Biostatistics 615/815 Lecture 13: Programming with Matrix

Hyun Min Kang

February 17th, 2011
Announcements

Homework #3

- Homework 3 is due today
- If you’re using Visual C++ and still have problems in using boost library, you can ask for another extension
Announcements

Homework #3

- Homework 3 is due today
- If you’re using Visual C++ and still have problems in using boost library, you can ask for another extension

Homework #4

- Homework 4 is out
- Floyd-Warshall algorithm
 - Note that some key information was not covered in the class.
- Fair/biased coint HMM
Last lecture - Conditional independence in graphical models

\[
\Pr(A, C, D, E | B) = \Pr(A | B) \Pr(C | B) \Pr(D | B) \Pr(E | B)
\]
Markov Blanket

- If conditioned on the variables in the gray area (variables with direct dependency), A is independent of all the other nodes.
- $A \perp (U - A - \pi_A | \pi_A)$
Hidden Markov Models

\[q_1 \xrightarrow{a_{21}} q_2 \xrightarrow{a_{32}} q_3 \xrightarrow{\ldots} q_T \]

\[b_{q_1}(o_1) \xrightarrow{b_{q_2}(o_2)} b_{q_3}(o_3) \xrightarrow{\ldots} b_{q_T}(o_T) \]

\[\pi \]

Hyun Min Kang
Conditional dependency in forward-backward algorithms

- Forward: \((q_t, o_t) \perp o_t^- | q_{t-1}\).
- Backward: \(o_{t+1} \perp o_{t+1}^+ | q_{t+1}\).
Viterbi algorithm - example

- When observations were (walk, shop, clean)
- Similar to Dijkstra’s or Manhattan tourist algorithm
Today’s lecture

- Calculating Power
- Linear algebra 101
- Using Eigen library for linear algebra
- Implementing a simple linear regression
Calculating power

Problem

- Computing a^n, where $a \in \mathbb{R}$ and $n \in \mathbb{N}$.
- How many multiplications would be needed?

Function slowPower()

def slowPower(double a, int n) {
 double x = a;
 for(int i=1; i < n; ++i) {
 x *= a;
 }
 return x;
}
More efficient computation of power

Function fastPower()

double fastPower(double a, int n) {
 if (n == 1) {
 return a;
 }
 else {
 double x = fastPower(a,n/2);
 if (n % 2 == 0) {
 return x * x;
 } else {
 return x * x * a;
 }
 }
}
Computational time

```
int main(int argc, char** argv) {
    double a = 1.0000001;
    int n = 1000000000;
    clock_t t1 = clock();
    double x = slowPower(a,n);
    clock_t t2 = clock();
    double y = fastPower(a,n);
    clock_t t3 = clock();
    std::cout << "slowPower ans = " << x << " , sec = " << (double)(t2-t1)/CLOCKS_PER_SEC << std::endl;
    std::cout << "fastPower ans = " << y << " , sec = " << (double)(t3-t2)/CLOCKS_PER_SEC << std::endl;
}
```

Running examples

slowPower ans = 2.6881e+43, sec = 1.88659
fastPower ans = 2.6881e+43, sec = 3e-06
Summary - fastPower()

- $\Theta(\log n)$ complexity compared to $\Theta(n)$ complexity of slowPower()
- Similar to binary search vs linear search
- Good example to illustrate how the efficiency of numerical computation could change by clever algorithms
Why Matrix matters?

- Many statistical models can be well represented as matrix operations
 - Linear regression
 - Logistic regression
 - Mixed models

- Efficient matrix computation can make difference in the practicality of a statistical method

- Understanding C++ implementation of matrix operation can expedite the efficiency by orders of magnitude
Ways to Matrix programming

- Implementing Matrix libraries on your own
 - Implementation can well fit to specific need
 - Need to pay for implementation overhead
 - Computational efficiency may not be excellent for large matrices
Ways to Matrix programming

- Implementing Matrix libraries on your own
 - Implementation can well fit to specific need
 - Need to pay for implementation overhead
 - Computational efficiency may not be excellent for large matrices

- Using BLAS/LAPACK library
 - Low-level Fortran/C API
 - ATLAS implementation for gcc, MKL library for intel compiler (with multithread support)
 - Used in many statistical packages including R
 - Not user-friendly interface use.
 - boost supports C++ interface for BLAS
Ways to Matrix programming

• Implementing Matrix libraries on your own
 • Implementation can well fit to specific need
 • Need to pay for implementation overhead
 • Computational efficiency may not be excellent for large matrices

• Using BLAS/LAPACK library
 • Low-level Fortran/C API
 • ATLAS implementation for gcc, MKL library for intel compiler (with multithread support)
 • Used in many statistical packages including R
 • Not user-friendly interface use.
 • boost supports C++ interface for BLAS

• Using a third-party library, Eigen package
 • A convenient C++ interface
 • Reasonably fast performance
 • Supports most functions BLAS/LAPACK provides
Using a third party library

Downloading and installing Eigen package

- To install - just uncompress it
Using a third party library

Downloading and installing Eigen package

- To install - just uncompress it

Using Eigen package

- Add `-I DOWNLOADED_PATH/eigen` option when compile
- No need to install separate library. Including header files is sufficient
#include <iostream>
#include <Eigen/Dense> // For non-sparse matrix
using namespace Eigen; // avoid using Eigen::
int main()
{
 Matrix2d a; // 2x2 matrix type is defined for convenience
 a << 1, 2,
 3, 4;
 MatrixXd b(2,2); // but you can define the type from arbitrary-size matrix
 b << 2, 3,
 1, 4;
 std::cout << "a + b =\n" << a + b << std::endl; // matrix addition
 std::cout << "a - b =\n" << a - b << std::endl; // matrix subtraction
 std::cout << "Doing a += b;" << std::endl;
 a += b;
 std::cout << "Now a =\n" << a << std::endl;
 Vector3d v(1,2,3); // vector operations
 Vector3d w(1,0,0);
 std::cout << "-v + w - v =\n" << -v + w - v << std::endl;
}

