Maximum Likelihood Estimation for Allele Frequencies

Biostatistics 666

Previous Series of Lectures: Introduction to Coalescent Models

- Computationally efficient framework
 - Alternative to forward simulations
 - Amenable to analytical solutions

- Predictions about sequence variation
 - Number of polymorphisms
 - Frequency of polymorphisms
 - Distribution of polymorphisms across haplotypes

Next Series of Lectures

- Estimating allele and haplotype frequencies from genotype data
 - Maximum likelihood approach
 - Application of an E-M algorithm

- Challenges
 - Using information from related individuals
 - Allowing for non-codominant genotypes
 - Allowing for ambiguity in haplotype assignments

Maximum Likelihood

- A general framework for estimating model parameters
 - Find parameter values that maximize the probability of the observed data
- Learn about population characteristics
 - E.g. allele frequencies, population size
- Using a specific sample
 - E.g. a set sequences, unrelated individuals, or even families
- Applicable to many different problems

Example: Allele Frequencies

- Consider...
 - A sample of *n* chromosomes
 - X of these are of type "a"
 - Parameter of interest is allele frequency...

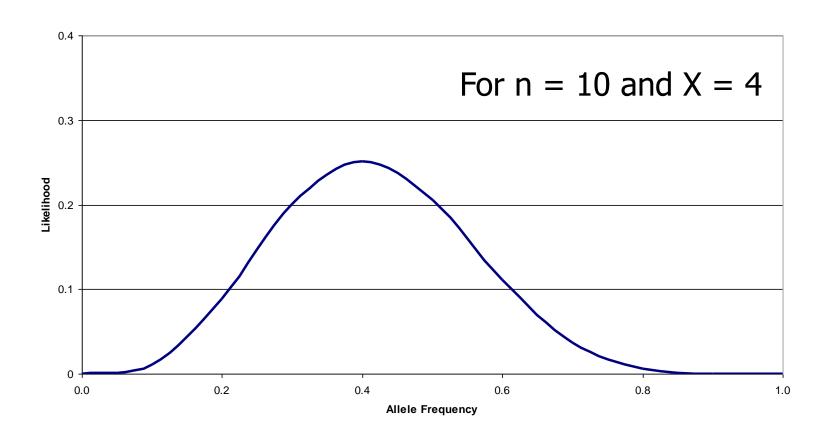
$$L(p \mid n, X) = \binom{n}{X} p^{X} (1-p)^{n-X}$$

Evaluate for various parameters

р	1-р	L
0.0	1.0	0.000
0.2	0.8	0.088
0.4	0.6	0.251
0.6	0.4	0.111
0.8	0.2	0.006
1.0	0.0	0.000

For n = 10 and X = 4

Likelihood Plot



In this case

• The likelihood tells us the data is most probable if p = 0.4

- The likelihood curve allows us to evaluate alternatives...
 - Is p = 0.8 a possibility?
 - Is p = 0.2 a possibility?

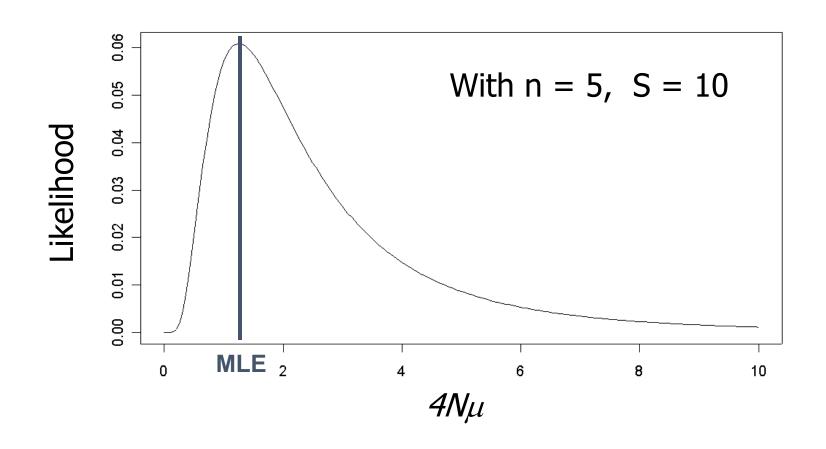
Example: Estimating $4N\mu$

• Consider *S* polymorphisms in sample of *n* sequences...

$$L(\theta \mid n, S) = P_n(S \mid \theta)$$

• Where P_n is calculated using the Q_n and P_2 functions defined previously

Likelihood Plot



Maximum Likelihood Estimation

- Two basic steps...
 - a) Write down likelihood function

$$L(\theta \mid x) \propto f(x \mid \theta)$$

- b) Find value of $\hat{\theta}$ that maximizes $L(\theta \mid x)$
- In principle, applicable to any problem where a likelihood function exists

MLEs

- Parameter values that maximize likelihood
 - θ where observations have maximum probability
- Finding MLEs is an optimization problem

How do MLEs compare to other estimators?

