Whole Genome Sequencing Studies

Goncalo Abecasis
University of Michigan School of Public Health
Shotgun Sequence Data

Sequence Reads

5′-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3′

Reference Genome

A/C

Predicted Genotype
Shotgun Sequence Data

5′-ACTGGTCGATGCTAGCTAGCTAGCTAGCTGATGCCGATCGCTGCTAGCTCGACG-3′

Reference Genome

Sequence Reads

5′-ACTGGTCGATGCTAGCTAGCTAGCTAGCTGATGCCGATCGCTGCTAGCTCGACG-3′

Reference Genome

Possible Genotypes

P(reads|A/A, read mapped)= 1.0

P(reads|A/C, read mapped)= 1.0

P(reads|C/C, read mapped)= 1.0
Shotgun Sequence Data

Sequence Reads

5’-ACTG_TGATGCTAGCTAGCTAGGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome

GCTAGCTGATAGCTAG

C

TAGCTGATGAGCCCGA

Possible Genotypes

\[
P(\text{reads} | \text{A/A, read mapped}) = P(\text{C observed} | \text{A/A, read mapped})
\]

\[
P(\text{reads} | \text{A/C, read mapped}) = P(\text{C observed} | \text{A/C, read mapped})
\]

\[
P(\text{reads} | \text{C/C, read mapped}) = P(\text{C observed} | \text{C/C, read mapped})
\]
Shotgun Sequence Data

Sequence Reads

GCTAGCTGATAGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG

Reference Genome

5’-ACTGGTCGATGCTAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Possible Genotypes

$P(\text{reads}|A/A, \text{read mapped}) = 0.01$

$P(\text{reads}|A/C, \text{read mapped}) = 0.50$

$P(\text{reads}|C/C, \text{read mapped}) = 0.99$
Shotgun Sequence Data

\[
\begin{align*}
5' &- \text{ACTGGTCGATGCTAGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACC3'} \\
&\text{Sequence Reads} \\
\text{AGCTGATAGCTAGCCTAGCTGATGAGCCCAGATCGCTG} \\
\text{GCTAGCTGATAGCTAGCCTAGCTGATGAGCCCAGGA} \\
\end{align*}
\]

\[
\begin{align*}
\text{Reference Genome} \\
5' &- \text{ACTGGTCGATGCTAGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACC3'} \\
\end{align*}
\]

Possible Genotypes

\[
\begin{align*}
P(\text{reads}|A/A, \text{ read mapped}) &= 0.0001 \\
P(\text{reads}|A/C, \text{ read mapped}) &= 0.25 \\
P(\text{reads}|C/C, \text{ read mapped}) &= 0.98 \\
\end{align*}
\]
Shotgun Sequence Data

ATGCTAGCTGATAGCTAGCTAG
AGCTGATAGCTAGCTAGCTAGCTAGCTAGCTGAGCCCGATCGCTG
GCTAGCTGATAGCTAGCTAGCTAGCTGAGCCCGAGCTGCTGCTGAGCCGACG

Sequence Reads

5'-ACTGGTCGATGCTAGCTAGCTAGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTG

Reference Genome

P(reads|A/A, read mapped) = 0.000001
P(reads|A/C, read mapped) = 0.125
P(reads|C/C, read mapped) = 0.97

Possible Genotypes
Shotgun Sequence Data

ATAGCTAGA TAGCTGATGAGCCCGATA CGCTGCTAGCTC
ATGCTAGCTGATAGCTAGC TAGCTGATGAGCC
AGCTGATAGCTAGC TAGCTGATGAGCCCGATCGCTG
GCTAGCTGATAGCTAGC TAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads|A/A, read mapped) = 0.00000099

