Biostatistics 615/815 Lecture 9: Dynamic Programming

Hyun Min Kang

October 4th, 2011
Direct address tables

Direct address table: a constant-time container

Let $T[0, \cdots, N-1]$ be an array space that can contain N objects

- **Insert** (T, x): $T[x.key] = x$
- **Search** (T, k): RETURN $T[k]$
- **Remove** (T, x): $T[x.key] = \text{Nil}$

Time and memory cost

- $O(1)$ - constant time complexity
- Requires to pre-allocate memory space for any possible input value
Recap - Illustration of **ChainedHash**
Open Addressing

<table>
<thead>
<tr>
<th>Chained Hash - Pros and Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>△ Easy to understand</td>
</tr>
<tr>
<td>△ Behavior at collision is easy to track</td>
</tr>
<tr>
<td>▽ Every slots maintains pointer - extra memory consumption</td>
</tr>
<tr>
<td>▽ Inefficient to dereference pointers for each access</td>
</tr>
<tr>
<td>▽ Larger and unpredictable memory consumption</td>
</tr>
</tbody>
</table>

Open Addressing

- Store all the elements within an array
- Resolve conflicts based on predefined probing rule.
- Avoid using pointers - faster and more memory efficient.
- Implementation of `REMOVE` can be very complicated
Modified hash functions

- \(h : K \times H \rightarrow H \)

- For every \(k \in K \), the probe sequence \(< h(k, 0), h(k, 1), \cdots, h(k, m - 1) >\) must be a permutation of \(< 0, 1, \cdots, m - 1 >\).
Recap: Divide and conquer algorithms

Good examples of divide and conquer algorithms

- TowerOfHanoi
- MergeSort
- QuickSort
- BinarySearchTree algorithms

These algorithms divide a problem into smaller and disjoint subproblems until they become trivial.
A divide-and-conquer algorithms for Fibonacci numbers

Fibonacci numbers

\[
F_n = \begin{cases}
F_{n-1} + F_{n-2} & n > 1 \\
1 & n = 1 \\
0 & n = 0
\end{cases}
\]

A recursive implementation of fibonacci numbers

```c
int fibonacci(int n) {
    if ( n < 2 ) return n;
    else return fibonacci(n-1)+fibonacci(n-2);
}
```
Performance of recursive **Fibonacci**

Computational time

- 4.4 seconds for calculating F_{40}
- 49 seconds for calculating F_{45}
- ∞ seconds for calculating F_{100}!
What is happening in the recursive **Fibonacci**
Time complexity of redundant Fibonacci

\[
T(n) = T(n-1) + T(n-2)
\]

\[
T(1) = 1
\]

\[
T(0) = 1
\]

\[
T(n) = F_{n+1}
\]

The time complexity is exponential
A non-redundant **FIBONACCI**

```c
int fibonacci(int n) {
    int* fibs = new int[n+1];
    fibs[0] = 0;
    fibs[1] = 1;
    for(int i=2; i <= n; ++i) {
        fibs[i] = fibs[i-1]+fibs[i-2];
    }
    int ret = fibs[n];
    delete [] fibs;
    return ret;
}
```
Key idea in non-redundant **FIBONACCI**

- Each F_n will be reused to calculate F_{n+1} and F_{n+2}
- Store F_n into an array so that we don’t have to recalculate it
A recursive, but non-redundant Fibonacci

```c
int fibonacci(int* fibs, int n) {
    if ( fibs[n] > 0 ) {
        return fibs[n];  // reuse stored solution if available
    }
    else if ( n < 2 ) {
        return n;  // terminal condition
    }
    fibs[n] = fibonacci(n-1) + fibonacci(n-2);  // store the solution once computed
    return fibs[n];
}
```
Dynamic programming

Key components of dynamic programming

- Problems that can be divided into subproblems
- Overlapping subproblems - subproblems share subsubproblems
- Solves each subsubproblem just once and then saves its answer

Why dynamic programming?