Comparing Estimators

- How do MLEs rate in terms of ...
 - Unbiasedness
 - Consistency
 - Efficiency
- For a review, see Garthwaite, Jolliffe, Jones (1995) *Statistical Inference*, Prentice Hall

Analytical Solutions

Write out log-likelihood ...

$$\ell(\theta \mid data) = \ln L(\theta \mid data)$$

Calculate derivative of likelihood

$$\frac{d\ell(\theta \,|\, data)}{d\theta}$$

Find zeros for derivative function

Information

The second derivative is also extremely useful

$$I_{\theta} = -E \left[\frac{d^2 \ell(\theta \mid data)}{d\theta^2} \right]$$

$$V_{\hat{\theta}} = \frac{1}{I_{\theta}}$$

- The speed at which log-likelihood decreases
- Provides an asymptotic variance for estimates

Allele Frequency Estimation ...

• When individual chromosomes are observed this is not so tricky...

What about with genotypes?

What about with parent-offspring pairs?

Coming up ...

 We will walk through allele frequency estimation in three distinct settings:

- Samples single chromosomes ...
- Samples of unrelated Individuals ...
- Samples of parents and offspring ...

I. Single Alleles Observed

- Consider...
 - A sample of *n* chromosomes
 - X of these are of type "a"
 - Parameter of interest is allele frequency...

$$L(p \mid n, X) = \binom{n}{X} p^{X} (1-p)^{n-X}$$

Some Notes

• The following two likelihoods are just as good:

$$L(p;X,n) = \binom{n}{X} p^{X} (1-p)^{n-X}$$

$$L(p;x_{1},x_{2}...x_{n},n) = \prod_{i=1}^{n} p^{x_{i}} (1-p)^{1-x_{i}}$$

 For ML estimation, constant factors in likelihood don't matter

Analytic Solution

The log-likelihood

$$\ln L(p \mid n, X) = \ln \binom{n}{X} + X \ln p + (n - X) \ln(1 - p)$$

• The derivative

$$\frac{d \ln L(p \mid X)}{dp} = \frac{X}{p} - \frac{n - X}{1 - p}$$

• Find zero ...

Samples of Individual Chromosomes

 The natural estimator (where we count the proportion of sequences of a particular type) and the MLE give identical solutions

 Maximum likelihood provides a justification for using the "natural" estimator

II. Genotypes Observed

• Use notation n_{ij} to denote the number of individuals with genotype i / j

• Sample of n individuals

Genotype Counts					
Genotype A ₁ A ₁ A ₁ A ₂ A ₂ A ₂ Total					
Observed Counts	n ₁₁	n ₁₂	n ₂₂	n=n ₁₁ +n ₁₂ +n ₂₂	
Frequency	p ₁₁	p ₁₂	p ₂₂	1.0	

Allele Frequencies by Counting...

 A natural estimate for allele frequencies is to calculate the proportion of individuals carrying each allele

Allele Counts						
Genotype A ₁ A ₂ Total						
Observed Counts	$n_1 = 2n_{11} + n_{12}$	$n_2 = 2n_{22} + n_{12}$	2n=n ₁ +n ₂			
Frequency	p ₁ =n ₁ /2n	p ₂ =n ₂ /2n	1.0			

MLE using genotype data...

• Consider a sample such as ...

Genotype Counts						
Genotype A_1A_1 A_1A_2 A_2A_2 Total						
Observed Counts	n ₁₁	n ₁₂	n ₂₂	n=n ₁₁ +n ₁₂ +n ₂₂		
Frequency	p ₁₁	p ₁₂	p ₂₂	1.0		

• The likelihood as a function of allele frequencies is ...

$$L(p;n) = \frac{n!}{n_{11}! n_{12}! n_{22}!} (p^2)^{n_{11}} (2pq)^{n_{12}} (q^2)^{n_{22}}$$

Which gives...

