Biostatistics 602 - Statistical Inference Lecture 16 Evaluation of Bayes Estimator

Hyun Min Kang

March 14th, 2013

• What is a Bayes Estimator?

- What is a Bayes Estimator?
- Is a Bayes Estimator the best unbiased estimator?

- What is a Bayes Estimator?
- Is a Bayes Estimator the best unbiased estimator?
- Compared to other estimators, what are advantages of Bayes Estimator?

Recap •00

- What is a Bayes Estimator?
- Is a Bayes Estimator the best unbiased estimator?
- Compared to other estimators, what are advantages of Bayes Estimator?
- What is conjugate family?

Recap •00

- What is a Bayes Estimator?
- Is a Bayes Estimator the best unbiased estimator?
- Compared to other estimators, what are advantages of Bayes Estimator?
- What is conjugate family?
- What are the conjugate families of Binomial, Poisson, and Normal distribution?

• θ : parameter

Recap 000

- $\pi(\theta)$: prior distribution
- $\mathbf{X}|\theta \sim f_{\mathbf{X}}(\mathbf{x}|\theta)$: sampling distribution
- Posterior distribution of $\theta | \mathbf{x}$

$$\pi(\theta|\mathbf{x}) = \frac{\text{Joint}}{\text{Marginal}} = \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)\pi(\theta)}{m(\mathbf{x})}$$

$$m(\mathbf{x}) = \int f(\mathbf{x}|\theta)\pi(\theta) d\theta \quad \text{(Bayes' rule)}$$

• Bayes Estimator of θ is

$$E(\theta|\mathbf{x}) = \int_{\theta \in \Omega} \theta \pi(\theta|\mathbf{x}) d\theta$$

Recap - Example

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$
- Prior guess : $\hat{p} = \frac{\alpha}{\alpha + \beta}$.
- Posterior distribution : $\pi(p|\mathbf{x}) \sim \text{Beta}(\sum x_i + \alpha, n \sum x_i + \beta)$
- Bayes estimator

$$\hat{p} = \frac{\alpha + \sum x_i}{\alpha + \beta + n} = \frac{\sum x_i}{n} \frac{n}{\alpha + \beta + n} + \frac{\alpha}{\alpha + \beta} \frac{\alpha + \beta}{\alpha + \beta + n}$$

Loss Function Optimality

The mean squared error (MSE) is defined as

$$MSE(\hat{\theta}) = E[\hat{\theta} - \theta]^2$$

Loss Function Optimality

The mean squared error (MSE) is defined as

$$MSE(\hat{\theta}) = E[\hat{\theta} - \theta]^2$$

Let $\hat{\theta}$ is an estimator.

- If $\hat{\theta} = \theta$, it makes a correct decision and loss is 0
- If $\hat{\theta} \neq \theta$, it makes a mistake and loss is not 0.

Loss Function

Let $L(\theta, \hat{\theta})$ be a function of θ and $\hat{\theta}$.

Squared error loss

$$L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$$

MSE = Average Loss = $E[L(\theta, \hat{\theta})]$

which is the expectation of the loss if $\hat{\theta}$ is used to estimate θ .

6 / 28

Let $L(\theta, \hat{\theta})$ be a function of θ and $\hat{\theta}$.

Squared error loss

$$L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$$

MSE = Average Loss = $E[L(\theta, \hat{\theta})]$

which is the expectation of the loss if $\hat{\theta}$ is used to estimate θ .

Absolute error loss

$$L(\hat{\theta}) = |\hat{\theta} - \theta|$$

Loss Function

Let $L(\theta, \hat{\theta})$ be a function of θ and $\hat{\theta}$.

Squared error loss

$$L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$$

MSE = Average Loss = $E[L(\theta, \hat{\theta})]$

which is the expectation of the loss if $\hat{\theta}$ is used to estimate θ .

