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Evaluation of Bayes Estimator
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Recap
@00

Last Lecture

= What is a Bayes Estimator?
= |s a Bayes Estimator the best unbiased estimator?

= Compared to other estimators, what are advantages of Bayes
Estimator?

= What is conjugate family?

= What are the conjugate families of Binomial, Poisson, and Normal
distribution?
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Recap - Bayes Estimator

= ¢ : parameter

= 7(f) : prior distribution

= X|0 ~ fx(x|0) : sampling distribution
= Posterior distribution of 6|x

Joint  fx(x|0)7(0)
Marginal ~ m(x)

m(x) = /f(x|9)7r(c9)d9 (Bayes’ rule)

7(0)x) =

= Bayes Estimator of 0 is
E(0)x) — / 0 (0]x) db
0e
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Recap - Example

= X, , X, i Bernoulli(p)

+ 7(p) ~ Beta(a, §)

= Prior guess : p = o%—ﬁ

= Posterior distribution : 7(p|x) ~ Beta(}_ z; + a,n—>_ z;+ )

= Bayes estimator

atd n Y w n N o a+f
a+B+n n a+B8+n a+fa+pB+n

p=
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Loss Function Optimality

The mean squared error (MSE) is defined as

MSE(f) = E[f—6]?
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Bayes Risk
@®000000000

Loss Function Optimality

The mean squared error (MSE) is defined as
MSE(4) = E[f—6)?

Let  is an estimator.
. If )= 0, it makes a correct decision and loss is 0

= If 6 # 0, it makes a mistake and loss is not 0.
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Loss Function

Let L(6,6) be a function of 6 and .

= Squared error loss

L(6,0) = (6—0)
MSE = Average Loss = E[L(0, 0)]

which is the expectation of the loss if 0 is used to estimate 6.
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Bayes Risk
0000000000

Loss Function

Let L(6,6) be a function of 6 and .
= Squared error loss
L(6,0) = (6—0)
MSE = Average Loss = E[L(0, 0)]

which is the expectation of the loss if 0 is used to estimate 6.

= Absolute error loss

= A loss that penalties overestimation more than underestimation

~

L(6,0) = (0—0)%1(0 <6)+10(6 — 6)%1(0 > 6)
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Risk Function - Average Loss

If L(0,0) = (6 — 0)2, R(0,0) is MSE.
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R(0,0) = E[L®,0(X))|0]
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Risk Function - Average Loss

R(0,0) = E[L®,0(X))|0]

If L(0,0) = (6 — 0)2, R(0,0) is MSE. An estimator with smaller R(0,0) is
preferred.

Definition : Bayes Risk

Bayes risk is defined as the average risk across all values of 6 given prior
m(0)

/ R(0,0)7(0)do
Q
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Risk Function - Average Loss

R(0,0) = E[L®,0(X))|0]

If L(0,0) = (6 — 0)2, R(0,0) is MSE. An estimator with smaller R(0,0) is
preferred.

Definition : Bayes Risk

Bayes risk is defined as the average risk across all values of 6 given prior
m(0)

/ R(0,0)7(0)do
Q

The Bayes rule with respect to a prior 7 is the optimal estimator with
respect to a Bayes risk, which is defined as the one that minimize the
Bayes risk.
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Alternative definition of Bayes Risk
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Alternative definition of Bayes Risk

J
J
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Bayes Risk
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Alternative definition of Bayes Risk

/QR(e,é)w(e)da = /

Biostatistics 602 - Lecture 16 March 14th, 2013



Bayes Risk
[e]e]e] lelelelele]e]

Alternative definition of Bayes Risk

/ R(0,0)n(0)d0 = [ E[L(6,0(X))]x(0)dd

Q

/ f(x\@)L(Q,é(x))dx] (6)db
LJ X

_ / f(x|9)L(0,é(x))7r(0)dx} b
L X
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Bayes Risk
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Alternative definition of Bayes Risk

/ R(0,0)m(0)do = / E[L(6, (X))]=(0)do

Q Q i

/ f(x\@)L(Q,é(x))dx] (6)db
L X

/ f(x|9)L(0,é(x))7r(0)dx} b
L X

/,
/,

_ /Q_/Xw(ﬂx)m(x)L(Q,é(x))dx] d
A

UQ L(, (X)) (60]x) de} m(x) dx
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Posterior Expected Loss