Log-likelihood and its derivative

$$\ell = \ln L = (2n_{11} + n_{12}) \ln p_1 + (2n_{22} + n_{12}) \ln(1 - p_1) + C$$

$$\frac{d\ell}{dp_1} = \frac{2n_{11} + n_{12}}{p_1} - \frac{2n_{22} + n_{12}}{(1 - p_1)}$$

Giving the MLE as ...

$$\hat{p}_1 = \frac{\left(2n_{11} + n_{12}\right)}{2\left(n_{11} + n_{12} + n_{22}\right)}$$

Samples of Unrelated Individuals

 Again, natural estimator (where we count the proportion of alleles of a particular type) and the MLE give identical solutions

 Maximum likelihood provides a justification for using the "natural" estimator

III. Parent-Offspring Pairs

Child

Parent	A_1A_1	A_1A_2	A_2A_2	
A_1A_1	a ₁	a_2	0	a ₁ +a ₂
A_1A_2	a_3	a_4	a ₅	a ₃ +a ₄ +a ₅
A_2A_2	0	a_6	a ₇	a ₆ +a ₇
	a ₁ +a ₃	a ₂ +a ₄ +a ₆	a ₅ +a ₇	N pairs

Probability for Each Observation

Child

Parent	A_1A_1	A_1A_2	A_2A_2	
A_1A_1				
A_1A_2				
A_2A_2				
				1.0

Probability for Each Observation

Child

Parent	A_1A_1	A_1A_2	A_2A_2	
A_1A_1	p ₁ ³	$p_1^2p_2$	0	p ₁ ²
A_1A_2	p ₁ ² p ₂	p_1p_2	p ₁ p ₂ ²	2p ₁ p ₂
A_2A_2	0	$p_{1}p_{2}^{2}$	p_{2}^{3}	p_2^2
	p ₁ ²	2p ₁ p ₂	p ₂ ²	1.0

Which gives...

$$ln L =$$

$$p_2 = 1 - p_1$$

$$B = 3a_1 + 2(a_2 + a_3) + a_4 + (a_5 + a_6)$$

$$C = (a_2 + a_3) + a_4 + 2(a_5 + a_6) + 3a_7$$

$$\hat{p}_1 = \frac{B}{\left(B + C\right)}$$

Which gives...

$$\ln L = a_1 \ln p_1^3 + (a_2 + a_3) \ln(p_1^2 p_2) + a_4 \ln(p_1 p_2) + (a_5 + a_6) \ln(p_1 p_2^2) + a_7 \ln p_2^3 + \text{constant}$$

$$= B \ln p_1 + C \ln(1 - p_1)$$

$$p_2 = 1 - p_1$$

$$B = 3a_1 + 2(a_2 + a_3) + a_4 + (a_5 + a_6)$$

$$C = (a_2 + a_3) + a_4 + 2(a_5 + a_6) + 3a_7$$

$$\hat{p}_1 = \frac{B}{\left(B + C\right)}$$

Samples of Parent Offspring-Pairs

 The natural estimator (where we count the proportion of alleles of a particular type) and the MLE no longer give identical solutions

• In this case, we expect the MLE to be more accurate

Comparing Sampling Strategies

 We can compare sampling strategies by calculating the information for each one

$$I_{\theta} = -E \left[\frac{d^2 \ell(\theta \mid data)}{d\theta^2} \right]$$

$$V_{\hat{\theta}} = \frac{1}{I_{\theta}}$$

Which one to you expect to be most informative?

How informative is each setting?

Single chromosomes

$$Var(p) = \frac{pq}{N_{chromosomes}}$$

Unrelated individuals

$$Var(p) = \frac{pq}{2N_{individuals}}$$

Parent offspring pairs

$$Var(p) = \frac{pq}{3N_{pairs} - a_4}$$

Other Likelihoods

- Allele frequencies when individuals are...
 - Diagnosed for Mendelian disorder
 - Genotyped at two neighboring loci
 - Phenotyped for the ABO blood groups
- Many other interesting problems...
- ... but some have no analytical solution

Today's Summary

Examples of Maximum Likelihood

- Allele Frequency Estimation
 - Allele counts
 - Genotype counts
 - Pairs of Individuals

Take home reading

- Excoffier and Slatkin (1995)
 - Mol Biol Evol **12:**921-927

- Introduces the E-M algorithm
- Widely used for maximizing likelihoods in genetic problems

Properties of Estimators

For Review

Unbiasedness

An estimator is unbiased if

$$E(\hat{\theta}) = \theta$$

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

- Multiple unbiased estimators may exist
- Other properties may be desirable

Consistency

An estimator is consistent if

$$P(|\hat{\theta} - \theta| > \varepsilon) \rightarrow 0 \text{ as } n \rightarrow \infty$$