According to wikipedia... "The word 'dynamic' was chosen because it sounded impressive, not because how the method works"

Examples of dynamic programming

- Shortest path finding algorithms
- DNA sequence alignment
- Hidden markov models
Steps of dynamic programming

- Characterize the structure of an (optimal) solution
- Recursively define the value of an (optimal) solution
- Compute the value of an (optimal) solution, typically in a bottom-up fashion
- Construct an optimal solution from computed information.
The Manhattan tourist problem

Find the cost-optimal path from left-top corner to right-bottom corner

![Graph of the Manhattan tourist problem]
One possible (but not optimal) solution
A slightly better, but still not an optimal solution
And here comes an optimal solution

![Diagram showing an optimal solution with nodes and arrows labeled with numbers. The diagram is not rendered here, but would typically be a network or graph with specific node values and connections.]
A brute-force algorithm

Algorithm BruteForceMTP

1. Enumerate all the possible paths
2. Calculate the cost of each possible path
3. Pick the path that produces a minimum cost

Time complexity

- Number of possible paths are \(\binom{n_r+n_c}{n_r} \)
- Super-exponential growth when \(n_r \) and \(n_c \) are similar.
A "dynamic" structure of the solution

- Let \(C(r, c) \) be the optimal cost from \((0, 0)\) to \((r, c)\)
- Let \(h(r, c) \) be the weight from \((r, c)\) to \((r, c + 1)\)
- Let \(v(r, c) \) be the weight from \((r, c)\) to \((r + 1, c)\)
- We can recursively define the optimal cost as

\[
C(r, c) = \begin{cases}
 \min \begin{cases}
 C(r - 1, c) + v(r - 1, c) & r > 0, c > 0 \\
 C(r, c - 1) + h(r, c - 1) & r > 0, c = 0 \\
 C(r - 1, c) + v(r - 1, c) & r = 0, c > 0 \\
 0 & r = 0, c = 0
 \end{cases}
\end{cases}
\]

- Once \(C(r, c) \) is evaluated, it must be stored to avoid redundant computation.
Time complexity of the "dynamic" solution

- Each recursive step takes a constant time
- Each \(C(r, c) \) is evaluated at most once.
- Total time complexity is \(\Theta(n_r n_c) \).
- Like Fibonacci search, the time complexity would be super exponential if \(C(r, c) \) is not stored and redundantly evaluated.
Reconstructing the optimal path

- Optimal cost does not automatically produce optimal path.
- When choosing smaller-cost path between two alternatives, store the decision.
- Backtrack from the destination to the source based on the stored decision.
Example of backtracking the path
Implementing Manhattan tourist algorithm

```cpp
template <class T>
class Matrix615 {
public:
    std::vector< std::vector<T> > data;

    Matrix615(int nrow, int ncol, T val = 0) {
        data.resize(nrow); // make n rows
        for(int i=0; i < nrow; ++i) {
            data[i].resize(ncol,val); // make n cols with default value val
        }
    }

    int rowNums() { return (int)data.size(); } 
    int colNums() { return ( data.size() == 0 ) ? 0 : (int)data[0].size(); } 
};
```
Manhattan tourist problem: `main()`

```cpp
int main(int argc, char** argv) {
    int nrows=5, ncols=5;
    // hw stores horizontal weights, vw stores vertical weights
    Matrix615<int> hw(nrows,ncols-1), vw(nrows-1,ncols);

    hw.data[0][0] = 4; hw.data[0][1] = 2; ...
    vw.data[0][0] = 0; vw.data[0][1] = 6; ...

    Matrix615<int> cost(nrows,ncols), move(nrows,ncols);
    // calculate the optimal cost, recording the backtracking info
    int optCost = optimalCost(hw,vw,cost,move,nrows-1,ncols-1);
    std::cout << "Optimal cost is " << optCost << std::endl;
    return 0;
}
```
Calculating optimal cost

