
Whole Genome Sequencing

Biostatistics 666



Genomewide Association Studies

• Survey 500,000 SNPs in a large sample

• An effective way to skim the genome and …
• … find common variants associated with a trait of interest

• Rapid increase in number of known complex disease loci
– For example, ~50 genes now identified for type 2 diabetes.

• Techniques for genetic analysis are changing rapidly
– What are some of the potential benefits and challenges for 

replacing genotyping with sequencing in complex trait studies?



Questions that Might Be Answered 
With Complete Sequence Data…

• What is the contribution of each identified locus to a trait?
– Likely that multiple variants, common and rare, will contribute

• What is the mechanism? What happens when we knockout a gene?
– Most often, the causal variant will not have been examined directly
– Rare coding variants will provide important insights into mechanisms

• What is the contribution of structural variation to disease?
– These are hard to interrogate using current genotyping arrays.

• Are there additional susceptibility loci to be found?
– Only subset of functional elements include common variants …
– Rare variants are more numerous and thus will point to additional loci



What Is the Total Contribution of 
Each Locus?

Evidence that 
Multiple Variants Will be Important



Evidence for Multiple Variants Per Locus
Example from Lipid Biology

Willer et al, Nat Genet, 2008
Kathiresan et al, Nat Genet, 2008, 2009



For several loci, there is 
clear evidence for 
independently associated 
common variants – even 
among markers typed in 
GWAS. 

Including these in the 
analysis increases variance 
explained by ~10%.

Evidence for Multiple Variants Per Locus
Example from Lipid Biology

Willer et al, Nat Genet, 2008
Kathiresan et al, Nat Genet, 2008, 2009



Private mutations in PCSK9 change LDL by >100 mg/dl
(Abifadel et al, 2003)

Rare variants (MAF 1%) in PCSK9 can change LDL by ~16 mg/dl 
(Cohen et al, 2005)

Common variants (MAF 20%) in PCSK9 change LDL by ~3 mg/dl
(Willer et al, 2008)

Evidence for Multiple Variants Per Locus
Example from Lipid Biology

Willer et al, Nat Genet, 2008
Kathiresan et al, Nat Genet, 2008, 2009



What is The Contribution of 
Structural Variants?

Current Arrays Interrogate 
1,000,000s of SNPs, 

but 100s of Structural Variants



Evidence that Copy Number Variants Important
Example from Genetics of Obesity

Seven of eight confirmed BMI loci show strongest expression in the brain…

Willer et al, Nature Genetics, 2009



Evidence that Copy Number Variants Important
Example from Genetics of Obesity

Willer et al, Nature Genetics, 2009



Note hole in marker
panels….

Willer et al, Nature Genetics, 2009

Evidence that Copy Number Variants Important
Example from Genetics of Obesity



Associated Haplotype Carries Deletion

Willer et al, Nature Genetics, 2009



What is the Mechanism?
What Can We Learn From Rare Knockouts?

What We’d Like to Know
Recent Example from John Todd’s Group



Can Rare Variants Replace Model Systems?
Example from Type 1 Diabetes

• Nejentsev, Walker, Riches, Egholm, Todd (2009) 
IFIH1, gene implicated in anti-viral responses, protects against T1D
Science 324:387-389

• Common variants in IFIH1 previously associated with type 1 diabetes

• Sequenced IFIH1 in ~480 cases and ~480 controls
• Followed-up of identified variants in >30,000 individuals

• Identified 4 variants associated with type 1 diabetes including:
– 1 nonsense variant associated with reduced risk
– 2 variants in conserved splice donor sites associated with reduced risk
– Result suggests disabling the gene protects against type 1 diabetes



HDL-C Associated Locus

• GWAS allele with 40% frequency associated with ±1 mg/dl in HDL-C

• GALNT2 expression in mouse liver (Edmonson, Kathiresan, Rader)
• Overexpression of GALNT2 or Galnt2 decreases HDL-C ~20%
• Knockdown of Galnt2 increases HDL-C by ~30%



The Challenge

• Whole genome sequence data will greatly increase our 
understanding of complex traits

• Although a handful of genomes have been sequenced, 
this remains a relatively expensive enterprise

• Dissecting complex traits will require whole genome 
sequencing of 1,000s of individuals

• How to sequence 1,000s of individuals cost-effectively?