P(reads|A/C, read mapped) = 0.0625

P(reads|C/C, read mapped) = 0.0097

Possible Genotypes
Shotgun Sequence Data

Vertical alignment:

\[\text{TAGCTGATAGCTAG} \quad \text{ATAGCTGATGAGCCCGAT} \]
\[\text{ATAGCTAG} \quad \text{ATAGCTGATGAGCCCGATCGCTAGCTC} \]
\[\text{ATGCTAGCTGATAGCTAG} \quad \text{CTAGCTGATGAGCC} \]
\[\text{AGCTGATAGCTAG} \quad \text{CTAGCTGATGAGCCCGATCGCTG} \]
\[\text{GCTAGCTGATAGCTAG} \quad \text{CTAGCTGATGAGCCCGA} \]

5'-ACTGGTCGATGCTAGCTGATGAGCCCGATCGCTAGCTC-3'
Reference Genome

Sequence Reads

Possible Genotypes

\[P(\text{reads|A/A , read mapped}) = 0.0000098 \]
\[P(\text{reads|A/C , read mapped}) = 0.03125 \]
\[P(\text{reads|C/C , read mapped}) = 0.000097 \]
Shotgun Sequence Data

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome

Sequence Reads

TAGCTGATAGCTAG

ATAGCTAGCTAGCTACGCTGAGCCCGATCGCTGCTAGCTC

AGCTGATAGCTAGCTGAGCCCGATCGCTGCTAGCTC

GCTAGCTGATAGCTAGCTAGCTGAGCCCGA

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTGAGCCCGATCGCTGCTAGCTCGACG-3’

P(reads|A/A, read mapped)= 0.00000098

P(reads|A/C, read mapped)= 0.03125

P(reads|C/C, read mapped)= 0.000097

Combine these likelihoods with a prior incorporating information from other individuals and flanking sites to assign a genotype.
Shotgun Sequence Data

\[
P(\text{Genotype} | \text{reads}) = \frac{P(\text{reads} | \text{Genotype}) \times \text{Prior(\text{Genotype})}}{\sum_{G} P(\text{reads} | G) \times \text{Prior}(G)}
\]

Combine these likelihoods with a prior incorporating information from other individuals and flanking sites to assign a genotype.
Ingredients That Go Into Prior

• Most sites don’t vary
 • \(P(\text{non-reference base}) \approx 0.001 \)

• When a site does vary, it is usually heterozygous
 • \(P(\text{non-reference heterozygote}) \approx 0.001 \times \frac{2}{3} \)
 • \(P(\text{non-reference homozygote}) \approx 0.001 \times \frac{1}{3} \)

• Mutation model
 • Transitions account for most variants (C\(\leftrightarrow\)T or A\(\leftrightarrow\)G)
 • Transversions account for minority of variants
From Sequence to Genotype:
Individual Based Prior

\[
\begin{align*}
\text{Sequence Reads:} & \quad 5'-\text{ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'} \\
\text{Reference Genome:} & \quad \text{GCTAGCTGATAGCTAG} \\
& \quad \text{ATAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTC} \\
& \quad \text{AGCTGATAGCTAGCTGATGAGCCCGATCGCTG} \\
& \quad \text{GCTAGCTGATAGCTAGCTGATGAGCCCGA}
\end{align*}
\]

\[
\begin{align*}
P(\text{reads}|\text{A}/\text{A}) &= 0.00000098 \quad \text{Prior}(\text{A}/\text{A}) = 0.000034 \quad \text{Posterior}(\text{A}/\text{A}) = <.001 \\
P(\text{reads}|\text{A}/\text{C}) &= 0.03125 \quad \text{Prior}(\text{A}/\text{C}) = 0.00066 \quad \text{Posterior}(\text{A}/\text{C}) = 0.175 \\
P(\text{reads}|\text{C}/\text{C}) &= 0.000097 \quad \text{Prior}(\text{C}/\text{C}) = 0.99900 \quad \text{Posterior}(\text{C}/\text{C}) = 0.825
\end{align*}
\]

Individual Based Prior: Every site has 1/1000 probability of varying.
From Sequence to Genotype: Individual Based Prior

\[
\begin{align*}
\text{Sequence Reads:} & \quad 5'\text{-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'} \\
\text{Reference Genome:} & \quad \text{GCTAGCTGATAGCTAG} \quad \text{C} \quad \text{TAGCTGATGAGCCCGATCGCTG} \\
& \quad \text{ATGCTAGCTGATAGCTAG} \quad \text{C} \quad \text{TAGCTGATGAGCC} \\
& \quad \text{AGCTGATAGCTAG} \quad \text{C} \quad \text{TAGCTGATGAGCCCGATCGCTG} \\
& \quad \text{GCTAGCTGATAGCTAG} \quad \text{C} \quad \text{TAGCTGATGAGCCCGA} \\
\end{align*}
\]

