Likelihood Calculation in Large Families

Biostatistics 666

Previously

- Analysis of Unrelated Individuals
- Computational Methods Well Suited to Handling Many Markers in Sibling Pairs and Small Families

 Today: Computational Methods Well Suited to Larger Pedigrees

Today ...

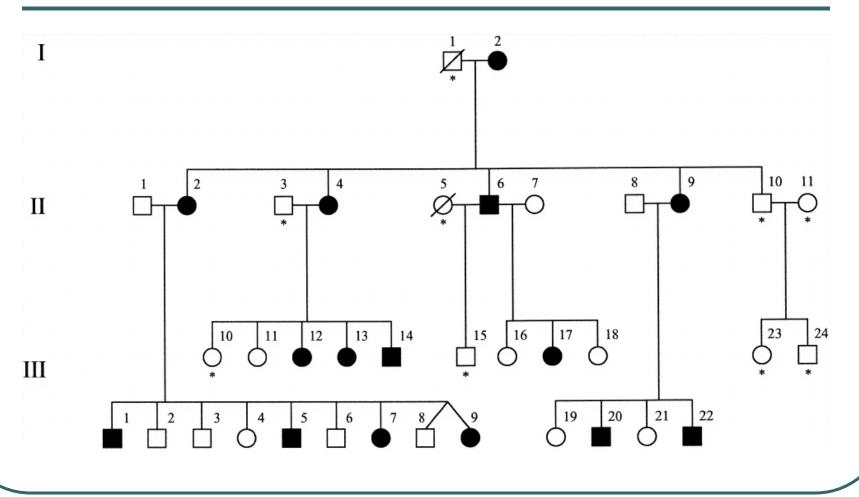
 Alternative formulation of likelihood for related individuals

- Elston-Stewart Algorithm
 - Alternative to Hidden Markov Models
 - Can handle large pedigrees
 - Limited to a few markers

Why Study Large Families?

- Traditionally, large families have been used to map Mendelian traits
- In general, large families are an ideal setting to study the behavior of rare alleles
 - Greatly increased likelihood that multiple individuals with the same rare allele will be observed
- As our ability to examine rare variation increases, there is renewed interest in large pedigrees

Typical Family for Mapping Mendelian Trait...



The Problem

- These families are typically too large for the Hidden Markov Models we have discussed
- Impractical to enumerate all potential IBD configurations / inheritance graphs...
- Need an alternative formulation for the pedigree likelihood

Elements of Pedigree Likelihoods

Prior Probabilities

For founder genotypes

Segregation probabilities

For offspring genotypes, given parents

Penetrances

For individual phenotypes, given genotype

Prior Probabilities for Founders

P(G_{founder})

- Assume Hardy-Weinberg equilibrium
 - Based on allele frequencies
- May be multilocus frequencies
 - Typically, assuming linkage equilibrium

Segregation Probabilities

- $P(G_o | G_f, G_m)$
- Probability of offspring genotype conditional on parental genotypes
 - Follows from Mendel's laws
- For multiple loci, the probability of offspring haplotypes conditional on parental haplotypes

Penetrances

• $P(X_i | G_i)$

 Probability of observed phenotype conditional on genotype

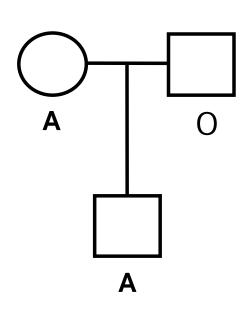
Generally, assume that phenotypes are independent within families

Overall Pedigree Likelihood

$$L = \sum_{G_1} ... \sum_{G_n} \prod_{f} P(G_f) \prod_{\{o, f, m\}} P(G_o \mid G_f, G_m) \prod_{i} P(X_i \mid G_i)$$

- Notice the three elements:
 - Probability of founder genotypes
 - Probability of children given parents
 - Probability of phenotypes given genotypes

Simple Example...



