1 = \frac{1}{2}, z_2 = \frac{1}{4})}$$

$$\chi^{2} = 2 \ln \frac{L(\hat{z}_{0}, \hat{z}_{1}, \hat{z}_{2})}{L(z_{0} = \frac{1}{4}, z_{1} = \frac{1}{2}, z_{2} = \frac{1}{4})}$$

 $= 2 \ln L(\hat{z}_0, \hat{z}_1, \hat{z}_2) - 2 \ln L(z_0 = \frac{1}{4}, z_1 = \frac{1}{2}, z_2 = \frac{1}{4})$

In real life...

Markers are only partially informative

IBD sharing is equivocal

- Uncertainty can only be partly reduced by examining relatives
- Need an alternative likelihood
 - Should allow for partially informative data

Desirable Properties

- Models IBD probabilities z_0 , z_1 , z_2
 - Probability of sharing 0, 1 and 2 alleles IBD
- Uses partial information on IBD sharing

 For unambiguous data, equivalent to previous likelihood

For A Single Family

$$L_i = \sum_{j=0}^{2} P(IBD = j | ASP) P(Genotypes_i | IBD = j) = \sum_{j=0}^{2} z_j w_{ij}$$

Risch (1990) defines

$$w_{ij} = P(Genotypes_i | IBD = j)$$

We only need proportionate w_{ii}

Likelihood and LOD Score

$$L(z_0, z_1, z_2) = \prod_i \sum_j z_j w_{ij}$$

$$LOD = \log_{10} \prod_{i} \frac{\hat{z}_{0} w_{i0} + \hat{z}_{1} w_{i1} + \hat{z}_{2} w_{i2}}{\frac{1}{4} w_{i0} + \frac{1}{2} w_{i1} + \frac{1}{4} w_{i2}}$$

The MLS statistic is the LOD evaluated at the MLEs of z_0, z_1, z_2

P(Marker Genotype|IBD State)

Relative		IBD					
Ι	II	0	1	2			
(a,b)	(c,d)	$4p_ap_bp_cp_d$	0	0			
(a,a)	(b,c)	$2p_a^2 p_b p_c$	0	0			
(a,a)	(b,b)	$p_{a}^{2}p_{b}^{2}$	0	0			
(a,b)	(a,c)	$4 p_a^2 p_b p_c$	$p_a p_b p_c$	0			
(a,a)	(a,b)	$\overline{2}p_a^{\overline{3}}p_b^{\overline{3}}$	$p_a^2 p_b$	0			
(a,b)	(a,b)	$4p_a^2p_b^2$	$(p_{a}p_{b}^{2}+p_{a}^{2}p_{b})$	$2p_ap_b$			
(a,a)	(a,a)	p_a^4	p_a^3	p_a^2			
Prior Probability		1⁄4	1/2	1/4			

These probabilities apply to pair of individuals, when no other genotypes in the family are known.

Example scoring for w_{ij}

In this case, relative weights depend on allele frequency.

More examples for scoring: w_{ii}

In these cases, multiple weights are non-zero (but equal) for each family.

How to maximize likelihood?

- If all families are informative
 - Use sample proportions of IBD=0, 1, 2
- If some families are uninformative
 - Use an E-M algorithm
 - At each stage generate complete dataset with fractional counts
 - Iterate until estimates of LOD and z parameters are stable

Assigning Partial Counts in E-M

P(IBD = j | Genotypes) = $= \frac{P(IBD = j \mid ASP)P(Genotypes \mid IBD = j)}{P(Genotypes \mid IBD = j)}$ $= \frac{P(IBD = j \mid ASP)P(Genotypes \mid IBD = j)}{2}$ $\sum P(IBD = k \mid ASP)P(Genotypes \mid IBD = k)$ k=0 $=\frac{z_{j}w_{ij}}{\sum_{k=1}^{2}z_{k}w_{ik}}$ k=0

Example

Assume a bi-allelic marker where the two alleles have identical frequencies.

Example of E-M Steps

Parameters			Equivocal Families			Other				
_	z0	z1	z2	IBD=0	IBD=1	IBD=2	IBD=2	LOD	LODi	LODu
	0.250	0.500	0.250	0.56	2.22	2.22	5	0.00	0.00	0.00
	0.056	0.222	0.722	0.08	0.66	4.26	5	3.19	2.30	0.89
	0.008	0.066	0.926	0.01	0.17	4.82	5	4.01	2.84	1.16
	0.001	0.017	0.982	0.00	0.04	4.96	5	4.20	2.97	1.23
	0.000	0.004	0.996	0.00	0.01	4.99	5	4.25	3.00	1.24
	0.000	0.001	0.999	0.00	0.00	5.00	5	4.26	3.01	1.25
	0.000	0.000	1.000	0.00	0.00	5.00	5	4.26	3.01	1.25