Posterior expected loss is defined as

/ T(0]x)L(6, 6(x))do
Q
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Bayes Risk
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Posterior Expected Loss

Posterior expected loss is defined as
/7r(9|x)L(9,é(x))d0
Q

An alternative definition of Bayes rule estimator is the estimator that
minimizes the posterior expected loss.
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Bayes Estimator based on squared error loss
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Bayes Estimator based on squared error loss

L(6,0) (0 —0)?
Posterior expected loss = /Q(Q —0)%7(0)x)do
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Bayes Estimator based on squared error loss

L(6,0) = (6—0)
Posterior expected loss = /Q(Q —0)%7(0)x)do

= E[(0—-0)*|X =x]
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Bayes Estimator based on squared error loss

L(0,6) = (0-0)
Posterior expected loss = / Q0 — 0)%7(6|x)db
= E[(0—-0)*|X =x]

So, the goal is to minimize E[(6 — §)%|X = x]

E [(9 — 02X = x] - E [(0 — E(0]x) + E(0]x) — 0)?X = x
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Bayes Estimator based on squared error loss
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So, the goal is to minimize E[(6 — §)%|X = x]
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Bayes Estimator based on squared error loss

L(0,6) = (0-0)
Posterior expected loss = / Q0 — 0)%7(6|x)db
= E[(0—-0)*|X =x]

So, the goal is to minimize E[(6 — §)%|X = x]

E [(9 — 02X = x] - E [(0 —E(0]x) + E(0]x) — 0)2|X = x}
— E[(0-BEOx)*X=x] +E [(E(e\x) — 02X = x}

= B[(0-BOp)X = x| + [B@}) ]
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Bayes Estimator based on squared error loss

L(0,6) = (0-0)
Posterior expected loss = / Q0 — 0)%7(6|x)db
= E[(0—-0)*|X =x]

So, the goal is to minimize E[(6 — §)%|X = x]

E [(9 — 02X = x] - E [(0 —E(0]x) + E(0]x) — 0)2|X = x}
— E[(0-BEOx)*X=x] +E [(E(e\x) — 02X = x}
= B[(0-BOp)X = x| + [B@}) ]

which is minimized when = E(0|x).
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Summary so far

Loss function L(6,0)
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Summary so far

Loss function L(6,6)
= eg (0—0)2 10-19)
Risk function R(0,0) is average of L(f, theta) across all z € X
= For squared error loss, risk function is the same to MSE.
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Summary so far

Loss function L(6,6)
= eg (0—0)2 10-19)
Risk function R(0,0) is average of L(f, theta) across all z € X

= For squared error loss, risk function is the same to MSE.

Bayes risk Average risk across all 8, based on the prior of 6.

= Alternatively, average posterior error loss across all
TEX.
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Bayes Risk
0000008000

Summary so far

Loss function L(G,é)
“eg (0-0)%10-9])
Risk function R(0,0) is average of L(f, theta) across all z € X
= For squared error loss, risk function is the same to MSE.
Bayes risk Average risk across all 8, based on the prior of 6.
= Alternatively, average posterior error loss across all
TEX.
Bayes estimator § = E[0]x]. Based on squared error loss,
= Minimize Bayes risk
= Minimize Posterior Expected Loss
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Bayes Estimator based on absolute error loss

Suppose that L(6,0) = |6 — 6.
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Bayes Risk
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Bayes Estimator based on absolute error loss

Suppose that L(6,0) = |6 — 6|. The posterior expected loss is

E[L(6,0(x))] = /£2|9—9(X)|W(9IX)d9
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Bayes Risk
000000000

Bayes Estimator based on absolute error loss

Suppose that L(6,0) = |6 — 6|. The posterior expected loss is

E[L(0,0(x))] = /|9 (x)|w(0]x)do
= E[6 - 0/[X =x]

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 12 /28



Bayes Risk
000000000

Bayes Estimator based on absolute error loss

Suppose that L(6,0) = |6 — 6|. The posterior expected loss is

E[L(0,0(x))] = /|9 (x)|w(0]x)do

— B[6—0X = x]
6 0 R

_ /—(«9—9)77(0|x)d9+/ (0 — B)m(0]x)do
0 0
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000000000

Bayes Estimator based on absolute error loss

Suppose that L(6,0) = |6 — 6|. The posterior expected loss is

E[L(0,0(x))] = /|9 (x)|w(0]x)do

— B[6—0X = x]
6 0 R

_ /—(«9—9)77(0|x)d9+/ (0 — B)m(0]x)do
0 0

I B[L(,0(x))] = 0, and 0 is posterior median.
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Two Bayes Rules

Consider a point estimation problem for real-valued parameter 6.
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Two Bayes Rules

Consider a point estimation problem for real-valued parameter 6.