Absolute error loss

$$L(\hat{\theta}) = |\hat{\theta} - \theta|$$

A loss that penalties overestimation more than underestimation

$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2 I(\hat{\theta} < \theta) + 10(\hat{\theta} - \theta)^2 I(\hat{\theta} \ge \theta)$$

$$R(\theta, \hat{\theta}) = \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{X}))|\theta]$$

If
$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2$$
, $R(\theta, \hat{\theta})$ is MSE.

$$R(\theta, \hat{\theta}) = \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{X}))|\theta]$$

If $L(\theta,\hat{\theta})=(\hat{\theta}-\theta)^2$, $R(\theta,\hat{\theta})$ is MSE. An estimator with smaller $R(\theta,\hat{\theta})$ is preferred.

$$R(\theta, \hat{\theta}) = \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{X}))|\theta]$$

If $L(\theta,\hat{\theta})=(\hat{\theta}-\theta)^2$, $R(\theta,\hat{\theta})$ is MSE. An estimator with smaller $R(\theta,\hat{\theta})$ is preferred.

Definition: Bayes Risk

Bayes risk is defined as the average risk across all values of θ given prior $\pi(\theta)$

$$\int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) d\theta$$

$$R(\theta, \hat{\theta}) = \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{X}))|\theta]$$

If $L(\theta,\hat{\theta})=(\hat{\theta}-\theta)^2$, $R(\theta,\hat{\theta})$ is MSE. An estimator with smaller $R(\theta,\hat{\theta})$ is preferred.

Definition: Bayes Risk

Bayes risk is defined as the average risk across all values of θ given prior $\pi(\theta)$

$$\int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) d\theta$$

The Bayes rule with respect to a prior π is the optimal estimator with respect to a Bayes risk, which is defined as the one that minimize the Bayes risk.

4□ > 4個 > 4 園 > 4 園 > 1 園 * かなで

$$\int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) d\theta = \int_{\Omega} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{X}))] \pi(\theta) d\theta$$

Alternative definition of Bayes Risk

$$\int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) d\theta = \int_{\Omega} E[L(\theta, \hat{\theta}(\mathbf{X}))] \pi(\theta) d\theta$$

$$= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) d\mathbf{x} \right] \pi(\theta) d\theta$$

$$\int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) d\theta = \int_{\Omega} E[L(\theta, \hat{\theta}(\mathbf{X}))] \pi(\theta) d\theta$$

$$= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) d\mathbf{x} \right] \pi(\theta) d\theta$$

$$= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) \pi(\theta) d\mathbf{x} \right] d\theta$$

Alternative definition of Bayes Risk

$$\int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) d\theta = \int_{\Omega} E[L(\theta, \hat{\theta}(\mathbf{X}))] \pi(\theta) d\theta$$

$$= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) d\mathbf{x} \right] \pi(\theta) d\theta$$

$$= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) \pi(\theta) d\mathbf{x} \right] d\theta$$

$$= \int_{\Omega} \left[\int_{\mathcal{X}} \pi(\theta|\mathbf{x}) m(\mathbf{x}) L(\theta, \hat{\theta}(\mathbf{x})) d\mathbf{x} \right] d\theta$$

8 / 28

Alternative definition of Bayes Risk

$$\begin{split} \int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) \, d\theta &= \int_{\Omega} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{X}))] \pi(\theta) \, d\theta \\ &= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) \, d\mathbf{x} \right] \pi(\theta) \, d\theta \\ &= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) \pi(\theta) \, d\mathbf{x} \right] \, d\theta \\ &= \int_{\Omega} \left[\int_{\mathcal{X}} \pi(\theta|\mathbf{x}) m(\mathbf{x}) L(\theta, \hat{\theta}(\mathbf{x})) \, d\mathbf{x} \right] \, d\theta \\ &= \int_{\mathcal{X}} \left[\int_{\Omega} L(\theta, \hat{\theta}(X)) \pi(\theta|\mathbf{x}) \, d\theta \right] m(\mathbf{x}) \, d\mathbf{x} \end{split}$$

Posterior expected loss is defined as

$$\int_{\Omega} \pi(\theta|\mathbf{x}) L(\theta, \hat{\theta}(\mathbf{x})) d\theta$$

Posterior Expected Loss

Posterior expected loss is defined as

$$\int_{\Omega} \pi(\theta|\mathbf{x}) L(\theta, \hat{\theta}(\mathbf{x})) d\theta$$