• for any ε

 Estimate converges to true value in probability with increasing sample size

Mean Squared Error

MSE is defined as

$$MSE(\hat{\theta}) = E\left(\left\{\left(\hat{\theta} - \bar{\theta}\right) + \left(\bar{\theta} - \theta\right)\right\}^{2}\right)$$
$$= var(\hat{\theta}) + bias(\hat{\theta})^{2}$$

• If $MSE \rightarrow 0$ as $n \rightarrow \infty$ then the estimator must be consistent

Efficiency

• The relative efficiency of two estimators is the ratio of their variances

if
$$\frac{\text{var}(\hat{\theta}_2)}{\text{var}(\hat{\theta}_1)} > 1$$
 then $\hat{\theta}_1$ is more efficient

Comparison only meaningful for estimators with equal biases

Sufficiency

- Consider...
 - Observations $X_1, X_2, ... X_n$
 - Statistic $T(X_1, X_2, ... X_n)$
- T is a sufficient statistic if it includes all information about parameter $\boldsymbol{\theta}$ in the sample
 - Distribution of X_i conditional on T is independent of θ
 - Posterior distribution of θ conditional on T is independent of X_i

Minimal Sufficient Statistic

There can be many alternative sufficient statistics.

• A statistic is a minimal sufficient statistic if it can be expressed as a function of every other sufficient statistic.

Typical Properties of MLEs

- Bias
 - Can be biased or unbiased
- Consistency
 - Subject to regularity conditions, MLEs are consistent
- Efficiency
 - Typically, MLEs are asymptotically efficient estimators
- Sufficiency
 - Often, but not always
- Cox and Hinkley, 1974

Strategies for Likelihood Optimization

For Review

Generic Approaches

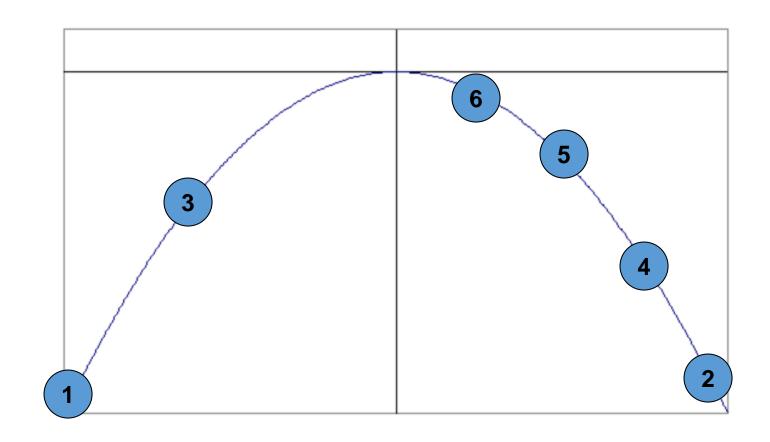
• Suitable for when analytical solutions are impractical

- Bracketing
- Simplex Method
- Newton-Rhapson

Bracketing

- Find 3 points such that
 - $\theta_a < \theta_b < \theta_c$
 - $L(\theta_b) > L(\theta_a)$ and $L(\theta_b) > L(\theta_c)$
- Search for maximum by
 - Select trial point in interval
 - Keep maximum and flanking points

Bracketing

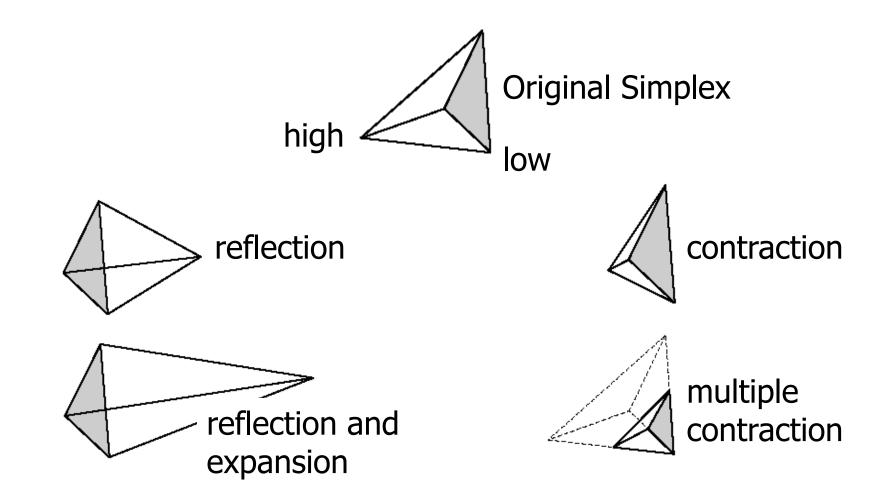


The Simplex Method

- Calculate likelihoods at simplex vertices
 - Geometric shape with k+1 corners
 - E.g. a triangle in k = 2 dimensions