For squared error loss, the posterior expected loss is

Q

/(9 _02x(0x)d0 = E[(6— 02X =

This expected value is minimized by 6 = E(6]x). So the Bayes rule

estimator is the mean of the posterior distribution.
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0000000080

Two Bayes Rules

Consider a point estimation problem for real-valued parameter 6.

For squared error loss, the posterior expected loss is
/(9 _02x(0x)d0 = E[(6— 02X =
Q

This expected value is minimized by 6 = E(6]x). So the Bayes rule
estimator is the mean of the posterior distribution.

For absolute error loss, the posterior expected loss is E(|§ — 0]|X = x). As
shown previously, this is minimized by choosing 6 as the median of 7(6|x).

V.
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= Xy, , X, i Bernoulli(p).
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= Xy, , X, i Bernoulli(p).
= m(p) ~ Beta(a, §)
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EE

= Xy, , X, i Bernoulli(p).

= 7(p) ~ Beta(a, §)
= The posterior distribution follows Beta(>_ z; + a,n— > x; + ().
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EE

= Xy, , X, i Bernoulli(p).
= m(p) ~ Beta(a, §)
= The posterior distribution follows Beta(>_ z; + a,n— > x; + ().

= Bayes estimator that minimizes posterior expected squared error loss
is the posterior mean
Yt a

jo Lutoe
a+pB+n
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EE

= Xy, , X, i Bernoulli(p).

= m(p) ~ Beta(a, §)

= The posterior distribution follows Beta(>_ z; + a,n— > x; + ().

= Bayes estimator that minimizes posterior expected squared error loss
is the posterior mean

j— dSai+

a+pB+n

= Bayes estimator that minimizes posterior expected absolute error loss
is the posterior median

0 [(a+ B+ n) S arta1 I |
/0 F(Z$i+a)f‘(n—zxi+5)p e i1 - p) + dp-i
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W, = W, (X1, -, Xy) = W,(X) be a sequence of estimators for
7(6). We say W, is consistent for estimating 7(6) if W, Py 7(6) under
Py for every 6 € ().
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W, = W, (X1, -, Xy) = W,(X) be a sequence of estimators for
7(6). We say W, is consistent for estimating 7(6) if W, Py 7(6) under
Py for every 6 € ().

W, —> 7(6) (converges in probability to 7(6)) means that, given any
e> 0.

li_>m Pr(|W, —7(0)| >¢) = 0
lim Pr(|W, —7(0)| <e) = 0

n—00
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W, = W, (X1, -, Xy) = W,(X) be a sequence of estimators for
7(6). We say W, is consistent for estimating 7(6) if W, Py 7(6) under
Py for every 6 € ().

W, —> 7(6) (converges in probability to 7(6)) means that, given any
e> 0.

li_>m Pr(|W, —7(0)| >¢) = 0
lim Pr(|W, —7(0)| <e) = 0
n—00

When | W,, — 7(0)| < € can also be represented that W, is close to 7(0).
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W, = W, (X1, -, Xy) = W,(X) be a sequence of estimators for
7(6). We say W, is consistent for estimating 7(6) if W, Py 7(6) under
Py for every 6 € ().

W, —> 7(6) (converges in probability to 7(6)) means that, given any
e> 0.

li_>m Pr(|W, —7(0)| >¢) = 0
lim Pr(|W, —7(0)| <e) = 0
n—00

When | W,, — 7(0)| < € can also be represented that W, is close to 7(0).
Consistency implies that the probability of W, close to 7(#) approaches to

1 as n goes to oo.
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Tools for proving consistency

= Use definition (complicated)
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Tools for proving consistency

= Use definition (complicated)

= Chebychev's Inequality

Pr(|Wo—7(0)] =€) = Pr((Wo—7(0))*>¢)
E[W, —7(0)]?