An alternative definition of Bayes rule estimator is the estimator that minimizes the posterior expected loss.

$$L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$$

$$\begin{array}{rcl} L(\hat{\theta},\theta) & = & (\hat{\theta}-\theta)^2 \\ \text{Posterior expected loss} & = & \int \Omega(\theta-\hat{\theta})^2 \pi(\theta|\mathbf{x}) \, d\theta \end{array}$$

$$\begin{split} L(\hat{\theta}, \theta) &= (\hat{\theta} - \theta)^2 \\ \text{Posterior expected loss} &= \int \Omega(\theta - \hat{\theta})^2 \pi(\theta | \mathbf{x}) d\theta \\ &= \mathrm{E}[(\theta - \hat{\theta})^2 | \mathbf{X} = \mathbf{x}] \end{split}$$

$$\begin{split} L(\hat{\theta}, \theta) &= (\hat{\theta} - \theta)^2 \\ \text{Posterior expected loss} &= \int \Omega(\theta - \hat{\theta})^2 \pi(\theta | \mathbf{x}) \, d\theta \\ &= \mathrm{E}[(\theta - \hat{\theta})^2 | \mathbf{X} = \mathbf{x}] \end{split}$$

So, the goal is to minimize $\mathrm{E}[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}]$

$$\mathrm{E}\left[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}\right] \ = \ \mathrm{E}\left[(\theta-\mathrm{E}(\theta|\mathbf{x})+\mathrm{E}(\theta|\mathbf{x})-\hat{\theta})^2|\mathbf{X}=\mathbf{x}\right]$$

$$\begin{array}{rcl} L(\hat{\theta},\theta) & = & (\hat{\theta}-\theta)^2 \\ \text{Posterior expected loss} & = & \int \Omega(\theta-\hat{\theta})^2 \pi(\theta|\mathbf{x}) \, d\theta \\ \\ & = & \mathrm{E}[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}] \end{array}$$

So, the goal is to minimize $\mathrm{E}[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}]$

$$\begin{split} \mathrm{E}\left[(\theta - \hat{\theta})^2 | \mathbf{X} = \mathbf{x}\right] &= \mathrm{E}\left[(\theta - \mathrm{E}(\theta|\mathbf{x}) + \mathrm{E}(\theta|\mathbf{x}) - \hat{\theta})^2 | \mathbf{X} = \mathbf{x}\right] \\ &= \mathrm{E}\left[(\theta - \mathrm{E}(\theta|\mathbf{x}))^2 | \mathbf{X} = \mathbf{x}\right] + \mathrm{E}\left[(\mathrm{E}(\theta|\mathbf{x}) - \hat{\theta})^2 | \mathbf{X} = \mathbf{x}\right] \end{split}$$

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ 壹 ○ 夕へで

Baves Risk

$$\begin{array}{rcl} L(\hat{\theta},\theta) & = & (\hat{\theta}-\theta)^2 \\ \text{Posterior expected loss} & = & \int \Omega(\theta-\hat{\theta})^2 \pi(\theta|\mathbf{x}) \, d\theta \\ & = & \mathrm{E}[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}] \end{array}$$

So, the goal is to minimize $\mathrm{E}[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}]$

$$\begin{split} \mathrm{E}\left[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}\right] &= \mathrm{E}\left[(\theta-\mathrm{E}(\theta|\mathbf{x})+\mathrm{E}(\theta|\mathbf{x})-\hat{\theta})^2|\mathbf{X}=\mathbf{x}\right] \\ &= \mathrm{E}\left[(\theta-\mathrm{E}(\theta|\mathbf{x}))^2|\mathbf{X}=\mathbf{x}\right]+\mathrm{E}\left[(\mathrm{E}(\theta|\mathbf{x})-\hat{\theta})^2|\mathbf{X}=\mathbf{x}\right] \\ &= \mathrm{E}\left[(\theta-\mathrm{E}(\theta|\mathbf{x}))^2|\mathbf{X}=\mathbf{x}\right]+\left[\mathrm{E}(\theta|\mathbf{x})-\hat{\theta}\right]^2 \end{split}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

$$\begin{array}{rcl} L(\hat{\theta},\theta) & = & (\hat{\theta}-\theta)^2 \\ \text{Posterior expected loss} & = & \int \Omega(\theta-\hat{\theta})^2 \pi(\theta|\mathbf{x}) \, d\theta \\ & = & \mathrm{E}[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}] \end{array}$$