Phenotypes are for the ABO locus

Calculate:

- Likelihood for pedigree
- Likelihood conditional on mother being A/A vs A/O

Computationally ...

$$L = \sum_{G_1} \dots \sum_{G_n} \prod_i P(X_i \mid G_i) \prod_{founder} P(G_{founder}) \prod_{\{o, f, m\}} P(G_o \mid G_f, G_m)$$

- Computation rises exponentially with #people
- Computation rises exponentially with #markers
- Challenge is summation over all possible genotypes (or haplotypes) for each individual

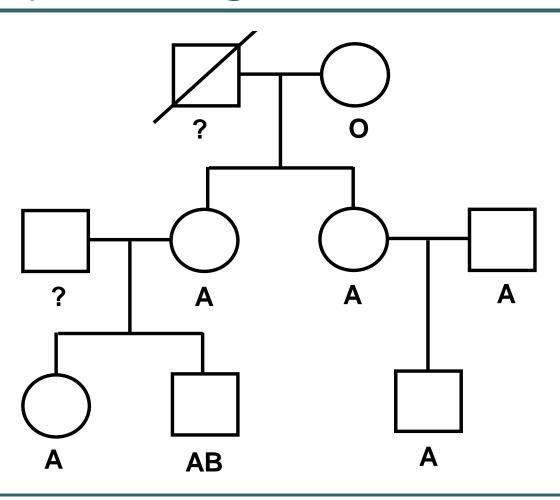
Typical calculation

List all possible genotypes

- Create reduced lists
 - Eliminate those where P(X|G) = 0
 - Eliminate those where $P(G_o|G_f,G_m) = 0$

Iterate over all possibilities

Example Pedigree



Iteration over All Genotypes

9 individuals

- 3 ABO alleles
 - 6 possible genotypes
- Potential genotype sets
 - $^{\circ}$ 6⁹ = 10,077,696

Condition on Phenotype

Person	Genotypes	#Genotypes
I-1	{AA, AO, BB, BO, AB, OO}	6
I-2	{OO}	1
II-1	{AA, AO, BB, BO, AB, OO}	6
II-2	{AA, AO}	2
II-3	{AA, AO}	2
II-4	{AA, AO}	2
III-1	{AA, AO}	2
III-2	{AB}	1
III-3	{AA, AO}	2

Condition on Family Members

Person	Genotypes	#Genotypes
I-1	{AA, AO, AB}	3
I-2	(OO)	1
II-1	{BO, AB}	2
II - 2	(AO)	1
II-3	(AO)	1
II-4	{AA, AO}	2
III-1	{AA, AO}	2
III-2	{AB}	1
III-3	{AA, AO}	2

Can We Avoid Iteration over all Genotypes

Quickly becomes extremely costly!

Solution for Nuclear Families

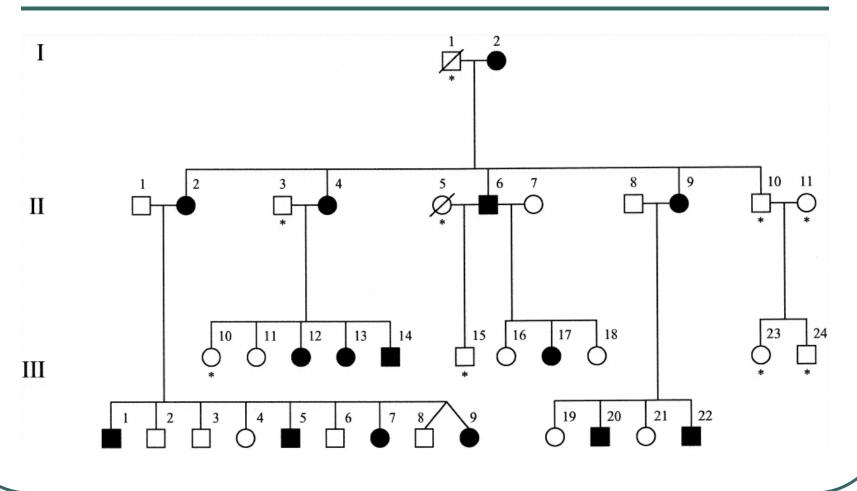
$$L = \sum_{G_m} P(X_m | G_m) P(G_m)$$

$$\sum_{G_f} P(X_f | G_f) P(G_f)$$

$$\prod_{o} \sum_{G_o} P(X_o | G_o) P(G_o | G_m, G_f)$$

- Conditional on parental genotypes, offspring are independent
- Avoids nested sums and results in computation whose cost increases linearly with the number of offspring

What about large pedigrees?



