Announcement

- Homework 3 is announced, due next Tuesday.
- Try to install boost library by today and ask technical questions tomorrow if there is any

Recap : Dijkstra’s algorithm

Algorithm Dijkstra

Data: G: graph, w: weight, s: source

Result: Each vertex contains the optimal weight from s

InitializeSingleSource(G, s):

1. $S = \emptyset$
2. $Q = G.V$;
3. while $Q \neq \emptyset$ do
 1. $u = \text{ExtractMin}(Q)$;
 2. $S = S \cup \{u\}$;
 3. for $v \in G.A[i][u]$ do
 1. $\text{Relax}(u, v, w)$;
 end
end

Recap : boost library

```cpp
#include <iostream>
#include <boost/tokenizer.hpp>
#include <string>

using namespace std;
using namespace boost;

int main(int argc, char** argv) {
    // default delimiters are spaces and punctuations
    string s1 = "Hello, boost library";
    tokenizer<> tok1(s1);
    for(tokenizer<>::iterator i=tok1.begin(); i != tok1.end() ; ++i) {
        cout << *i << endl;
    }
    // you can parse csv-like format
    string s2 = "Field 1,\"putting quotes around fields, allows commas\",Field 3";
    tokenizer<escaped_list_separator<char>> tok2(s2);
    for(tokenizer<escaped_list_separator<char>>::iterator i=tok2.begin(); i != tok2.end() ; ++i) {
        cout << *i << endl;
    }
    return 0;
}
```
Recap: Illustration of Dijkstra's algorithm

Floyd-Warshall Algorithm

Algorithm FLOYDWARSHALL

Data: $W: n \times n$ weight matrix

$D(0) = W$;

for $k = 1$ to n
 for $i = 1$ to n
 for $j = 1$ to n
 $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
 end
 end
return $D(n)$;

Calculating all-pair shortest-path weights

A dynamic programming formulation

Let $d^{(k)}_{ij}$ be the weight of shortest path from vertex i to j, for which intermediate vertices are in the set $\{1, 2, \ldots, k\}$.

$$d^{(k)}_{ij} = \begin{cases} w_{ij} & k = 0 \\ \min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}) & k > 0 \end{cases}$$

Summary: shortest path finding algorithms

Dijkstra’s algorithm

- $\Theta(|V| \log |V| + |E|)$ dynamic programming algorithm.
- Compute optimal path from a single source to each node
- Track optimal path from the closest node from the source, and expand to adjacent node

Floyd-Warshall algorithm

- $\Theta(|V|^3)$ All-pair shortest path finding algorithms with non-negative weights
- Use the fact that the maximum length of each possible optimal path is $|V|$.
- For each possible pairs of sources and destinations, iteratively update optimal distance matrix $|V|$ times.
Markov Process: An example

Example questions in Markov Process

What is the chance of rain in the day 2?

\[\Pr(q_2 = S_3) = (A\pi)_3 = 0.24 \]

If it rains today, what is the chance of rain on the day after tomorrow?

\[\Pr(q_3 = S_3|q_1 = S_3) = A^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_3 = 0.33 \]

Stationary distribution

\[\pi = \begin{pmatrix} \Pr(q_1 = S_1 = \text{Sunny}) \\ \Pr(q_1 = S_2 = \text{Cloudy}) \\ \Pr(q_1 = S_3 = \text{Rainy}) \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.2 \\ 0.1 \end{pmatrix} \]

\[A_{ij} = \Pr(q_{t+1} = S_i|q_t = S_j) \]

\[A = \begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.3 & 0.5 \\ 0.2 & 0.3 & 0.4 \end{pmatrix} \]

Mathematical representation of a Markov Process

If it rains today, what is the chance of rain on the day after tomorrow?

\[\Pr(q_3 = S_3|q_1 = S_3) = A^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_3 = 0.33 \]

If it has rained for the past three days, what is the chance of rain on the day after tomorrow?

\[\Pr(q_5 = S_3|q_1 = q_2 = q_3 = S_3) = \Pr(q_5 = S_3|q_3 = S_3) = 0.33 \]

Markov process is only dependent on the previous state
Hidden Markov Models (HMMs)

- A Markov model where actual state is unobserved
 - Transition between states are probabilistically modeled just like the Markov process
- Typically there are observable outputs associated with hidden states
 - The probability distribution of observable outputs given an hidden states can be obtained.

