Maximum Likelihood Estimation
for Allele Frequencies

Biostatistics 666



Previous Series of Lectures:
ntroduction to Coalescent Models

* Computationally efficient framework
* Alternative to forward simulations
 Amenable to analytical solutions

* Predictions about sequence variation
* Number of polymorphisms
* Frequency of polymorphisms
* Distribution of polymorphisms across haplotypes



Next Series of Lectures

e Estimating allele and haplotype frequencies from genotype data
 Maximum likelihood approach
* Application of an E-M algorithm

e Challenges
* Using information from related individuals
* Allowing for non-codominant genotypes
* Allowing for ambiguity in haplotype assignments



Maximum Likelihood

* A general framework for estimating model parameters
* Find parameter values that maximize the probability of the observed data

* Learn about population characteristics
* E.g. allele frequencies, population size

* Using a specific sample
* E.g. a set sequences, unrelated individuals, or even families

* Applicable to many different problems



Example: Allele Frequencies

* Consider...
* A sample of n chromosomes
* X of these are of type “a”
* Parameter of interest is allele frequency...

L(p|n,><>:(;]pxa— P



Evaluate for various parameters

0.0 1.0 0.000
0.2 0.8 0.088
0.4 0.6 0.251
0.6 0.4 0.111
0.8 0.2 0.006
1.0 0.0 0.000

Forn=10and X = 4




Likelihood Plot

Forn=10and X =4




N this case

* The likelihood tells us the data is most probable if p=0.4

 The likelihood curve allows us to evaluate alternatives...
* |s p=0.8 a possibility?
* Isp=0.2a possibility?



Example: Estimating 4N 1

e Consider S polymorphisms in sample of n sequences...

L(O1n,S)=R.(S]6)

* Where P is calculated using the Q, and P, functions defined
previously



Likelihood Plot

Likelihood
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Maximum Likelihood Estimation

* Two basic steps...
a) Write down likelihood function
L(@|Xx)oc f(Xx|O)

b) Find value of @ that maximizes L(0| x)

* In principle, applicable to any problem where a likelihood
function exists



MLES

* Parameter values that maximize likelihood
* O where observations have maximum probability

* Finding MLEs is an optimization problem

* How do MLEs compare to other estimators?



Comparing Estimators

* How do MLEs rate in terms of ...
* Unbiasedness
* Consistency
* Efficiency

* For a review, see Garthwaite, Jolliffe, Jones (1995) Statistical
Inference, Prentice Hall



Analytical Solutions

* Write out log-likelihood ...

/(6| data) =InL(&|data)
* Calculate derivative of likelihood
d/(6 | data)
déo

* Find zeros for derivative function




Information

* The second derivative is also extremely useful

’ :_E{dzé(mdata)}

do?

* The speed at which log-likelihood decreases
* Provides an asymptotic variance for estimates



Allele Frequency Estimation ...

* When individual chromosomes are observed this is not so tricky...
* What about with genotypes?

* What about with parent-offspring pairs?



Coming up ...

* We will walk through allele frequency estimation in three distinct
settings:

* Samples single chromosomes ...
* Samples of unrelated Individuals ...
* Samples of parents and offspring ...



. Single Alleles Observed

* Consider...
* A sample of n chromosomes

* X of these are of type “a
* Parameter of interest is allele frequency...

L(p|n,><)=[;jpxa— P



Some Notes
* The following two likelihoods are just as good:
n X n—-X
L(p?x’”){xjp (1-p)
L(p;xl,Xz...Xn,n):H pxi (1_ p)1—xi
=1

 For ML estimation, constant factors in likelihood
don’t matter



Analytic Solution

* The log-likelihood

InL(p|n X)= In£;j+ X In p+(n—X)In(l= p)
* The derivative
dinL(p|X) X n-X

dp p 1-p

* Find zero ...