// hw, vw : horizontal and vertical input weights
// cost : stored optimal cost from (0,0) to (r,c)
// move : stored optimal decision to reach (r,c)
// r,c : the position of interest

int optimalCost(Matrix615<int>& hw, Matrix615<int>& vw, Matrix615<int>& cost, Matrix615<int>& move, int r, int c) {
 // if cost is stored already, skip the cost evaluation
 if (cost.data[r][c] == 0) {
 if ((r == 0) && (c == 0)) cost.data[r][c] = 0; // terminal condition
 else if (r == 0) { // only horizontal move is possible
 move.data[r][c] = 0; // 0 means horizontal move to (r,c)
 cost.data[r][c] = optimalCost(hw, vw, cost, move, r, c-1) + hw.data[r][c-1];
 }
 else if (c == 0) { // only vertical move is possible
 move.data[r][c] = 1; // 1 means vertical move to (r,c)
 cost.data[r][c] = optimalCost(hw, vw, cost, move, r-1, c) + vw.data[r-1][c];
 }
 }
 return cost.data[r][c];
}
Calculating optimal cost (cont’d)

```c
else { // evaluate the cumulative cost of horizontal and vertical move
    int hcost = optimalCost(hw, vw, cost, move, r, c-1) + hw.data[r][c-1];
    int vcost = optimalCost(hw, vw, cost, move, r-1, c) + vw.data[r-1][c];
    if ( hcost > vcost ) { // when vertical move is optimal
        move.data[r][c] = 1; // store the decision
        cost.data[r][c] = vcost; // and store the optimal cost
    } else {
        move.data[r][c] = 0;
        cost.data[r][c] = hcost;
    }
}

// when horizontal move is optimal
return cost.data[r][c]; // return the optimal cost }
```
Dynamic programming: A smart recursion

- Dynamic programming is recursion without repetition
 1. Formulate the problem recursively
 2. Build solutions to your recurrence from the bottom up

- Dynamic programming is not about filling in tables; it’s about smart recursion (Jeff Erickson)
Minimum edit distance problem

Edit distance

Minimum number of letter insertions, deletions, substitutions required to transform one word into another

An example

\[\text{FOOD} \rightarrow \text{MOOD} \rightarrow \text{MOND} \rightarrow \text{MONED} \rightarrow \text{MONEY} \]

Edit distance is 4 in the example above
More examples of edit distance

- Similar representation to DNA sequence alignment
- Does the above alignment provides an optimal edit distance?
A dynamic programming solution

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>L</th>
<th>G</th>
<th>O</th>
<th>R</th>
<th>I</th>
<th>T</th>
<th>H</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

October 4th, 2011
Recursively formulating the problem

- Input strings are \(x[1, \cdots, m]\) and \(y[1, \cdots, n]\).
- Let \(x_i = x[1, \cdots, i]\) and \(y_j = y[1, \cdots, j]\) be substrings of \(x\) and \(y\).
- Edit distance \(d(x, y)\) can be recursively defined as follows

\[
d(x_i, y_j) = \begin{cases}
 i & \text{if } j = 0 \\
 j & \text{if } i = 0 \\
 \min \left\{
 d(x_{i-1}, y_j) + 1, \\
 d(x_i, y_{j-1}) + 1, \\
 d(x_{i-1}, y_{j-1}) + I(x[i] \neq y[j])
 \right\} & \text{otherwise}
\end{cases}
\]

- Similar to the Manhattan tourist problem, but with 3-way choice.
- Time complexity is \(\Theta(mn)\).
#include <iostream>
#include <climits>
#include <string>
#include <vector>