So, the goal is to minimize $\mathrm{E}[(\theta - \hat{\theta})^2 | \mathbf{X} = \mathbf{x}]$

$$\begin{split} \mathrm{E}\left[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}\right] &= \mathrm{E}\left[(\theta-\mathrm{E}(\theta|\mathbf{x})+\mathrm{E}(\theta|\mathbf{x})-\hat{\theta})^2|\mathbf{X}=\mathbf{x}\right] \\ &= \mathrm{E}\left[(\theta-\mathrm{E}(\theta|\mathbf{x}))^2|\mathbf{X}=\mathbf{x}\right]+\mathrm{E}\left[(\mathrm{E}(\theta|\mathbf{x})-\hat{\theta})^2|\mathbf{X}=\mathbf{x}\right] \\ &= \mathrm{E}\left[(\theta-\mathrm{E}(\theta|\mathbf{x}))^2|\mathbf{X}=\mathbf{x}\right]+\left[\mathrm{E}(\theta|\mathbf{x})-\hat{\theta}\right]^2 \end{split}$$

which is minimized when $\hat{\theta} = E(\theta|\mathbf{x})$.

10 / 28

Biostatistics 602 - Lecture 16

Loss function
$$L(\theta, \hat{\theta})$$
• e.g. $(\hat{\theta} - \theta)^2$, $|\hat{\theta} - \theta|$)

Summary so far

Loss function $L(\theta, \hat{\theta})$

• e.g.
$$(\hat{\theta} - \theta)^2$$
, $|\hat{\theta} - \theta|$

Risk function $R(\theta, \hat{\theta})$ is average of $L(\theta, t\hat{heta})$ across all $x \in \mathcal{X}$

For squared error loss, risk function is the same to MSE.

Loss function $L(\theta, \hat{\theta})$

• e.g.
$$(\hat{\theta} - \theta)^2$$
, $|\hat{\theta} - \theta|$

Risk function $R(\theta, \hat{\theta})$ is average of $L(\theta, t\hat{heta})$ across all $x \in \mathcal{X}$

For squared error loss, risk function is the same to MSE.

Bayes risk Average risk across all θ , based on the prior of θ .

 Alternatively, average posterior error loss across all $x \in \mathcal{X}$.

Summary so far

Loss function $L(\theta, \hat{\theta})$

• e.g.
$$(\hat{\theta} - \theta)^2$$
, $|\hat{\theta} - \theta|$

Risk function $R(\theta, \hat{\theta})$ is average of $L(\theta, t\hat{heta})$ across all $x \in \mathcal{X}$

For squared error loss, risk function is the same to MSE.

Bayes risk Average risk across all θ , based on the prior of θ .

 Alternatively, average posterior error loss across all $x \in \mathcal{X}$

Bayes estimator $\hat{\theta} = E[\theta | \mathbf{x}]$. Based on squared error loss,

- Minimize Bayes risk
- Minimize Posterior Expected Loss

Suppose that
$$L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$$
.

Bayes Estimator based on absolute error loss

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$E[L(\theta, \hat{\theta}(\mathbf{x}))] = \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) d\theta$$

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$E[L(\theta, \hat{\theta}(\mathbf{x}))] = \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) d\theta$$
$$= E[|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x}]$$

Bayes Estimator based on absolute error loss

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$\begin{split} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] &= \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) \, d\theta \\ &= \mathrm{E}[|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x}] \\ &= \int_{\infty}^{\hat{\theta}} -(\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) \, d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) \, d\theta \end{split}$$

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$\begin{split} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] &= \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) \, d\theta \\ &= \mathrm{E}[|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x}] \\ &= \int_{\infty}^{\hat{\theta}} -(\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) \, d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) \, d\theta \end{split}$$

 $rac{\partial}{\partial \hat{ heta}} \mathrm{E}[L(heta, \hat{ heta}(\mathbf{x}))] = 0$, and $\hat{ heta}$ is posterior median.

