Genome Assembly
Using de Bruijn Graphs



Previously:
Reference Based Analyses

* Individual short reads are aligned to reference

 Genotypes generated by examining reads
overlapping each position

 Works very well for SNPs and relatively well
for other types of variant



Shotgun Sequence Reads

TA CTA
CGATGCTAGET KTACE
.
ACT

A
CTGATGAGCCCGATCGCT CTAGCTCG 7

e Typical short read might be <25-100 bp long and
not very informative on its own

 Reads must be arranged (aligned) relative to each
other to reconstruct longer sequences



Read Alignment

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Short Read (30-100 bp)

5-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3

Reference Genome (3,000,000,000 bp)

The first step in analysis of human short read data is to align each read to
genome, typically using a hash table based indexing procedure

This process now takes no more than a few hours per million reads ...

Analyzing these data without a reference human genome would require
much longer reads or result in very fragmented assemblies



Mapping Quality

e Measures the confidence in an alignment, which
depends on:

— Size and repeat structure of the genome
— Sequence content and quality of the read
— Number of alternate alignments with few mismatches

e The mapping quality is usually also measured on a
“Phred” scale

e |dea introduced by Li, Ruan and Durbin (2008) Genome
Research 18:1851-1858



Shotgun Sequence Data

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Sequence Reads

5 -ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

Reads overlapping a position of interest are used to calculate genotype likelihoods and
Interpreted using population information.



Limitations of Reference
Based Analyses

For some species, no suitable reference genome
available

The reference genome may be incomplete,
particularly near centromeres and telomeres

Alignment is difficult in highly variable regions

Alignment and analysis methods need to be
customized for each type of variant



Assembly Based Analyses

 Assembly based approaches to study genetic
variation

— Implementation, challenges and examples

 Approaches that naturally extend to multiple
variant types



De Bruijn Graphs
e A representation of available sequence data
e Each k-mer (or short word) is a node in the graph

 Words linked together when they occur consecutively

Short Sequence
AATCGACAGCCGG

De Bruijn Graph Representation
AATC = ATCG = TCGA = CGAC » GACA = ACAG - CAGC - AGCC - GCCG - CCGG

Igbal (2012)



Effective Read Depth

* Overlaps must exceed k-mer length to register in
a de Bruijn graph

e This requirement effectively reduces coverage

* Give read read length L, word length k, and
expected depth D ...

L—k+1
Deffective =D I




Cleaning

* De Bruijn graphs are typically “cleaned” before
analysis

* Cleaning involves removing portions of the
graph that have very low coverage

 For example, most paths with depth =1 and
even with depth <= 2 are likely to be errors



Variation in a de Bruijn Graph

e Variation in sequence produces a bubble in a de
Bruijn graph

Do all bubbles represent true variation? What are
other alternative explanations?

AATCGACAGCCGG
AATCGATAGCCGG

CGAT = GATA = ATAG = TAGC
/

AATC = ATCG = TCGA — CGAC = GACA = ACAG = CAGC = AGCC = GCCG = CCGG

N\

Igbal (2012)



Effective Read Depth - Consequences

e Consider a simple example where L =100

e Withk=21..

— Each read includes 80 words
— Each SNP generates a bubble of length 22
— A single read may enable SNP discovery

e Withk=75..

— Each read includes 26 words
— Each SNP generates a bubble of length 76
— Multiple overlapping reads required to discover SNP



Properties of de Bruijn Graphs

e Many useful properties of genome assemblies
(including de Bruijn graphs) can be studied
using results of Lander and Waterman (1988)

e Described number of assembled contigs and
their lengths as a function of genome size,
length of fragments, and required overlap



Lander and Waterman (1988)
Notation

The genome size G
The number of fragments in assembly N

The length of sequenced fragments L
— The fractional overlap required for assembly 6

The depth of coverage c = NL/G

Probability a clone starts at a position a = N/G



Number of Contigs
Ne-c(l-@)

e Consider the probability that a fragment starts is
not linked to another before ending

Gc
a(1— a)1-9) = (1 — N/G)W(l_e) = qe—c(1-6)

 Then, the expected number of fragments that are

not linked to another is
Gae—c(l—@) — Ne—c(l—@)

 This is also the number of contigs!



Number of Contigs (G/L units)

Number of Contigs

B=75%

9 =50%
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Genome Coverage (or depth) ¢

Number of contigs
peaks when depth
c=(1-a)?!