Individual Based Prior: Every site has 1/1000 probability of varying.

\[
\begin{align*}
P(\text{reads}|A/A) &= 0.00000098 \quad \text{Prior}(A/A) = 0.00034 \quad \text{Posterior}(A/A) = <.001 \\
P(\text{reads}|A/C) &= 0.03125 \quad \text{Prior}(A/C) = 0.00066 \quad \text{Posterior}(A/C) = 0.175 \\
P(\text{reads}|C/C) &= 0.000097 \quad \text{Prior}(C/C) = 0.99900 \quad \text{Posterior}(C/C) = 0.825
\end{align*}
\]
Sequence Based Genotype Calls

• **Individual Based Prior**
 • Assumes all sites have an equal probability of showing polymorphism
 • Specifically, assumption is that about 1/1000 bases differ from reference
 • If reads where error free and sampling Poisson ...
 • ... 14x coverage would allow for 99.8% genotype accuracy
 • ... 30x coverage of the genome needed to allow for errors and clustering

• **Population Based Prior**
 • Uses frequency information obtained from examining other individuals
 • Calling very rare polymorphisms still requires 20-30x coverage of the genome
 • Calling common polymorphisms requires much less data

• **Haplotype Based Prior or Imputation Based Analysis**
 • Compares individuals with similar flanking haplotypes
 • Calling very rare polymorphisms still requires 20-30x coverage of the genome
 • Can make accurate genotype calls with 2-4x coverage of the genome
 • Accuracy improves as more individuals are sequenced
From Sequence to Genotype: Population Based Prior

Population Based Prior: Use frequency information from examining others at the same site.

In the example above, we estimated $P(A) = 0.20$
From Sequence To Genotype:
Population Based Prior

P(reads | A/A) = 0.00000098 Prior(A/A) = 0.04 Posterior(A/A) = <.001
P(reads | A/C) = 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999
P(reads | C/C) = 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20
Sequence Based Genotype Calls

- **Individual Based Prior**
 - Assumes all sites have an equal probability of showing polymorphism
 - Specifically, assumption is that about 1/1000 bases differ from reference
 - If reads where error free and sampling Poisson ...
 - ... 14x coverage would allow for 99.8% genotype accuracy
 - ... 30x coverage of the genome needed to allow for errors and clustering

- **Population Based Prior**
 - Uses frequency information obtained from examining other individuals
 - Calling very rare polymorphisms still requires 20-30x coverage of the genome
 - Calling common polymorphisms requires much less data
Shotgun Sequence Data
Haplotype Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome

Sequence Reads

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.

In the example above, we estimated that 90% of similar chromosomes carry allele A.
Shotgun Sequence Data

Haplotype Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome

TAGCTGATAGCTAGA

ATAGCTAGA

TAGCTGATGAGCCCGATCGCTGCTAGCTC

AGCTGATAGCTAGC

TAGCTGATGAGCC

ATAGCTAG

A

TAGCTGATGAGCC

Sequence Reads

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.

In the example above, we estimated that 90% of similar chromosomes carry allele A.

\[
P(\text{reads} | A/A) = 0.00000098 \quad \text{Prior}(A/A) = 0.81 \quad \text{Posterior}(A/A) = <.001
\]

\[
P(\text{reads} | A/C) = 0.03125 \quad \text{Prior}(A/C) = 0.18 \quad \text{Posterior}(A/C) = 0.999
\]

\[
P(\text{reads} | C/C) = 0.000097 \quad \text{Prior}(C/C) = 0.01 \quad \text{Posterior}(C/C) = <.001
\]
Sequence Based Genotype Calls