• At each step, move the high vertex in the direction of lower points

The Simplex Method II

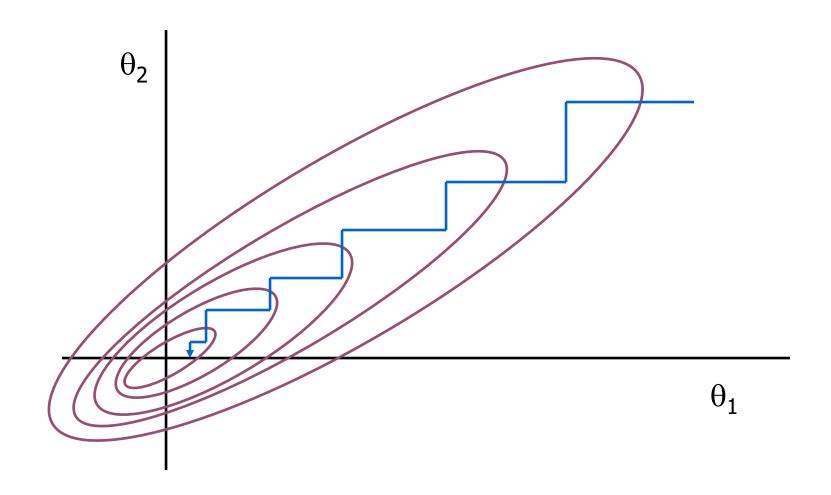


One parameter maximization

Simple but inefficient approach

- Consider
 - Parameters $\theta = (\theta_1, \theta_2, ..., \theta_k)$
 - Likelihood function L (θ ; x)
- Maximize θ with respect to each θ_i in turn
 - Cycle through parameters

The Inefficiency...



Steepest Descent

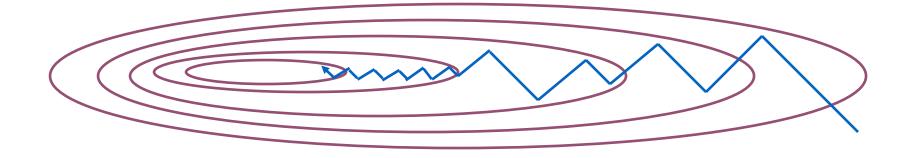
- Consider
 - Parameters $\theta = (\theta_1, \theta_2, ..., \theta_k)$
 - Likelihood function L (θ ; x)

Score vector

$$S = \frac{d \ln(L)}{d\theta} = \left(\frac{d \ln(L)}{d\theta_1}, \dots, \frac{d \ln(L)}{d\theta_k}\right)$$

• Find maximum along θ + δ S

Still inefficient...



Consecutive steps are perpendicular!

Local Approximations to Log-Likelihood Function

In the neighboorhood of θ_i

$$\ell(\boldsymbol{\theta}) \approx \ell(\boldsymbol{\theta}_i) + S(\boldsymbol{\theta} - \boldsymbol{\theta}_i) - \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_i)^t \mathbf{I}_{\theta} (\boldsymbol{\theta} - \boldsymbol{\theta}_i)$$

where

$$\ell(\mathbf{\theta}) = \ln L(\mathbf{\theta})$$
 is the loglikelihood function $\mathbf{S} = d\ell(\mathbf{\theta}_i)$ is the score vector

$$\mathbf{I}_{\theta} = -d^2 \ell(\mathbf{\theta}_i)$$
 is the observed information matrix

Newton's Method

Maximize the approximation

$$\ell(\boldsymbol{\theta}) \approx \ell(\boldsymbol{\theta}_i) + \mathbf{S}(\boldsymbol{\theta} - \boldsymbol{\theta}_i) - \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_i)^t \mathbf{I}(\boldsymbol{\theta} - \boldsymbol{\theta}_i)$$

by setting its derivative to zero...

$$\mathbf{S} - \mathbf{I}(\mathbf{\theta} - \mathbf{\theta}_i) = \mathbf{0}$$

and get a new trial point

$$\mathbf{\theta}_{i+1} = \mathbf{\theta}_i + \mathbf{I}^{-1}\mathbf{S}$$

Fisher Scoring

• Use expected information matrix instead of observed information:

$$E\left[-\frac{d^2\ell(\theta)}{d\theta^2}\right]$$

instead of

$$-rac{d^2\ell(\theta\,|\,data)}{d heta^2}$$

Compared to Newton-Rhapson:

Converges faster when estimates are poor.

Converges slower when close to MLE.