Next Generation Sequencing



Massive Throughput Sequencing

• Tools to generate sequence data evolving rapidly

• Commercial platforms produce gigabases of 
sequence rapidly and inexpensively
– Illumina is currently the dominant technology (by far)

• Sequence data consist of millions or billions of 
short sequence reads with moderate accuracy
– 0.5 – 1.0% error rates per base may be typical



21st Century Sequencing Costs

http://genome.gov/sequencingcostsdata



Shotgun Sequence Reads

• Typical short read might be <50-150 bp long and 
not very informative on its own

• Reads must be arranged (aligned) relative to each 
other to reconstruct longer sequences



Base Qualities

• Each base is typically associated with a quality value

• Measured on a “Phred” scale, which was introduced by Phil 
Green for his Phred sequence analysis tool

𝐵𝐵𝐵𝐵 = − log10 𝜖𝜖 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝜖𝜖 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

30.30.28.28.29.27.30.29.28.25.24.26.27.24.24.23.20.21.22.10.25.25.20.20.18.17.16.15.14.14.13.12.10

Short Read Sequence

Short Read Base Qualities



Read Alignment

• The first step in analysis of human short read data is to align each 
read to genome, typically using a hash table based indexing 
procedure

• This process can now handle tens of millions of reads per hour …

• Analyzing these data without a reference human genome would 
require much longer reads or result in very fragmented assemblies

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome (3,000,000,000 bp)

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Short Read (30-100 bp)



Read Alignment – Food for Thought

• Typically, all the words present in the genome 
are indexed to facilitate read mapping …
– What are the benefits of using short words?
– What are the benefits of using long words?

• How matches do you expect, on average, for a 
10-base word?
– Do you expect large deviations from this average?



Mapping Quality
• Measures the confidence in an alignment, which 

depends on:
– Size and repeat structure of the genome
– Sequence content and quality of the read
– Number of alternate alignments with few mismatches

• The mapping quality is usually also measured on a 
“Phred” scale

• Idea introduced by Li, Ruan and Durbin (2008) Genome 
Research 18:1851-1858



Mapping Quality Definition
• Given a particular alignment A, we can calculate

𝑃𝑃 𝐒𝐒 𝐀𝐀,𝐐𝐐 =
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1 − 10−𝐐𝐐𝑖𝑖/𝟏𝟏𝟏𝟏 𝐼𝐼 𝑆𝑆𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐀𝐀

• Then, the mapping quality is:

𝑀𝑀𝑀𝑀 𝐒𝐒 𝐀𝐀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,𝐐𝐐 =
𝑃𝑃 𝐒𝐒 𝐀𝐀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,𝐐𝐐
∑𝑖𝑖 𝑃𝑃 𝐒𝐒 𝐀𝐀𝑖𝑖 ,𝐐𝐐

• In practice, summing over all possible alignments is too costly and this quantity is approximated (for 
example, by summing over the most likely alignments).



Refinements to Mapping Quality

• In their simplest form, mapping qualities apply to the 
entire read

• However, in gapped alignments, uncertainty in 
alignment can differ for different portions of the read
– For example, it has been noted that many wrong variant 

calls are supported by bases near the edges of a read

• Per base alignment qualities were introduced to 
summarize local uncertainty in the alignment



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGA GCCG

Reference Genome

Short Read



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGAGCC-G

Reference Genome

Short Read

Should we insert a gap?