Properties of Pair Analyses Explored by Risch

- Effect of marker informativeness
- Effect of adding relative genotypes
- Size of genetic effect
 - Degree of relationship

Marker Informativeness

Marker Informativeness Gene of Modest Effect (λ_0 =3)

Marker Informativeness Gene of Larger Effect (λ_0 =10)

Genotypes of Other Family Members

Genotyping only pair decreases LOD score by

- Up to 33% if only sib-pairs are genotyped
- Up to 60% for second degree relatives
- Up to 70% for third degree relatives
- Genotyping effort decreases by
 - 50% if only sib-pairs are typed
 - 60% if only second degree relatives typed
 - 75% if only third degree relatives typed

Point of Situation ...

- Noted that affected siblings are more likely to share two alleles identical by descent
- Derived a likelihood based linkage test that compares sharing probabilities to null defaults
- Let's examine these probabilities in more detail ...

Next ...

Predicting distribution of IBD

- Modeling marginal effect of a single locus
- Relative risk ratio (λ_R)
- The Possible Triangle for Sibling Pairs
 - Plausible IBD values for affected siblings
 - Refinement of the model of Risch (1990)

Recurrence Risks vs. IBD

 $\lambda_{IBD=2} = \lambda_{MZ} = \frac{P(affected \mid IBD = 2 \text{ with affected relative})}{P(affected)}$

 $\lambda_{IBD=1} = \lambda_{O} = \frac{P(affected \mid IBD = 1 \text{ with affected relative})}{P(affected)}$

 $\lambda_{IBD=0} = 1 = \frac{P(affected \mid IBD = 0 \text{ with affected relative})}{P(affected)}$

Bayes' Theorem: Predicting IBD Sharing

P(IBD = i | affected pair) =

 $= \frac{P(IBD = i)P(affected pair | IBD = i)}{\sum_{j} P(IBD = j)P(affected pair | IBD = j)}$ $= \frac{P(IBD = i)\lambda_{IBD=i}}{\sum_{j} P(IBD = j)\lambda_{IBD=j}}$

Sibpairs Expected Values for z₀, z₁, z₂

$$z_0 = 0.25 \frac{1}{\lambda_s}$$
$$z_1 = 0.50 \frac{\lambda_o}{\lambda_s}$$
$$z_2 = 0.25 \frac{\lambda_{MZ}}{\lambda_s}$$

 $1 \le \lambda_o \le \lambda_s \le \lambda_{MZ}$ for any genetic model

Possible Triangle

Possible Triangle

Intuition

• Under the null

- True parameter values are $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$
- Estimates will wobble around this point

Under the alternative

- True parameter values are within triangle
- Estimates will wobble around true point

Idea (Holmans, 1993)

- Testing for linkage
 - Do IBD patterns suggest a gene is present?
- Focus on situations where IBD patterns are compatible with a genetic model
 - Restrict maximization to possible triangle

The possible triangle method

- 1. Estimate z_0 , z_1 , z_2 without restrictions
- 2. If estimate of $z_1 > \frac{1}{2}$ then ...
 - a) Repeat estimation with $z_1 = \frac{1}{2}$
 - b) If this gives $z_0 > \frac{1}{4}$ then revert to null (MLS=0)
- 3. If estimates imply $2z_0 > z_1$ then ...
 - a) Repeat estimation with $z_1 = 2z_0$
 - b) If this gives $z_0 > \frac{1}{4}$ then revert to null (MLS=0)
- 4. Otherwise, leave estimates unchanged.

Possible Triangle

MLS Combined With Possible Triangle

- Under null, true **z** is a corner of the triangle
 - Estimates will often lie outside triangle
 - Restriction to the triangle decreases MLS
 - MLS threshold for fixed type I error decreases
- Under alternative, true z is within triangle
 - Estimates will lie outside triangle less often
 - MLS decreases less
 - Overall, power should be increased

Example

Type I error rate of 0.001

LOD of 3.0 with unrestricted method Risch (1990)

LOD of 2.3 with possible triangle constraint Holmans (1993)

For some cases, almost doubles power

Recommended Reading

Holmans (1993)
 Asymptotic Properties of
 Affected-Sib-Pair Linkage Analysis
 Am J Hum Genet 52:362-374

Introduces possible triangle constraint
Good review of MLS method

Recommended Reading

- Risch (1990)
 - Linkage Strategies for Genetically Complex Traits. III. The Effect of Marker Polymorphism on Analysis of Affected Relative Pairs
 - Am J Hum Genet 46:242-253
- Introduces MLS method for linkage analysis
 - Still, one of the best methods for analysis pair data
- Evaluates different sampling strategies
 - Results were later corrected by Risch (1992)