• **Individual Based Prior**
 - Assumes all sites have an equal probability of showing polymorphism
 - Specifically, assumption is that about 1/1000 bases differ from reference
 - If reads where error free and sampling Poisson ...
 - ... 14x coverage would allow for 99.8% genotype accuracy
 - ... 30x coverage of the genome needed to allow for errors and clustering

• **Population Based Prior**
 - Uses frequency information obtained from examining other individuals
 - Calling very rare polymorphisms still requires 20-30x coverage of the genome
 - Calling common polymorphisms requires much less data

• **Haplotype Based Prior or Imputation Based Analysis**
 - Compares individuals with similar flanking haplotypes
 - Calling very rare polymorphisms still requires 20-30x coverage of the genome
 - Can make accurate genotype calls with 2-4x coverage of the genome
 - Accuracy improves as more individuals are sequenced
The Challenge

- Whole genome sequence data will greatly increase our understanding of complex traits
- Variants of large effect are typically extremely rare
- Common variants typically have extremely small effects
- Dissecting complex traits will require whole genome sequencing of 1,000s of individuals
- How to sequence 1,000s of individuals cost-effectively?
Current Genome Scale Approaches

• Deep whole genome sequencing
 • Can only be applied to limited numbers of samples
 • Most complete ascertainment of variation

• Exome capture and targeted sequencing
 • Can be applied to moderate numbers of samples
 • SNPs and indels in the most interesting 1% of the genome

• Low coverage whole genome sequencing
 • Can be applied to moderate numbers of samples
 • Very complete ascertainment of shared variation
 • Less complete ascertainment of rare variants
Simulation Results: Common Sites

• Detection and genotyping of Sites with MAF >5% (2116 simulated sites/Mb)

 • **Detected Polymorphic Sites: 2x coverage**
 • 100 people 2102 sites/Mb detected
 • 200 people 2115 sites/Mb detected
 • 400 people 2116 sites/Mb detected

 • **Error Rates at Detected Sites: 2x coverage**
 • 100 people 98.5% accurate, 90.6% at hets
 • 200 people 99.6% accurate, 99.4% at hets
 • 400 people 99.8% accurate, 99.7% at hets

Yun Li
That’s The Theory … Show Me The Data!

Results from 1000 Genomes Project
Project Goals

• >95% of accessible genetic variants with a frequency of >1% in each of multiple continental regions

• Extend discovery effort to lower frequency variants in coding regions of the genome

• Define haplotype structure in the genome
Genotype accuracy for rare genotypes is lowest, but definition of rare changes as more samples are sequenced.

Hyun Min Kang
Does Haplotype Information Really Help?

Single Site Analysis
- 21.4% HET errors

Haplotype Aware Analysis
- 2.0% HET errors
As More Samples Are Sequenced, Low Pass Genotypes Improve

<table>
<thead>
<tr>
<th>Analysis</th>
<th>#SNPs</th>
<th>dbSNP%</th>
<th>Missing HapMap %</th>
<th>Ts/Tv</th>
<th>Accuracy at Hets*</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2010 Michigan/EUR 60</td>
<td>9,158,226</td>
<td>63.5</td>
<td>7.0</td>
<td>1.91</td>
<td>96.74</td>
</tr>
<tr>
<td>August 2010 Michigan/EUR 186</td>
<td>10,537,718</td>
<td>52.5</td>
<td>5.6</td>
<td>2.04</td>
<td>97.56</td>
</tr>
<tr>
<td>October 2010 Michigan/EUR 280</td>
<td>13,276,643</td>
<td>50.1</td>
<td>1.8</td>
<td>2.20</td>
<td>97.91**</td>
</tr>
</tbody>
</table>

Accuracy of Low Pass Genotypes Generated by 1000 Genomes Project, When Analyzed Here At the University of Michigan
What Was Optimal Model for Analyzing Pilot Data?