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGAGCCG

Reference Genome

Short Read

Compensate for Alignment Uncertainty
With Lower Base Quality



Calling Consensus Genotype - Details

• Each aligned read provides a small amount of evidence 
about the underlying genotype
– Read may be consistent with a particular genotype …
– Read may be less consistent with other genotypes …
– A single read is never definitive

• This evidence is cumulated gradually, until we reach a 
point where the genotype can be called confidently

• Let’s outline a simple approach …



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Predicted GenotypeA/C



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

Sequence Reads

Possible Genotypes

P(reads|A/A, read mapped)= 1.0

P(reads|A/C, read mapped)= 1.0

P(reads|C/C, read mapped)= 1.0



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

Possible Genotypes

P(reads|A/A, read mapped)= P(C observed|A/A, read mapped) 

P(reads|A/C, read mapped)= P(C observed|A/C, read mapped) 

P(reads|C/C, read mapped)= P(C observed|C/C, read mapped) 



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

Possible Genotypes

P(reads|A/A, read mapped)= 0.01

P(reads|A/C, read mapped)= 0.50

P(reads|C/C, read mapped)= 0.99



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG

Sequence Reads

Possible Genotypes

P(reads|A/A, read mapped)= 0.0001

P(reads|A/C , read mapped)= 0.25

P(reads|C/C , read mapped)= 0.98



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

Sequence Reads

Possible Genotypes

P(reads|A/A , read mapped)= 0.000001

P(reads|A/C , read mapped)= 0.125

P(reads|C/C , read mapped)= 0.97



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

Sequence Reads

Possible Genotypes

P(reads|A/A , read mapped)= 0.00000099

P(reads|A/C , read mapped)= 0.0625

P(reads|C/C , read mapped)= 0.0097



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Possible Genotypes

P(reads|A/A , read mapped)= 0.00000098

P(reads|A/C , read mapped)= 0.03125

P(reads|C/C , read mapped)= 0.000097



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Combine these likelihoods with a prior incorporating information from other 
individuals and flanking sites to assign a genotype.

P(reads|A/A, read mapped)= 0.00000098

P(reads|A/C, read mapped)= 0.03125

P(reads|C/C, read mapped)= 0.000097



Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Combine these likelihoods with a prior incorporating information from other 
individuals and flanking sites to assign a genotype.

𝑃𝑃 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)

∑𝐺𝐺 𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐺𝐺)



Ingredients That Go Into Prior

• Most sites don’t vary
– P(non-reference base) ~ 0.001

• When a site does vary, it is usually heterozygous
– P(non-reference heterozygote) ~ 0.001 * 2/3
– P(non-reference homozygote) ~ 0.001 * 1/3

• Mutation model
– Transitions account for most variants (C↔T or A↔G)
– Transversions account for minority of variants



From Sequence to Genotype:
Individual Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Individual Based Prior: Every site has 1/1000 probability of varying.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825



From Sequence to Genotype:
Individual Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Individual Based Prior: Every site has 1/1000 probability of varying.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825



Sequence Based Genotype Calls
• Individual Based Prior

– Assumes all sites have an equal probability of showing polymorphism
– Specifically, assumption is that about 1/1000 bases differ from reference
– If reads where error free and sampling Poisson …
– … 14x coverage would allow for 99.8% genotype accuracy
– … 30x coverage of the genome needed to allow for errors and clustering

• Population Based Prior
– Uses frequency information obtained from examining other individuals
– Calling very rare polymorphisms still requires 20-30x coverage of the genome
– Calling common polymorphisms requires much less data

• Haplotype Based Prior or Imputation Based Analysis
– Compares individuals with similar flanking haplotypes
– Calling very rare polymorphisms still requires 20-30x coverage of the genome
– Can make accurate genotype calls with 2-4x coverage of the genome
– Accuracy improves as more individuals are sequenced



From Sequence to Genotype:
Population Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999

P(reads|C/C)= 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001



From Sequence To Genotype:
Population Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999

P(reads|C/C)= 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001



Sequence Based Genotype Calls
• Individual Based Prior

– Assumes all sites have an equal probability of showing polymorphism
– Specifically, assumption is that about 1/1000 bases differ from reference
– If reads where error free and sampling Poisson …
– … 14x coverage would allow for 99.8% genotype accuracy
– … 30x coverage of the genome needed to allow for errors and clustering

• Population Based Prior
– Uses frequency information obtained from examining other individuals
– Calling very rare polymorphisms still requires 20-30x coverage of the genome
– Calling common polymorphisms requires much less data