= 62

MSE(W,) _ Bias®(W,) + Var(W,)

€2 €2
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Tools for proving consistency

= Use definition (complicated)

= Chebychev's Inequality

Pr(|Wy, —7(0)] = €) Pr((Wa —7(0))* =€)

E[W, — ()]
MSE(W,) Bias?(W,) + Var(W,)
= 2 = 2

Need to show that both Bias(W,) and Var(W,,) converges to zero
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Theorem for consistency

Theorem 10.1.3

If W, is a sequence of estimators of 7(f) satisfying
= lim,_-. Bias(W,) = 0.
= lim,_>o Var(W,) =0.

for all 6, then W, is consistent for 7(0)
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Weak Law of Large Numbers

Let Xi,---, X, be iid random variables with E(X) = p and
Var(X) = 02 < co. Then X, converges in probability to .
ie. X, Py .
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Consistent sequence of estimators

Theorem 10.1.5

Let W, is a consistent sequence of estimators of 7(6). Let a,, b, be
sequences of constants satisfying
(1] hmn—>oo an =1
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Consistent sequence of estimators

Let W, is a consistent sequence of estimators of 7(6). Let a,, b, be
sequences of constants satisfying

(1] hmn—>oo an =1

Then U, = a, W, + b, is also a consistent sequence of estimators of 7(6).

Theorem 10.1.5

v
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Consistent sequence of estimators

Theorem 10.1.5

Let W, is a consistent sequence of estimators of 7(6). Let a,, b, be
sequences of constants satisfying

0 lim, .0, =1

Then U, = a, W, + b, is also a consistent sequence of estimators of 7(6).

v

Continuous Map Theorem

If W, is consistent for 6§ and g is a continuous function, then g(W,,) is
consistent for g(f).
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EE

Problem

Xi,---, X, are iid samples from a distribution with mean p and variance
o2 < oo.
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EE

Problem

Xi,---, X, are iid samples from a distribution with mean p and variance
o2 < oo.

® Show that X, is consistent for f.
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EE

Problem

Xi,---, X, are iid samples from a distribution with mean p and variance
o2 < oo.

® Show that X, is consistent for f.
® Show that 13" (X; — X)? is consistent for o2,
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EE

Problem

Xi,---, X, are iid samples from a distribution with mean p and variance
o2 < oo.

® Show that X, is consistent for f.
® Show that 13" (X; — X)? is consistent for o2,
© Show that 1 37 | (X; — X)? is consistent for 2.
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Example - Solution

Proof: X, is consistent for 1

By law of large numbers, X,, is consistent for .
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Example - Solution

Proof: X, is consistent for 1

By law of large numbers, X,, is consistent for .

» Bias(X,) =E(X,) —p=p—pu=0.

Hyun Min Kang Biostatistics 602 - Lecture 16

March 14th, 2013

21/ 28



Consistency
0000008000000

Example - Solution

Proof: X, is consistent for 1
By law of large numbers, X,, is consistent for .
. Bias()_(n):E()_()—,u—,u—,u:O.
» Var(X,) = Var (21‘ X’) L 3%, Var(X;) = o?/n.
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Example - Solution

Proof: X, is consistent for 1
By law of large numbers, X,, is consistent for .

» Bias(X,) =E(X,) —p=p—pu=0.
T ) — 2 Xi\ _ 1y Y — 52
= Var(X,) = Var = = 5 ) g Var(Xy) = o%/n.

= limy, oo Var(X) = lim, 00 "—: =0.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 21 /28



Consistency
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Example - Solution

Proof: X, is consistent for 1

By law of large numbers, X,, is consistent for p.

» Bias(X,) =E(X,) —p=p—pu=0.
» Var(X,) = Var (#) =& 3%, Var(X;) = o%/n.
= limy, oo Var(X) = lim, 00 "—: =0.

By Theorem 10.1.3. X is consistent for j.
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Solution - consistency for o

Y(Xi-%? (XX -2XX)

n n
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Solution - consistency for o

Y(Xi-%? (XX -2XX)

n

n
S X4 X —2XY X,
n
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Solution - consistency for o

Y(Xi-%? (XX -2XX)

n
S X2 4 X —2XY,

X;

n
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Solution - consistency for o

Y(Xi-%? (XX -2XX)

n
S X4 X —2XY X,
n

XX
n
By law of large numbers,

1
?LZXg—%EX?:;ﬁJra?
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Solution - consistency for o

Y(Xi-%? (XX -2XX)

n
S X4 X —2XY X,
n

X
n
By law of large numbers,
1
“yox L BEX2 = )2 4 02

Note that X~ is a function of X. Define g(z) = 22, which is a continuous
function. Then X~ = ¢(X) is consistent for 2.
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Solution - consistency for o