<table>
<thead>
<tr>
<th>1000 Genomes Call Set (CEU)</th>
<th>Homozygous Reference Error</th>
<th>Heterozygote Error</th>
<th>Homozygous Non-Reference Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad</td>
<td>0.66</td>
<td>4.29</td>
<td>3.80</td>
</tr>
<tr>
<td>Michigan</td>
<td>0.68</td>
<td>3.26</td>
<td>3.06</td>
</tr>
<tr>
<td>Sanger</td>
<td>1.27</td>
<td>3.43</td>
<td>2.60</td>
</tr>
<tr>
<td>Majority Consensus</td>
<td>0.45</td>
<td>2.05</td>
<td>2.21</td>
</tr>
</tbody>
</table>

- Pilot analyzed with different haplotype sharing models
 - Sanger (QCALL), Michigan (MaCH/Thunder), Broad (BEAGLE)
 - Consensus of the three callers clearly bested single callers
Implications for Whole Genome Sequencing Studies

• Suppose we could afford 2,000x data (6,000 GB)
• We could sequence 67 individuals at 30x

<table>
<thead>
<tr>
<th>Minor Allele Frequency</th>
<th>0.5 – 1.0%</th>
<th>1.0 – 2.0%</th>
<th>2.0 – 5.0%</th>
<th>>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Detected Sites</td>
<td>59.3%</td>
<td>90.1%</td>
<td>96.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Genotyping Accuracy</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>…. Heterozygous Sites Only</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Correlation with Truth (r^2)</td>
<td>99.8%</td>
<td>99.9%</td>
<td>99.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Effective Sample Size (n·r^2)</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
</tbody>
</table>
Implications for Whole Genome Sequencing Studies

• Suppose we could afford 2,000x data (6,000 GB)
• We could sequence 1000 individuals at 2x

<table>
<thead>
<tr>
<th>Minor Allele Frequency</th>
<th>0.5 – 1.0%</th>
<th>1.0 – 2.0%</th>
<th>2.0 – 5.0%</th>
<th>>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Detected Sites</td>
<td>79.6%</td>
<td>98.8%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Genotyping Accuracy</td>
<td>99.6%</td>
<td>99.5%</td>
<td>99.5%</td>
<td>99.8%</td>
</tr>
<tr>
<td>.... Heterozygous Sites Only</td>
<td>78.8%</td>
<td>89.5%</td>
<td>95.9%</td>
<td>99.8%</td>
</tr>
<tr>
<td>Correlation with Truth (r^2)</td>
<td>56.7%</td>
<td>76.1%</td>
<td>88.2%</td>
<td>97.8%</td>
</tr>
<tr>
<td>Effective Sample Size ($n \cdot r^2$)</td>
<td>567</td>
<td>761</td>
<td>882</td>
<td>978</td>
</tr>
</tbody>
</table>
Given Fixed Capacity, Should We Sequence Deep or Shallow?

<table>
<thead>
<tr>
<th></th>
<th>0.5 – 1%</th>
<th>1 – 2%</th>
<th>2-5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Deep Genomes (30x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery Rate</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Het. Accuracy</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Effective N</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000 Shallow Genomes (4x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery Rate</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Het. Accuracy</td>
<td>90.4%</td>
<td>97.3%</td>
<td>98.8%</td>
</tr>
<tr>
<td>Effective N</td>
<td>2406</td>
<td>2758</td>
<td>2873</td>
</tr>
</tbody>
</table>

Li et al, *Genome Research*, 2011
Design A Whole Genome Sequencing Study in Sardinia

Gonçalo Abecasis
David Schlessinger
Francesco Cucca
SardiNIA Whole Genome Sequencing

• 6,148 Sardinians from 4 towns in the Lanusei Valley, Sardinia
 • Recruited among population of ~9,841 individuals
 • Sample includes >34,000 relative pairs

• Measured ~100 aging related quantitative traits

• Original plan:
 • Sequence >1,000 individuals at 2x to obtain draft sequences
 • Genotype all individuals, impute sequences into relatives
Who To Sequence?
Assuming All Individuals Have Been Genotyped