• Haplotype Based Prior or Imputation Based Analysis
– Compares individuals with similar flanking haplotypes
– Calling very rare polymorphisms still requires 20-30x coverage of the genome
– Can make accurate genotype calls with 2-4x coverage of the genome
– Accuracy improves as more individuals are sequenced



Shotgun Sequence Data
Haplotype Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.
In the example above, we estimated that 90% of similar chromosomes carry allele A.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.81 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.18 Posterior(A/C) = 0.999

P(reads|C/C)= 0.000097 Prior(C/C) = 0.01 Posterior(C/C) = <.001



Shotgun Sequence Data
Haplotype Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.
In the example above, we estimated that 90% of similar chromosomes carry allele A.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.81 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.18 Posterior(A/C) = 0.999

P(reads|C/C)= 0.000097 Prior(C/C) = 0.01 Posterior(C/C) = <.001



Sequence Based Genotype Calls
• Individual Based Prior

– Assumes all sites have an equal probability of showing polymorphism
– Specifically, assumption is that about 1/1000 bases differ from reference
– If reads where error free and sampling Poisson …
– … 14x coverage would allow for 99.8% genotype accuracy
– … 30x coverage of the genome needed to allow for errors and clustering

• Population Based Prior
– Uses frequency information obtained from examining other individuals
– Calling very rare polymorphisms still requires 20-30x coverage of the genome
– Calling common polymorphisms requires much less data

• Haplotype Based Prior or Imputation Based Analysis
– Compares individuals with similar flanking haplotypes
– Calling very rare polymorphisms still requires 20-30x coverage of the genome
– Can make accurate genotype calls with 2-4x coverage of the genome
– Accuracy improves as more individuals are sequenced



Challenges with the basic approach …

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG



Challenges with the basic approach …

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG



Challenges with the basic approach …

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

CTAGATGATGAGCCCGATCGCTGCTAGCTC
AGATGATGAGCCCGATCGCTGCTAGCTCGA
GATGATGAGCCCGATCGCTGTTAGCTCGAC
AGATGATGAGCCCGATCGCTGCTAGCTCGA
ATGATGAGCCCGATCGCTGCTAGCTCGACG
GATGATGAGCCCGATCGCTGCTAGCTCGAC
AGATGATGAGCCCGATCGCTGCTAGCTCGA
GATGATGAGCCCGATCGCTGCTAGCTCGAC

GCTAGCTAGCTGATGAGCCCGATCGCTGCT
GATAGCTAGCTAGCTGATGAGCCCGCTCGC

AGCTAGCTGATGAGCCCGATCGCTGCTAGC
CTAGCTGATGAGCCCGATCGCTGCTAGCTC

GCTGATAGCTAGCTAGCTGATGAGCCCGAT
GATGCTAGCTGATAGCTAGCTAGCTGATGA

GTCGATGCTAGCTGATAGCTAGCTAGCTGA
TAGCTAGCTAGCTGATGAGCCCGATCGCTG



Challenges with the basic approach …

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

ACTAGTCGATGCTGGCTGATAGCTAGCTAGATGATGAGCCCGTTCGCTCCTAGCTCGACG
ACTAGTCGATGCTGGCTGATAGCTAGCTAGATGATGAGCCCGTTCGCTCCTAGCTCGACG
ACTAGTCGATGCTGGCTGATAGCTAGCTAGATGATGAGCCCGTTCGCTGCTAGCTCGACG
ACTAGTCGATGCTGGCTGATAGCTAGCTAGATGATGAGCCCGTTCGCTCCTAGCTCGACG
ACTAGTCGATGCTGGCTGATAGCTAGCTAGATGATGAGCCCGTTCGCTCCTAGCTCGACG
ACTAGTCGATGCTGGCTGATAGCTAGCTAGATGATGAGCCCGATCGCTGCTAGCTCGACG
ACTAGTCGATGCTGGCTGATAGCTAGCTAGATGATGAGCCCGTTCGCTCCTAGCTCGACG
ACTAGTCGATGCTAGCTGATAGCTAGCTAGATGATGAGCCCGTTCGCTCCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG
ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG



Variant Filtering

• Modern callers start with a candidate list of sites and annotate these …
– Likely good sites: variants in HapMap or Omni 2.5M arrays
– Likely problematic sites: variants that deviate from HWE or don’t segregate in multiple families

• Then, build a model that separates likely good sites from likely bad ones …
– SVM, VQSR, self-organizing maps, ….