Samples of
Individual Chromosomes

* The natural estimator (where we count the proportion of sequences
of a particular type) and the MLE give identical solutions

 Maximum likelihood provides a justification for using the “natural”
estimator



I. Genotypes Observed
* Use notation n; to denote the number of individuals with genotype i / |

e Sample of n individuals

Genotype Counts

Genotype AA, AA, A,A, Total
Observed Counts Ny Ny, N5, n=n,;;+nN;,+n,,

Frequency P11 P1y P,y 1.0



Allele Frequencies by Counting...

* A natural estimate for allele frequencies is to calculate the proportion
of individuals carrying each allele

Allele Counts

Genotype A, A, Total
Observed Counts n,=2n,;,+n;, Nn,=2n,,+n,, 2n=n,+n,

Frequency p,=n,/2n p,=n,/2n 1.0



VILE using genotype data...

* Consider a sample such as ...

Genotype Counts

Genotype AA, A/A, AA, Total
Observed Counts Nyy Ny, N, n=n;;+N;,+N,,
Frequency P11 Py P,y 1.0

* The likelihood as a function of allele frequencies is ...

n! n n n
| ’ — 2 )" (9 12 ( 2 Y22
(p;n) nl1!%!”22!(@) (2pg)™(g2)



Which gives...

* Log-likelihood and its derivative

¢=InL=(2n,+n,)Inp,+(2n,, +n,)In(l—p,)+C
% _ 2n11 + n12 . 2n22 + n12
dpl Py (1_ pl)

* Giving the MLE as ...

pl — (2n11 T n12)

2(nll + n12 T n22)



Samples of
Unrelated Individuals

* Again, natural estimator (where we count the proportion of alleles of
a particular type) and the MLE give identical solutions

 Maximum likelihood provides a justification for using the “natural”
estimator



I1l. Parent-Offspring Pairs

Child
Parent AA, AA, A A,
A A, a, a, 0 a,;+a,
AA, A, a, as a;ta,tas
AA, 0 Ag a- agta;
a,+ta, |a,ta,ta;| asta, | N pairs




Probability for Each Observation

Child
Parent AA; AA, AA,
AlAl
A1A2
A2A2

1.0




Probability for Each Observation

Child
Parent AA; AA, AA,
A1Aq p,° P1°P; 0 D,
AlA; P1°P; P1P2 P1P,? 2p1P,
AA; 0 P1P,? p,° D,°
p,? 2p,P; p,? 1.0




Which gives...

InL =

p,=1-p
B=3a +2(a,+a,)+a, +(a; +a,)
C=(a,+a,)+a, +2(a; +a,)+3a,

B
(B+C)

plz



Which gives...

InL=a,In p?+(a, +a,)In(p?p,)+a, In(p,p,)
+(ag + ae))ln(p1 p22)+ a, In p; + constant
=Blnp,+CInl-p,)

p,=1-p,
B=3a,+2(a,+a,)+a, +(a; +a,)
C=(a,+a,)+a, +2(a, +a,)+3a,




Samples of
Parent Offspring-Pairs

* The natural estimator (where we count the
proportion of alleles of a particular type) and the
MLE no longer give identical solutions

* In this case, we expect the MLE to be more accurate



Comparing Sampling Strategies

* We can compare sampling strategies by calculating
the information for each one

d“/(6|data)
|, =—-E 2
do

* Which one to you expect to be most informative?



How informative is each setting?

* Single chromosomes

e Unrelated individuals

* Parent offspring pairs

P9
Var(p) =
( p) Nchromosomes
P9
Var(p) =
2 N individual s
Var(p) = P

3N —a

pairs

4



Other Likelihoods

 Allele frequencies when individuals are...
* Diagnosed for Mendelian disorder
* Genotyped at two neighboring loci
* Phenotyped for the ABO blood groups

* Many other interesting problems...
* ... but some have no analytical solution



Today’s Summary

* Examples of Maximum Likelihood

* Allele Frequency Estimation
* Allele counts
* Genotype counts
e Pairs of Individuals