template <class T>
class Matrix615 {
 public:
 std::vector< std::vector<T> > data;
 Matrix615(int nrow, int ncol, T val = 0) {
 data.resize(nrow); // make n rows
 for(int i=0; i < nrow; ++i) {
 data[i].resize(ncol,val); // make n cols with default value val
 }
 }
 int rowNums() { return (int)data.size(); }
 int colNums() { return (data.size() == 0) ? 0 : (int)data[0].size(); }
};
```
int main(int argc, char** argv) {
    if ( argc != 3 ) {
        std::cerr << "Usage: editDistance [str1] [str2]" << std::endl;
        return -1;
    }
    std::string s1(argv[1]);
    std::string s2(argv[2]);

    Matrix615<int> cost(s1.size()+1, s2.size()+1, INT_MAX);
    Matrix615<int> move(s1.size()+1, s2.size()+1, -1);

    int optDist = editDistance(s1, s2, cost, move, cost.rowNums()-1,
                                cost.colNums()-1);

    std::cout << "EditDistance is " << optDist << std::endl;
    printEdits(s1, s2, move);

    return 0;
}
```
editDistance() algorithm

```cpp
int editDistance(std::string& s1, std::string& s2, Matrix615<int>& cost,
                 Matrix615<int>& move, int r, int c) {
    int iCost = 1, dCost = 1, mCost = 1; // insertion, deletion, mismatch cost

    if ( cost.data[r][c] == INT_MAX ) {
        if ( r == 0 && c == 0 ) { cost.data[r][c] = 0; }
        else if ( r == 0 ) {
            move.data[r][c] = 0; // only insertion is possible
            cost.data[r][c] = editDistance(s1, s2, cost, move, r, c-1) + iCost;
        }
        else if ( c == 0 ) {
            move.data[r][c] = 1; // only deletion is possible
            cost.data[r][c] = editDistance(s1, s2, cost, move, r-1, c) + dCost;
        }
    }
    return cost.data[r][c];
}
```
else { // compare 3 different possible moves and take the optimal one
 int iDist = editDistance(s1, s2, cost, move, r, c-1) + iCost;
 int dDist = editDistance(s1, s2, cost, move, r-1, c) + dCost;
 int mDist = editDistance(s1, s2, cost, move, r-1, c-1) +
 (s1[r-1] == s2[c-1] ? 0 : mCost);
 if (iDist < dDist) {
 if (iDist < mDist) { // insertion is optima
 move.data[r][c] = 0;
 cost.data[r][c] = iDist;
 } else {
 move.data[r][c] = 2; // match is optimal
 cost.data[r][c] = mDist;
 }
 }
}
```
else {
    if ( dDist < mDist ) {
        move.data[r][c] = 1; // deletion is optimal
        cost.data[r][c] = dDist;
    }
    else {
        move.data[r][c] = 2; // match is optimal
        cost.data[r][c] = mDist;
    }
}
}
return cost.data[r][c];
```
int printEdits(std::string& s1, std::string& s2, Matrix615<int>& move) {
 std::string o1, o2, m; // output string and alignments
 int r = move.rowNums()-1;
 int c = move.colNums()-1;
 while(r >= 0 && c >= 0 && move.data[r][c] >= 0) { // back from the last character
 if (move.data[r][c] == 0) { // insertion
 o1 = "-" + o1; o2 = s2[c-1] + o2; m = "I" + m;
 --c;
 } else if (move.data[r][c] == 1) { // deletion
 o1 = s1[r-1] + o1; o2 = "-" + o2; m = "D" + m;
 --r;
 } else if (move.data[r][c] == 2) { // match or mismatch
 o1 = s1[r-1] + o1; o2 = s2[c-1] + o2;
 m = (s1[r-1] == s2[c-1] ? "-" : "*") + m;
 --r; --c;
 } else std::cout << r << " " << c << " " << move.data[r][c] << std::endl;
 }
 std::cout << m << std::endl << o1 << std::endl << o2 << std::endl;
}
Running example

```
$ ./editDistance FOOD MONEY
EditDistance is 4
* -I **
FO-OD
MONEY
```
Today

- Dynamic programming is a smart recursion avoiding redundancy
- Divide a problem into subproblems that can be shared
- Examples of dynamic programming
 - Fibonacci numbers
 - Manhattan tourist problem
 - Edit distance problem

Next lecture

- Edit Distance
- Introduction to Hidden Markov model