Hyun Min Kang
Biostatistics 615/815 - Lecture 13
February 17th, 2011
16 / 28
More examples

```cpp
#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;

int main()
{
    Matrix2d mat; // 2*2 matrix
    mat << 1, 2,
           3, 4;
    Vector2d u(-1,1), v(2,0); // 2D vector
    std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;
    std::cout << "Here is mat*u:\n" << mat*u << std::endl;
    std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;
    std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
    std::cout << "Let's multiply mat by itself":" << std::endl;
    mat = mat*mat;
    std::cout << "Now mat is mat:\n" << mat << std::endl;
}
```

Hyun Min Kang
Biostatistics 615/815 - Lecture 13
February 17th, 2011
Time complexity of matrix computation

Square matrix multiplication / inversion

- Naive algorithm: $O(n^3)$
- Strassen algorithm: $O(n^{2.807})$
- Coppersmith-Winograd algorithm: $O(n^{2.376})$ (with very large constant factor)

Determinant

- Laplace expansion: $O(n!)$
- LU decomposition: $O(n^3)$
- Bareiss algorithm: $O(n^3)$
- Fast matrix multiplication algorithm: $O(n^{2.376})$
Computational considerations in matrix operations

Avoiding expensive computation

- Computation of $u'ABv$

Computational considerations in matrix operations

Avoiding expensive computation

- Computation of $u'ABv$
- If the order is $(((u'(AB))v)$
 - $O(n^3) + O(n^2) + O(n)$ operations
 - $O(n^2)$ overall
Computational considerations in matrix operations

Avoiding expensive computation

- Computation of $u' A B v$
 - If the order is $(((u'(A B))v)$
 - $O(n^3) + O(n^2) + O(n)$ operations
 - $O(n^2)$ overall
 - If the order is $(((u' A) B)v)$
 - Two $O(n^2)$ operations and one $O(n)$ operation
 - $O(n^2)$ overall
Quadratic multiplication

Same time complexity, but one is slightly more efficient

- Computing $\mathbf{x}' \mathbf{A} \mathbf{y}$.
- $O(n^2) + O(n)$ if ordered as $(\mathbf{x}' \mathbf{A}) \mathbf{y}$.
- Can be simplified as $\sum_i \sum_j x_i A_{ij} y_j$

A symmetric case

- Computing $\mathbf{x}' \mathbf{A} \mathbf{x}$ where $\mathbf{A} = \mathbf{L} \mathbf{L}'$
- $\mathbf{u} = \mathbf{L}' \mathbf{x}$ can be computed more efficiently than $\mathbf{A} \mathbf{x}$.
- $\mathbf{x}' \mathbf{A} \mathbf{x} = \mathbf{u}' \mathbf{u}$
Solving linear systems

Problem
Find \(x \) that satisfies \(Ax = b \)

A simplest approach
- Calculate \(A^{-1} \), and \(x = A^{-1}b \)
- Time complexity is \(O(n^3) + O(n^2) \)
- \(A \) has to be invertible
- Potential issue of numerical instability
Using matrix decomposition to solve linear systems

LU decomposition
- \(A = LU \), making \(Ux = L^{-1}b \)
- \(A \) needs to be square and invertible.
- Fewer additions and multiplications
- Precision problems may occur

QR decomposition
- \(A = QR \) where \(A \) is \(m \times n \) matrix
- \(Q \) is orthogonal matrix, \(Q'Q = I \).
- \(R \) is \(m \times n \) upper-triangular matrix, \(Rx = Q'b \).

Cholesky decomposition

- A is a square, symmetric, and positive definite matrix.
- $A = U'U$ is a special case of LU decomposition
- Computationally efficient and accurate
Solving least square

Solving via inverse

- Most straightforward strategy
- \(y = X\beta + \epsilon, \ y \) is \(n \times 1 \), \(X \) is \(n \times p \).
- \(\beta = (X'X)^{-1}X'y \).
- Computational complexity is \(O(np^2) + O(np) + O(p^3) \).
- The computation may become unstable if \(X'X \) is singular
- Need to make sure that \(rank(X) = p \).
Singular value decomposition

Definition

A $m \times n (m \geq n)$ matrix A can be represented as $A = UDV^T$ such that

- U is $m \times n$ matrix with orthogonal columns ($U'U = I_n$)
- D is $n \times n$ diagonal matrix with non-negative entries
- V^T is $n \times n$ matrix with orthogonal matrix ($V'V = VV' = I_n$).

Computational complexity

- $4m^2n + 8mn^2 + 9m^3$ for computing $U, V, and D$.
- $4mn^2 + 8n^3$ for computing V and D only.
- The algorithm is numerically very stable.
Stable inference of least square using SVD

\[
X = UDV' \\
\beta = (X'X)^{-1}X'y \\
= (VDU'UDV')^{-1}VDU'y \\
= (VD^2V')^{-1}VDU'y \\
= VD^{-2}V'VDU'y \\
= VD^{-1}U'y
\]
Stable inference of least square using SVD

```cpp
#include <iostream>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

int main()
{
    MatrixXf A = MatrixXf::Random(3, 2);
    cout << "Here is the matrix A:\n" << A << endl;
    VectorXf b = VectorXf::Random(3);
    cout << "Here is the right hand side b:\n" << b << endl;
    cout << "The least-squares solution is:\n"
         << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
}
```
Summary

- Calculating Power
- Linear algebra 101
- Using Eigen library for linear algebra
- Implementing a simple linear regression