Elston and Stewart's (1971) insight...

- Focus on "special pedigrees" where
 - Every person is either:
 - Related to someone in the previous generation
 - Marrying into the pedigree
 - No consanguineous marriages
- Process nuclear families, by fixing the genotype for one parent ...

Successive Conditional Probabilities

- Starting at the bottom of the pedigree...
- Calculate conditional probabilities by fixing genotypes for one parent
- Specifically, calculate H_k(G_k)
 - Probability of descendants and spouse for person k
 - Conditional on person k having genotype G_k

Formulae ...

So for each parent, calculate:

$$\begin{split} H_{\textit{parent}} \; (G_{\textit{parent}} \;) &= \sum_{G_{\textit{spouse}}} P(X_{\textit{spouse}} \; | \, G_{\textit{spouse}} \;) P(G_{\textit{spouse}} \;) \\ & \prod \sum_{G_{\textit{o}}} P(X_{o} \, | \, G_{o}) P(G_{o} \, | \, G_{\textit{parent}} \;, G_{\textit{spouse}} \;) H_{o}(G_{o}) \end{split}$$

By convention, for individuals with no descendants:

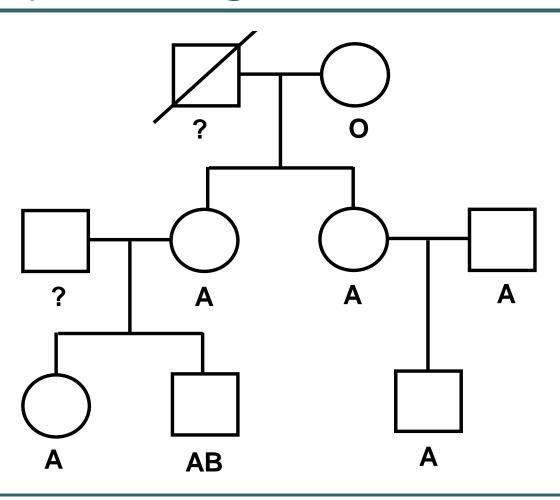
$$H_{lef} (G_{lef}) = 1$$

Final Likelihood

- After processing all nuclear family units ...
- Simple sum gives the overall pedigree likelihood:

$$L = \sum_{G_{founder}} P(X_{founder} | G_{founder}) H(G_{founder}) P(G_{founder})$$

Example Pedigree



Condition on Family Members

Person	Genotypes	#Genotypes
I-1	{AA, AO, AB}	3
I-2	(OO)	1
II-1	{BO, AB}	2
II - 2	(AO)	1
II-3	(AO)	1
II-4	{AA, AO}	2
III-1	{AA, AO}	2
III-2	{AB}	1
III-3	{AA, AO}	2

Steps

- Conditional Probabilities at II-3
 - Using phenotypes at II-4 and III-3
- Conditional Probabilities at II-2
 - Using phenotypes for II-1, III-1 and III-2
- Conditional Probabilities at I-1 (or I-2)
 - Using phenotypes for II-2 and II-3 and conditional probabilities for their descendants

Elston Stewart Applicability

- Potentially large pedigrees
 - But structure of the pedigree must be simple
 - Only a little inbreeding can be accommodated

- Limited to a small number of markers
 - Complexity exponential on number of markers

Dealing With Many Markers in Complex Pedigrees

- Hidden Markov Models based on IBD configurations can handle many markers in small pedigrees
- Pedigree "Peeling" algorithms that sum over individual genotypes can deal with a few markers in large pedigrees
- Pedigrees beyond the reach of these strategies must be handled using approximate Monte Carlo methods

Today

- Elston Stewart Algorithm
 - Alternative approach for pedigree analysis
 - Can handle relative large pedigrees
- Implemented in the LINKAGE, FASTLINK and VITESSE computer packages