Coalescent Modeling for Distributions of Alleles

Biostatistics 666
Last Lecture: Introduction to the Coalescent

- Coalescent approach
 - Proceed backwards through time.
 - Model the genealogy of sample of sequences.

- Infinite sites model
 - All mutations distinguishable.
 - No reverse mutation.
Some key ideas ...

- Probability of coalescence events
- Length of genealogy and its branches
- Expected number of mutations
- Parameter θ which combines population size and mutation rate
Building Blocks...

- Probability of sampling distinct ancestors for \(n \) sequences

\[
P(n) = \prod_{i=1}^{n-1} \left(1 - \frac{i}{N}\right) \approx 1 - \frac{n \choose 2}{N}
\]

- Coalescence time \(t \) is approximately exponentially distributed
Some Key Results...

- Coalescence Time (population size units)

 \[E(T_j) = \frac{1}{\binom{j}{2}} \]

- Total Tree Length (population size units)

 \[E(T_{tot}) = \sum_{i=1}^{n-1} \frac{2}{i} \]
Some More Key Results ...

- **Expected Number of Polymorphisms**

 For a diploid sample
 \[
 E(S) = 4N\mu \sum_{i=1}^{n-1} 1/i = \theta \sum_{i=1}^{n-1} 1/i
 \]

 For an haploid sample
 \[
 E(S) = 2N\mu \sum_{i=1}^{n-1} 1/i = \theta \sum_{i=1}^{n-1} 1/i
 \]
Estimating θ

- Number of variants S can be used to estimate θ
 - Expected S is simply $\theta E(T_{tot})$
 - To estimate θ, divide by S expected length of genealogy

$$\hat{\theta} = \frac{S}{\sum_{i=1}^{n-1} 1/i}$$

- Could then be used to:
 - Estimate N, if mutation rate μ is known
 - Estimate μ, if population size N is known
Alternative Estimator for θ ...

- Count pairwise differences between sequences
- Compute average number of differences

$$\tilde{\theta} = \binom{n}{2}^{-1} \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_{ij}$$
$$\text{Var}(\hat{\theta}) \text{ as a function of } n$$

Parameters

$$N = 10,000 \text{ individuals}$$

$$\mu = 10^{-4}$$

$$\theta = 4$$
Var($\hat{\theta}$) as a function of n

Parameters

$N = 10,000$ individuals
$\mu = 10^{-4}$
$\theta = 4$

If larger samples don’t help, how else could we improve inferences about θ?
Today ...

- More applications of the coalescent
- Predicting allele frequency distributions
 - Using simulations
- Modeling the distribution of S
 - Using analytical calculations
A Coalescent Simulation ...

- Let’s consider tracing the ancestry of 4 sequences
When $n = 4$

Probability of Coalescent Event

$P(4) \approx \binom{4}{2}/2N$

Time to Next Coalescent Event

$T(4) \approx 2N/\binom{4}{2}$

Sample time from exponential distribution

Pick two sequences at random to coalesce
Next $n = 3$...

Let’s assume that sequences 3 and 4 are selected ...

Then, we repeat the process for a sample of 3 sequences
Next $n = 2$...

Let’s assume that sequences 1 and 2 are selected to coalesce

Then, we repeat the process for a sample of 2 sequences
At this point, we could place mutations in genealogy. Most often, these would fall in longer branches.
A Coalescent Simulation ...

Mutations in these branches affect a pair of sequences
A Coalescent Simulation ...

Mutations in these branches affect a single sequence
Repeating the simulation multiple times, would give us a predicted mutation spectrum.
Frequency Spectrum (n = 10)
Frequency Spectrum

- Constant size population
- Exponentially growing population

Most variants are rare

- For $n = 100$, \(\sim 44\%\) of variants occur \(< 5/100\).
- For $n = 10$, \(\sim 35\%\) of variants observed once.
Mutation Spectrum

- Depends on genealogy
 - Population Size
 - Population Growth
 - Population Subdivision

- Does not depend on
 - Mutation rate!
Deviations from Neutral Spectrum

- When would you expect deviations from the spectra we described?

- What would you expect for …
 - A rapidly growing population?
 - A population whose size is decreasing?

- Why?
Effect of Polymorphism Type

Data from Cargill et al, 1999
Frequency Spectrum of Protein Altering Variants

Spectrum of Coding Variation (in 12,000 individuals)

- Non-Synonymous
- Splice Variants
- Stop

Exome Chip Consortium (2011)
Number of Mutations

- Can be derived from coalescent tree
 - What are the key features?

- Analytical results possible
 - Trace back in time until MRCA, tracking mutation events
Sample of Two Sequences

- Track coalescences and mutations
 - Probability of a coalescent event?
 - Depends on population size …
 - Probability of a mutation?
 - Depends on mutation rate …

- Proceed backwards until either occurs…
 - Conditional probability for each outcome?
Two Identical Sequences

\[P_2(S \text{ is 0}) \approx \frac{P_{CA}}{P_{CA} + P_{mut}} = \frac{1/2N}{1/2N + 2\mu} = \frac{1}{1 + \theta} \]
Full distribution of S...

- Probability that first j events are mutations...

\[
P_2(j) = \left(\frac{\theta}{1 + \theta}\right)^j \left(\frac{1}{1 + \theta}\right)
\]
Example...

- 2 sequences
- Population size $N = 25,000$
- Mutation rate $\mu = 10^{-5}$

- Probability of 0, 1, 2, 3… mutations
And for multiple sequences...

- Describe number of mutations until the next coalescence event

- Proceed back in time, until:
 - One of n sequences mutates…
 - A coalescent event occurs…
 - Then track mutations in (n-1) sequences
Formulae ...

\[Q_n(j) = \left(\frac{n\mu}{n\mu + \frac{2}{2N}} \right)^j \frac{\binom{n}{2}}{2N} = \left(\frac{\theta}{\theta + n - 1} \right)^j \frac{n - 1}{\theta + n - 1} \]

\[P_n(j) = \sum_{i=0}^{j} P_{n-1}(j-i)Q_n(i) \]
Example...

- 3 sequences
- Population size $N = 25,000$
- Mutation rate $\mu = 10^{-5}$

- Probability of 0, 1, 2, 3… mutations
Number of Mutations

N = 10,000
n = 10
μ = 2 * 10^{-5}

Approximately 2kb of sequence, sequenced in 10 individuals
So far ...

- One homogeneous population
 - Coalescence times
 - Number of mutations
 - Expectation
 - Distribution
 - Spectrum of mutations
- Several assumptions, including ...
 - No recombination
Next: Models w/ Recombination

- No recombination
 - Single genealogy

- Free recombination
 - Two independent genealogies
 - Same population history

- Intermediate case
 - Correlated genealogies
Recommended Reading

Richard R. Hudson (1990)

Gene genealogies and the coalescent process

Oxford Surveys in Evolutionary Biology, Vol. 7.
D. Futuyma and J. Antonovics (Eds).
Oxford University Press, New York.