Two Bayes Rules

Consider a point estimation problem for real-valued parameter θ .

Two Bayes Rules

Consider a point estimation problem for real-valued parameter θ .

For squared error loss, the posterior expected loss is

$$\int_{\Omega} (\theta - \hat{\theta})^2 \pi(\theta | \mathbf{x}) d\theta = \mathrm{E}[(\theta - \hat{\theta})^2 | \mathbf{X} = x]$$

This expected value is minimized by $\hat{\theta} = E(\theta|\mathbf{x})$. So the Bayes rule estimator is the mean of the posterior distribution.

Two Bayes Rules

Consider a point estimation problem for real-valued parameter θ .

For squared error loss, the posterior expected loss is

$$\int_{\Omega} (\theta - \hat{\theta})^2 \pi(\theta | \mathbf{x}) d\theta = \mathrm{E}[(\theta - \hat{\theta})^2 | \mathbf{X} = x]$$

This expected value is minimized by $\hat{\theta} = E(\theta|\mathbf{x})$. So the Bayes rule estimator is the mean of the posterior distribution.

For absolute error loss, the posterior expected loss is $E(|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x})$. As shown previously, this is minimized by choosing $\hat{\theta}$ as the median of $\pi(\theta|\mathbf{x})$.

• $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$.

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$.
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$

Bayes Risk

Example

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$.
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$
- The posterior distribution follows Beta($\sum x_i + \alpha, n \sum x_i + \beta$).

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$.
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$
- The posterior distribution follows Beta($\sum x_i + \alpha, n \sum x_i + \beta$).
- Bayes estimator that minimizes posterior expected squared error loss is the posterior mean

$$\hat{\theta} = \frac{\sum x_i + \alpha}{\alpha + \beta + n}$$

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$.
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$
- The posterior distribution follows Beta($\sum x_i + \alpha, n \sum x_i + \beta$).
- Bayes estimator that minimizes posterior expected squared error loss is the posterior mean

$$\hat{\theta} = \frac{\sum x_i + \alpha}{\alpha + \beta + n}$$

Bayes estimator that minimizes posterior expected absolute error loss is the posterior median

$$\int_0^{\hat{\theta}} \frac{\Gamma(\alpha+\beta+n)}{\Gamma(\sum x_i + \alpha)\Gamma(n-\sum x_i + \beta)} p^{\sum x_i + \alpha - 1} (1-p)^{n-\sum x_i + \beta - 1} dp = \frac{1}{2}$$

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Consistency •000000000000 When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Consistency

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \stackrel{\mathrm{P}}{\longrightarrow} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

 $W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \ge \epsilon) = 0$$

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 0$$

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Consistency

Definition - Consistency

Let $W_n = W_n(X_1, \dots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

 $W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \ge \epsilon) = 0$$

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 0$$

When $|W_n - \tau(\theta)| < \epsilon$ can also be represented that W_n is close to $\tau(\theta)$.

4 D > 4 B > 4 E > 4 E > 9 Q P

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Consistency

Definition - Consistency

Let $W_n = W_n(X_1, \dots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

 $W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \ge \epsilon) = 0$$

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 0$$

When $|W_n - \tau(\theta)| < \epsilon$ can also be represented that W_n is close to $\tau(\theta)$. Consistency implies that the probability of W_n close to $\tau(\theta)$ approaches to 1 as n goes to ∞ .