Take home reading

* Excoffier and Slatkin (1995)
* Mol Biol Evol 12:921-927

* Introduces the E-M algorithm
* Widely used for maximizing likelihoods in genetic problems



Properties of Estimators

For Review



Unbiasedness

* An estimator is unbiased if
E(9) =0
bias(0) = E(0) -6

* Multiple unbiased estimators may exist
e Other properties may be desirable



Consistency

e An estimator is consistent if

P(|é—9\>g)—>0asn—>oo
e forany ¢

» Estimate converges to true value in probability with increasing sample
Size



Mean Squared Error

e MSE is defined as

MSE() =E({(6-8) + (@ -0)})
= var(6) + bias(0)?

e If MSE — 0 as n — cothen the estimator must be consistent



Efficiency

* The relative efficiency of two estimators is the ratio of their variances

if var(H ) >1 then 6, is more efficient

var(@ )

 Comparison only meaningful for estimators with equal biases



Sufficiency

e Consider...

* Observations X, X,, ... X,
e Statistic T(X,, X,, ... X)

* Tis a sufficient statistic if it includes all information about
parameter 0 in the sample
* Distribution of X; conditional on T is independent of 0
* Posterior distribution of 0 conditional on T is independent of X,



Minimal Sufficient Statistic

* There can be many alternative sufficient statistics.

A statistic is a minimal sufficient statistic if it can be expressed as a
function of every other sufficient statistic.



Typical Properties of MLEs

* Bias

e Can be biased or unbiased
* Consistency

* Subject to regularity conditions, MLEs are consistent
e Efficiency

* Typically, MLEs are asymptotically efficient estimators

* Sufficiency
e Often, but not always

* Cox and Hinkley, 1974



Strategies for Likelihood
Optimization

For Review



Generic Approaches

 Suitable for when analytical solutions are impractical

* Bracketing
e Simplex Method
* Newton-Rhapson



Bracketing

* Find 3 points such that
* 6a < eb< ec
* L(O,)>L(0,)and L(O,) > L(O,)

e Search for maximum by
e Select trial point in interval
* Keep maximum and flanking points



Bracketing




The Simplex Method

* Calculate likelihoods at simplex vertices
* Geometric shape with k+1 corners
* E.g. atriangle in k = 2 dimensions

* At each step, move the high vertex in the direction of lower points



The Simplex Method ||

Original Simplex

high
& low

@ reflection contraction
|
7 4 multiple
reflection and A contraction

expansion




One parameter maximization

e Simple but inefficient approach

* Consider
* Parameters0=(0,, 6,, ..., 0,)
* Likelihood function L (0; x)

* Maximize 0 with respect to each 0. in turn
* Cycle through parameters



The Inefficiency...




Steepest Descent

e Consider
* Parameters0=(0,,0,, ..., 0,)
* Likelihood function L (0; x)

e Score vector

o _dIn(L) _(din(L) d In(L)
- de | dg T 7 deg,

* Find maximum along 0 + oS



Still inefficient...

=

Consecutive steps are perpendicular!




_ocal Approximations to
Log-Likelihood Function

In the neighboorhood of 0.

0(0) ~ £(0,)+S(0-0,)— 15(0-0,)'1,(0-90,)

where

¢(0) =1InL(0) IS the loglikelihood function
S=d/e.) IS the score vector

|, =—-d2/(0,) Istheobserved information matrix



Newton’s Method

Maximize the approximation

0(6) ~ £(0,)+S(0—0,)— 2 (0-0,)'1(0-90,)
by setting Its derivative to zero...
S—1(0-0.)=0

and get a new trial point

0.,=0 +1"S



Fisher Scoring

* Use expected information matrix instead of
observed information:

E{— d 25(9)} Compared to Newton-Rhapson:
2
do Converges faster when estimates
Instead of are poor.
d*/(6 | data) Converges slower when close to

d(92 MLE.