0 Genomes Sequenced, 0 Genomes Analyzed
Who To Sequence?
Assuming All Individuals Have Been Genotyped

3 Genomes Sequenced, 9.5 Genomes Analyzed
Who To Sequence?
Assuming All Individuals Have Been Genotyped

5 Genomes Sequenced, 12.5 Genomes Analyzed
Who To Sequence?
Assuming All Individuals Have Been Genotyped

9 Genomes Sequenced, 17 Genomes Analyzed
Anything to Gain from Sequencing Trios?

Improved Accuracy at Heterozygous Sites

- Sequencing trios improves genotype call accuracy
 - At low coverage ...
 - Smaller gain w/deep coverage

- Leads to similar numbers of detected variants
 - At low coverage ...
 - No gain w/deep coverage

- Improved haplotype accuracy

Wei Chen and Bingshan Li
How Did Sequencing Progress?

• NHGRI estimates of sequencing capacity and cost...
 – Since 2006, for fixed cost...
 – ... ~4x increase in sequencing output per year

• In our own hands...
 – Mapped high quality bases
 – March 2010: ~5.0 Gb/lane
 – May 2010: ~7.5 Gb/lane
 – September 2010: ~8.6 Gb/lane
 – January 2011: ~16 Gb/lane
 – Summer 2011: ~45 Gb/lane

• Other small improvements
 – No PCR libraries increase genome coverage, reduce duplicate rates

Fabio Busonero, Andrea Maschio
Assembling Sequences In Sardinia

Sardinian team led by Francesco Cucca, Serena Sanna, Chris Jones
As more samples are sequenced, Accuracy increases

Heterozygous Mismatch Rate (in %)

- 7% (66 samples)
- 4.8% (186 samples)
- 3.7% (226 samples)
- 1.47% (505 samples)
- 0.73% (1146 samples)
- 0.52% (2120 samples)
Design

Sequence 1000 individuals @ 2x or greater → “Draft” Genomes for 1000 Individuals

Genotype 6000 individuals with 700,000 SNPs → Haplotypes for 6000 Individuals

“Draft” Genomes for 1000 Individuals → Whole Genome Information on 6,000 individuals
What Do We See Genomewide?

LDL Cholesterol

Also By GWAS, LDLR, APOE

Also By GWAS, PCSK9, SORT1, APOB

Only By Sequencing, Q39X in HBB

Genomic Position
LDL Genetics In Lanusei Valley, Sardinia, Current Sequenced Based View

<table>
<thead>
<tr>
<th>Locus</th>
<th>Variants</th>
<th>MAF</th>
<th>Effect Size (SD)</th>
<th>H^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBB</td>
<td>Q39X</td>
<td>.04</td>
<td>0.90</td>
<td>8.0%??</td>
</tr>
<tr>
<td>APOE</td>
<td>R176C, C130R</td>
<td>.04, .07</td>
<td>0.56, 0.26</td>
<td>3.3%</td>
</tr>
<tr>
<td>PCSK9</td>
<td>R46L, rs2479415</td>
<td>.04, .41</td>
<td>0.38, 0.08</td>
<td>1.2%</td>
</tr>
<tr>
<td>LDLR</td>
<td>rs73015013, V578R</td>
<td>.14, .005</td>
<td>0.16, 0.62</td>
<td>1.2%</td>
</tr>
<tr>
<td>SORT1</td>
<td>rs583104</td>
<td>.18</td>
<td>0.15</td>
<td>0.6%</td>
</tr>
<tr>
<td>APOB</td>
<td>rs547235</td>
<td>.19</td>
<td>0.19</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

- Most of these variants are important across Europe, extensively studied.
- **Q39X** variant in HBB is especially enriched in Sardinia.
- **V578R** in LDLR is a Sardinia specific variant, particularly common in Lanusei.
Summary

• Challenges and opportunities in genetic association studies.

• Great need for statistical and computational method development.

• In a specific examples, we ...
 • Designed method to combine sequence information across samples.
 • Applied the method to sequence an interesting population in Sardinia.

 • Designed method to infer ancestry from small amounts of sequence.
 • Applied the method to identify additional controls for sequencing study.
Acknowledgements

Thank you to the National Institutes of Health (NEI, NHGRI, NHLBI), GlaxoSmithKline and the University of Michigan for funding our work.