• Possible features …
– What is the mapping quality of reads with the variant?
– How many other differences in reads with the variant?
– How many individuals are heterozygotes and homozygotes?
– How many reads with the variant are on the forward and reverse strand?
– What fraction of reads  have the variant in heterozygotes?
– …



Paired End Sequencing

Population of DNA fragments of known size (mean + stdev)
Paired end sequences



Paired End Sequencing
Paired Reads

Initial alignment to the reference genome

Paired end resolution



Detecting Structural Variation
• Read depth

– Regions where depth is different from expected
• Expectation defined by comparing to rest of genome …
• … or, even better, by comparing to other individuals

• Split reads
– If reads are longer, it may be possible to find reads that span the 

structural variation

• Discrepant pairs
– If we find pairs of reads that appear to map significantly closer or 

further apart than expected, could indicate an insertion or deletion

– For this approach, “physical coverage” which is the sum of read length 
and insert size is key

• De Novo Assembly



How Much Variation is There?

• An average genome includes:
– About 4M SNPs
– About 500K indels
– Hundreds or thousands of larger deletions

• Numbers are probably underestimates …
• … some variants are hard to call with short reads

• 1000 Genomes Project (2012) Nature 491:56-65



Variants per genome
(1000 Genomes Project)

Type Variant sites / 
genome

SNPs ~3,800,000

Indels ~570,000

Mobile Element 
Insertions ~1000

Large Deletions ~1000

CNVs ~150

Inversions ~11



Allele Frequency Spectrum
(After Sequencing 12,000+ Individuals)
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How Much Variation is There?
(TOPMed 65K)

Variant Type Category # PASS # FAIL % dbSNP
(PASS)

Known/Novel
Ts/Tv (PASS)

SNP All 438M 85M 22.9% 1.93 / 1.69

Singleton 202M 24M 8.5% 1.23 / 1.54

Doubleton 69M 8.8M 12.6% 1.61 / 1.74

Tripleton ~ 0.1% 142M 24M 34.9% 2.23 / 1.99

0.1% ~ 1% 13M 4.5M 98.2% 2.17 / 1.79

1 ~ 10% 6.5M 2.9M 99.6% 1.82 / 1.75

>10% 5.3M 2.0M 99.8% 2.11 / 1.88

Indels All 33.4M 26.2M 20.1%

Singleton 15.7M 4.7M 10.1%

Doubleton 5.3M 1.8M 12.6%

Tripleton ~ 0.1% 10.7M 8.0M 26.7%

0.1% ~ 1% 2.8M 968K 88.9%

1 ~ 10% 432K 2.3M 98.5%

>10% 298K 1.4M 99.6%



How Much Variation is There?
(TOPMed 65K – Coding Variation)

Type Category PASS Variants % AC = 1 % AC ≤ 2 AF < 0.1% AF < 1%

SNP All 438M 46.1% 61.9% 94.2% 98.7%

Synonymous 1.62M 42.9% 58.7% 94.5% 97.6%

Missense 3.44M 47.7% 64.1% 96.8% 98.8%

Stop Gain 103K 54.4% 71.3% 98.4% 99.5%

Essential Splice 111K 54.2% 70.3% 96.8% 98.6%

Indels All 33.4M 47.0% 62.8% 94.9% 98.8%

Frameshift 97.0K 59.9% 76.0% 98.7% 99.6%

Inframe 65.6K 48.6% 65.3% 97.5% 99.3%

Ess. Splice & Others 12.7K 52.7% 68.8% 97.0% 98.8%



Summary

• Introduction to whole genome sequencing
– Read mapping
– Genotype calling
– Analysis of structural variation

• Sequencing and the genetics of complex traits
– Advantages and disadvantages versus genotyping
– What sorts of things might we learn?



Recommended Reading

• The 1000 Genomes Project (2010) A map of 
human genome variation from population-
scale sequencing. Nature 467:1061-73 
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