Tools for proving consistency

Use definition (complicated)

Tools for proving consistency

- Use definition (complicated)
- Chebychev's Inequality

$$\Pr(|W_n - \tau(\theta)| \ge \epsilon) = \Pr((W_n - \tau(\theta))^2 \ge \epsilon^2)$$

$$\le \frac{\mathrm{E}[W_n - \tau(\theta)]^2}{\epsilon^2}$$

$$= \frac{\mathrm{MSE}(W_n)}{\epsilon^2} = \frac{\mathrm{Bias}^2(W_n) + \mathrm{Var}(W_n)}{\epsilon^2}$$

Tools for proving consistency

- Use definition (complicated)
- Chebychev's Inequality

$$\Pr(|W_n - \tau(\theta)| \ge \epsilon) = \Pr((W_n - \tau(\theta))^2 \ge \epsilon^2)$$

$$\le \frac{\mathrm{E}[W_n - \tau(\theta)]^2}{\epsilon^2}$$

$$= \frac{\mathrm{MSE}(W_n)}{\epsilon^2} = \frac{\mathrm{Bias}^2(W_n) + \mathrm{Var}(W_n)}{\epsilon^2}$$

Need to show that both $\operatorname{Bias}(W_n)$ and $\operatorname{Var}(W_n)$ converges to zero

Theorem for consistency

Theorem 10.1.3

If W_n is a sequence of estimators of $\tau(\theta)$ satisfying

- $\lim_{n\to\infty} \operatorname{Bias}(W_n) = 0.$
- $\lim_{n\to\infty} \operatorname{Var}(W_n) = 0.$

for all θ , then W_n is consistent for $\tau(\theta)$

Weak Law of Large Numbers

Theorem 5.5.2

Let X_1, \dots, X_n be iid random variables with $E(X) = \mu$ and $\operatorname{Var}(X) = \sigma^2 < \infty$. Then \overline{X}_n converges in probability to μ . i.e. $\overline{X}_n \stackrel{P}{\longrightarrow} u$.

Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n , b_n be sequences of constants satisfying

Consistency 000000000000

- $\lim_{n\to\infty} b_n = 0.$

Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n , b_n be sequences of constants satisfying

- $\mathbf{0} \lim_{n\to\infty} a_n = 1$
- $\lim_{n\to\infty} b_n = 0.$

Then $U_n = a_n W_n + b_n$ is also a consistent sequence of estimators of $\tau(\theta)$.

Consistency

Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n , b_n be sequences of constants satisfying

- $\mathbf{0} \lim_{n\to\infty} a_n = 1$
- $\lim_{n\to\infty} b_n = 0.$

Then $U_n = a_n W_n + b_n$ is also a consistent sequence of estimators of $\tau(\theta)$.

Consistency

Continuous Map Theorem

If W_n is consistent for θ and q is a continuous function, then $q(W_n)$ is consistent for $q(\theta)$.

Problem

 X_1, \cdots, X_n are iid samples from a distribution with mean μ and variance $\sigma^2 < \infty$.

Problem

 X_1, \cdots, X_n are iid samples from a distribution with mean μ and variance $\sigma^2 < \infty$.

1 Show that \overline{X}_n is consistent for μ .

Problem

 X_1, \cdots, X_n are iid samples from a distribution with mean μ and variance $\sigma^2 < \infty$.

Consistency 000000000000

- **1** Show that \overline{X}_n is consistent for μ .
- 2 Show that $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ is consistent for σ^2 .

Problem

 X_1, \dots, X_n are iid samples from a distribution with mean μ and variance $\sigma^2 < \infty$.

- **1** Show that \overline{X}_n is consistent for μ .
- 2 Show that $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ is consistent for σ^2 .
- 3 Show that $\frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X})^2$ is consistent for σ^2 .

Proof: \overline{X}_n is consistent for μ

Proof: \overline{X}_n is consistent for μ

• Bias
$$(\overline{X}_n) = E(\overline{X}_n) - \mu = \mu - \mu = 0.$$

Proof: \overline{X}_n is consistent for μ

- Bias(\overline{X}_n) = E(\overline{X}_n) $\mu = \mu \mu = 0$.
- $\operatorname{Var}(\overline{X}_n) = \operatorname{Var}\left(\frac{\sum_{i=1}^n X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \sigma^2/n.$

Proof: \overline{X}_n is consistent for μ

- Bias $(\overline{X}_n) = E(\overline{X}_n) \mu = \mu \mu = 0.$
- $\operatorname{Var}(\overline{X}_n) = \operatorname{Var}\left(\frac{\sum_{i=1}^n X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \sigma^2/n.$
- $\lim_{n\to\infty} \operatorname{Var}(\overline{X}) = \lim_{n\to\infty} \frac{\sigma^2}{r} = 0.$

Proof: \overline{X}_n is consistent for μ

By law of large numbers, \overline{X}_n is consistent for μ .