Y(Xi-%? (XX -2XX)

n
S X4 X —2XY X,

n

X
n
By law of large numbers,
1
“yox L BEX2 = )2 4 02

Note that X~ is a function of X. Define g(z) = 22, which is a continuous
function. Then X~ = g(X) is consistent for u2. Therefore,
YK - Xn)? Y X
n

n
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Solution - consistency for o2 (cont'd)

Define $2 = L. S°(X; — X,,)%, and (S5)? = L S°(X; — X,,)%
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Solution - consistency for o2 (cont'd)

Define $2 = L. S°(X; — X,,)%, and (S5)? = L S°(X; — X,,)%
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Solution - consistency for o2 (cont'd)

Define $2 = L. S°(X; — X,,)%, and (S5)? = L S°(X; — X,,)%

1
n—1

S = n

n

D (Xi— X = (8))*

n—1

Because (S%)? was shown to be consistent for o2 previously, and
an = 7"y — 1 as n — oo, by Theorem 10.1.5, $2 is also consistent for 2.
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Example - Exponential Family

Suppose X1, , X, 2L Exponential(3).
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Example - Exponential Family

Suppose X1, , X, 2L Exponential(3).

@ Propose a consistent estimator of the median.
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Example - Exponential Family

Suppose X1, , X, 2L Exponential(3).
@ Propose a consistent estimator of the median.

@® Propose a consistent estimator of Pr(X < ¢) where ¢ is constant.
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Consistent estimator for the median

First, we need to express the median in terms of the parameter 5.

/By = =
e r =
/0 B 2
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Consistent estimator for the median

First, we need to express the median in terms of the parameter 5.

m1
e By =
e r =
I

_efx/ﬁ’;" —

N = N =
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Consistent estimator for the median

First, we need to express the median in terms of the parameter 5.

0o B 2
_ fx/ﬁ’m _ 1
¢ 0 2

1 e m/B 1
2
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Consistent estimator for the median

First, we need to express the median in terms of the parameter 5.

o B 2
_ fx/ﬁ’m _ 1
¢ 0 2
1 e mB _ 1
2
median = m = Flog2
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Consistent estimator for the median

First, we need to express the median in terms of the parameter 5.

/By —
e r =
/0 B

2
_fx/ﬁ‘m _ 1
¢ 0 2
1 e mB _ 1
2

median = m = Flog2

By law of large numbers, X,, is consistent for EX = 3.
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Consistent estimator for the median

First, we need to express the median in terms of the parameter 5.

/By —
e r =
/0 B

2
_fx/ﬁ‘m _ 1
¢ 0 2
1 e mB _ 1
2

median = m = Flog2

By law of large numbers, X,, is consistent for EX = 3.
Applying continuous mapping Theorem to g(z) = zlog2, g(X) = X, log?2
is consistent for g(3) = Slog2 (median).
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Consistent estimator of Pr(X < ¢)

Pr(X<e¢) = /1e_z/5dx
o B
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Consistent estimator of Pr(X < ¢)

Pr(X<e¢) = /1e_z/5dx
o B

= 1—¢ 9P
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Consistent estimator of Pr(X < ¢)

Pr(X<e¢) = /1e_z/5dx
o B

= 1—¢ 9P

As X is consistent for 8, 1 — e~“/# is continuous function of 3.
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Consistent estimator of Pr(X < ¢)

Pr(X<e¢) = /1e_z/5dx
o B

= 1—¢ 9P

As X is consistent for 8, 1 — e~“/# is continuous function of 3.

By continuous mapping Theorem, g(X) = 1 — e=%/X is consistent for

Pr(X<c¢)=1—e 8 =g
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Consistent estimator of Pr(X < ¢) - Alternative Method

Define Y; = I(X; < ¢). Then Y; He Bernoulli(p) where p = Pr(X < ¢).
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Consistent estimator of Pr(X < ¢) - Alternative Method

Define Y; = I(X; < ¢). Then Y; He Bernoulli(p) where p = Pr(X < ¢).

fzy_fz (X: <o)

is consistent for p by Law of Large Numbers.
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Summary

= Bayes Risk Functions
= Consistency

= Law of Large Numbers
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Summary

= Bayes Risk Functions
= Consistency

= Law of Large Numbers

= Central Limit Theorem

= Slutsky Theorem
= Delta Method
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