Contig Lengths

Probability a fragment ends the contig:
e—c(l—H)

Probability of contig with exactly j fragments:
(1-— e—c(1—9))f—1e—c(1—9)

The number of contigs with j fragments is:
Ne=c(1-8)(1 — e—c(1—9))1‘1

How many contigs will have 2+ fragments?



Contig Lengths (in bases)

The expected contig length, in fragments, is
E(]) — ec(l—@)

Each fragment contributes X bases ...
PX=m)=(1—-a)™la for 0<m<L(1-0)
PX=L)=(1-a)ta-9

After some algebra:

—e—c(1-6)
E(X) — L[l e - _ HB_C(l_Q)]
The expected contig length in bases is E(X) E(J)
eC(l—Q) —1
L| — 0]

C



Contig Length (in units of L base pairs)

Contig Lengths

30
20 0=0%
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Genome Coverage (or depth) ¢

Lander and
Waterman
also studied
gap lengths



Enhanced De Bruijn Graphs

e Usefulness of a de Bruijn graph increases if we
annotate each node with useful information

e Basic information might include the number
of times each word was observed

 More detailed information might include the
specific individuals in which the word was

present



Variant Analysis Algorithm 1:
“Bubble Calling”

* Create a de Bruijn graph of reference genome
— Bubbles in this graph are paralogous sequences

e Using a different label, assemble sample of interest

e Systematically search for bubbles
— Nodes where two divergent paths eventually connect

Heterozygous

:: Repeat

Homozygous

Igbal (2012)



Word size k and Accessible Genome
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Power of Homozygous Variant Discovery
(100-bp reads, no errors)
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Power of Heterozygous Variant Discovery
(100-bp reads, no errors)
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Power of Homozygous Variant Discovery
(Simulated 30x genomes, 100-bp reads)

Sensitivity of Bubble Caller
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Power of Heterozygous Variant Discovery
(Simulated 30x genomes, 100-bp reads)
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Variant Analysis Algorithm 2:
Path Divergence

 Bubble calling requires accurately both alleles

— Power depends on word length k, allele length,
genome complexity and error model

— Low power for the largest events

e Path divergence searches for regions where a
sample path differs from the reference

e Especially increases power for deletions
— Deletion often easier to assemble than reference



Path Divergence Example

==: reference

start flank
== end flank
m e sample

Black line represents assembly of sample.
We can infer a variant between positions a and b,
because the path between them differs from reference.



Variant Analysis Algorithm 3:
Multi-Sample Analysis

 Improves upon simple bubble calling by
tracking which paths occur on each sample

 Improved ability to distinguish true variation
from paralogous sequence and errors

Repeat

o

Polymorphic site
Igbal (2012)



Classifying Sites

e Evaluate ratio of coverage along the two branches
of each bubble and in each individual

e |f the ratio is uniform across individuals ...
— Error: Ratio consistently low for one branch
— Repeat: Ratio constant across individuals

e |f the ratio varies across individuals ...

— Variant: Ratio clusters around O, 2 and 1 with
probability of these outcomes depending on HWE



Variant Analysis Algorithm 4:
Genotyping

Calculate probability that a certain number of k-mers cover each
path

To improve accuracy, short duplicate regions within a path can be
ignored.

Allows likelihood calculation for use in imputation algorithms

Igbal (2012)



Example Application to

High Coverage Genome
26x, 100-bp reads, k =55

2,777,252,792 unique k-mers
— 2,691,115,653 also in reference
— 23% more k-mers before cleaning

2,686,963 bubbles found by Bubble Caller
— 5.6% of these also present in reference

528,651 divergent paths
— 39.8% of these also present in reference

2,245,279 SNPs, 361,531 short indels, 1,100 large or complex events
— Reproduces 67% of heterozygotes from mapping (87% of homozygotes)



Number of calls

Comparison to
Mapping Based Algorithms
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Summary

* Assembly based algorithms currently reach
about 80% of the genome

 These algorithms can handle different variant
types more conveniently than mapping based
approaches

e Incorporating population information allows
repeats to be distinguished from true variation



Recommended Reading

e |gbal, Caccamo, Turner, Flicek and McVean
(2012) Nature Genetics 44:226-232

e Lander and Waterman (1988) Genomics
2:231-239
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