- Bias $(\overline{X}_n) = E(\overline{X}_n) \mu = \mu \mu = 0.$
- $\operatorname{Var}(\overline{X}_n) = \operatorname{Var}\left(\frac{\sum_{i=1}^n X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \sigma^2/n.$
- $\lim_{n\to\infty} \operatorname{Var}(\overline{X}) = \lim_{n\to\infty} \frac{\sigma^2}{r} = 0.$

By Theorem 10.1.3. X is consistent for μ .

Solution - consistency for σ^2

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum (X_i^2 + \overline{X}^2 - 2X_i \overline{X})}{n}$$

Solution - consistency for σ^2

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum (X_i^2 + \overline{X}^2 - 2X_i \overline{X})}{n}$$
$$= \frac{\sum X_i^2 + n\overline{X}^2 - 2\overline{X}\sum_{i=1}^n X_i}{n}$$

Solution - consistency for σ^2

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum (X_i^2 + \overline{X}^2 - 2X_i \overline{X})}{n}$$

$$= \frac{\sum X_i^2 + n \overline{X}^2 - 2\overline{X} \sum_{i=1}^n X_i}{n}$$

$$= \frac{\sum X_i^2}{n} - \overline{X}^2$$

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum (X_i^2 + \overline{X}^2 - 2X_i \overline{X})}{n}$$

$$= \frac{\sum X_i^2 + n\overline{X}^2 - 2\overline{X}\sum_{i=1}^n X_i}{n}$$

$$= \frac{\sum X_i^2}{n} - \overline{X}^2$$

By law of large numbers,

$$\frac{1}{n} \sum X_i^2 \stackrel{P}{\longrightarrow} EX^2 = \mu^2 + \sigma^2$$

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum (X_i^2 + \overline{X}^2 - 2X_i \overline{X})}{n}$$

$$= \frac{\sum X_i^2 + n\overline{X}^2 - 2\overline{X}\sum_{i=1}^n X_i}{n}$$

$$= \frac{\sum X_i^2}{n} - \overline{X}^2$$

By law of large numbers,

$$\frac{1}{n} \sum X_i^2 \stackrel{P}{\longrightarrow} EX^2 = \mu^2 + \sigma^2$$

Note that \overline{X}^2 is a function of \overline{X} . Define $g(x)=x^2$, which is a continuous function. Then $\overline{X}^2 = q(\overline{X})$ is consistent for μ^2 .

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum (X_i^2 + \overline{X}^2 - 2X_i \overline{X})}{n}$$

$$= \frac{\sum X_i^2 + n\overline{X}^2 - 2\overline{X}\sum_{i=1}^n X_i}{n}$$

$$= \frac{\sum X_i^2}{n} - \overline{X}^2$$

By law of large numbers,

$$\frac{1}{n} \sum X_i^2 \stackrel{P}{\longrightarrow} EX^2 = \mu^2 + \sigma^2$$

Note that \overline{X}^2 is a function of \overline{X} . Define $g(x)=x^2$, which is a continuous function. Then $\overline{X}^2=g(\overline{X})$ is consistent for μ^2 . Therefore,

$$\frac{\sum (X_i - \overline{X}_n)^2}{n} = \frac{\sum X_i^2}{n} - \overline{X}^2 \xrightarrow{P} (\mu^2 + \sigma^2) - \mu^2 = \sigma^2$$

Hyun Min Kang

Define
$$S_n^2=\frac{1}{n-1}\sum (X_i-\overline{X}_n)^2$$
, and $(S_n^*)^2=\frac{1}{n}\sum (X_i-\overline{X}_n)^2$.

Define
$$S_n^2 = \frac{1}{n-1} \sum (X_i - \overline{X}_n)^2$$
, and $(S_n^*)^2 = \frac{1}{n} \sum (X_i - \overline{X}_n)^2$.

$$S_n^2 = \frac{1}{n-1} \sum (X_i - \overline{X}_n)^2 = (S_n^*)^2 \cdot \frac{n}{n-1}$$

Define
$$S_n^2=\frac{1}{n-1}\sum (X_i-\overline{X}_n)^2$$
, and $(S_n^*)^2=\frac{1}{n}\sum (X_i-\overline{X}_n)^2$.

$$S_n^2 = \frac{1}{n-1} \sum (X_i - \overline{X}_n)^2 = (S_n^*)^2 \cdot \frac{n}{n-1}$$

Because $(S_n^*)^2$ was shown to be consistent for σ^2 previously, and $a_n = \frac{n}{n-1} \to 1$ as $n \to \infty$, by Theorem 10.1.5, S_n^2 is also consistent for σ^2 .

Example - Exponential Family

Problem

Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$.

Example - Exponential Family

Problem

Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$.

1 Propose a consistent estimator of the median.

Example - Exponential Family

Problem

Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$.

- 1 Propose a consistent estimator of the median.
- 2 Propose a consistent estimator of $Pr(X \le c)$ where c is constant.

First, we need to express the median in terms of the parameter β .

$$\int_0^m \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{2}$$

First, we need to express the median in terms of the parameter β .

$$\int_0^m \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{2}$$
$$-e^{-x/\beta} \Big|_0^m = \frac{1}{2}$$

First, we need to express the median in terms of the parameter β .

$$\int_0^m \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{2}$$
$$-e^{-x/\beta} \Big|_0^m = \frac{1}{2}$$
$$1 - e^{-m/\beta} - \frac{1}{2}$$

First, we need to express the median in terms of the parameter β .

$$\int_0^m \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{2}$$

$$-e^{-x/\beta} \Big|_0^m = \frac{1}{2}$$

$$1 - e^{-m/\beta} - \frac{1}{2}$$

$$\text{median} = m = \beta \log 2$$

First, we need to express the median in terms of the parameter β .

$$\int_0^m \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{2}$$

$$-e^{-x/\beta} \Big|_0^m = \frac{1}{2}$$

$$1 - e^{-m/\beta} - \frac{1}{2}$$

$$\text{median} = m = \beta \log 2$$

By law of large numbers, \overline{X}_n is consistent for $EX = \beta$.

First, we need to express the median in terms of the parameter β .

$$\int_0^m \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{2}$$

$$-e^{-x/\beta} \Big|_0^m = \frac{1}{2}$$

$$1 - e^{-m/\beta} - \frac{1}{2}$$

$$\text{median} = m = \beta \log 2$$

By law of large numbers, \overline{X}_n is consistent for $EX = \beta$. Applying continuous mapping Theorem to $q(x) = x \log 2$, $q(\overline{X}) = \overline{X}_n \log 2$ is consistent for $q(\beta) = \beta \log 2$ (median).

Consistent estimator of $Pr(X \le c)$

$$\Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$

$$\Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$
$$= 1 - e^{-c/\beta}$$

Consistent estimator of $Pr(X \le c)$

$$\Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$
$$= 1 - e^{-c/\beta}$$

As \overline{X} is consistent for β , $1 - e^{-c/\beta}$ is continuous function of β .

Consistent estimator of $Pr(X \le c)$

$$\Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$
$$= 1 - e^{-c/\beta}$$

As \overline{X} is consistent for β , $1-e^{-c/\beta}$ is continuous function of β . By continuous mapping Theorem, $g(\overline{X})=1-e^{-c/\overline{X}}$ is consistent for $\Pr(X\leq c)=1-e^{-c/\beta}=g(\beta)$

Define $Y_i = I(X_i \leq c)$. Then $Y_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \leq c)$.

Consistent estimator of $Pr(X \leq c)$ - Alternative Method

Consistency

Define $Y_i = I(X_i < c)$. Then $Y_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X < c)$.

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le c)$$

is consistent for p by Law of Large Numbers.

Today

- Bayes Risk Functions
- Consistency
- Law of Large Numbers

Summary

Today

- Bayes Risk Functions
- Consistency
- Law of Large Numbers

Next Lecture

- Central Limit Theorem
- Slutsky Theorem
- Delta Method