Mathematical representation of the HMM example

States \(S = \{S_1, S_2\} = \{\text{HIGH}, \text{LOW}\} \)

Outcomes \(O = \{O_1, O_2, O_3\} = \{\text{SUNNY}, \text{CLOUDY}, \text{RAINY}\} \)

Initial States \(\pi_i = \Pr(q_1 = S_i), \pi = \{0.7, 0.3\} \)

Transition \(A_{ij} = \Pr(q_{t+1} = S_i | q_t = S_j) \)

\[
A = \begin{pmatrix}
0.8 & 0.4 \\
0.2 & 0.6
\end{pmatrix}
\]

Emission \(B_{ij} = b_{q_i}(o_t) = \Pr(o_t = O_i | q_t = S_j) \)

\[
B = \begin{pmatrix}
0.88 & 0.10 \\
0.10 & 0.60 \\
0.02 & 0.30
\end{pmatrix}
\]

Interesting Questions

- What is the chance of rain in the day 3?
- What is the chance of rain in the day 3, if it rained in the day 2?
- What is the chance of rain in the day 3, if it rained in the day 1 and day 2?
- If the observation was \{SUNNY,SUNNY,CLOUDY,RAINY,RAINY\} from day 1 through day 5, what would be the mostly likely sequence of states?
- Can we infer the HMM parameters if we have a large number of observations?
Unconditional marginal probabilities

What is the chance of rain in the day 4?

\[
f(q_3) = \begin{pmatrix} \Pr(q_4 = S_1) \\ \Pr(q_4 = S_2) \end{pmatrix} = A^3 \pi = \begin{pmatrix} 0.669 \\ 0.331 \end{pmatrix}
\]

\[
g(o_4) = \begin{pmatrix} \Pr(o_4 = O_1) \\ \Pr(o_4 = O_2) \\ \Pr(o_4 = O_3) \end{pmatrix} = Bf(q_4) = \begin{pmatrix} 0.621 \\ 0.266 \\ 0.233 \end{pmatrix}
\]

The chance of rain in day 3 is 23.3%

Calculating conditional probabilities

What is the chance of rain in the day 2 if it rains in the day 1?

\[
\Pr(o_2 = O_3 | o_1 = O_3) = \Pr(o_2 = O_3 | q_2 = S_1) \Pr(q_2 = S_1 | o_2 = O_3) + \Pr(o_2 = O_3 | q_2 = S_2) \Pr(q_2 = S_2 | o_2 = O_3)
\]

This is already quite complicated!

Organizing the likelihood

- Let \(\lambda = (A, B, \pi) \)
- For a sequence of observation \(o = \{o_1, \cdots, o_t\}, \)

\[
\Pr(o|\lambda) = \sum_{q} \Pr(o|q, \lambda) \Pr(q|\lambda)
\]

\[
\Pr(o|q, \lambda) = \prod_{i=1}^{t} \Pr(o_i | q_i, \lambda) = \prod_{i=1}^{t} b_{q_i}(o_i)
\]

\[
\Pr(q|\lambda) = \pi_{q_1} \sum_{i=2}^{t} a_{q_i q_{i-1}}
\]

\[
\Pr(o|\lambda) = \sum_{q} \pi_{q_1} b_{q_1}(o_{q_1}) \prod_{i=2}^{t} a_{q_i q_{i-1}} b_{q_i}(o_{q_i})
\]

- Number of possible \(q = 2^t \) are exponentially growing with the number of observations
- Computational would be infeasible for large number of observations
- Algorithmic solution required for efficient computation

Naive computation of the likelihood

\[
\Pr(o|\lambda) = \sum_{q} \pi_{q_1} b_{q_1}(o_{q_1}) \prod_{i=2}^{t} a_{q_i q_{i-1}} b_{q_i}(o_{q_i})
\]
Dyanmamic Programing approach for HMMs

- If each possible \(q_t \) is represented as a vertex of graph and \(a_{t(t-1)} \) represents edges, then the problem becomes a graph algorithm
- Finding the most likely path given a series of observations is very similar to the Dijkstra’s algorithm
- \(Pr(o|\lambda) \) can also be efficiently calculated using dynamic programming called "forward-backward algorithm"

Forward-backward algorithm

- Define forward probability \(\alpha_t(i) \) as
 \[
 \alpha_t(i) = Pr(o_1, \ldots, o_t, q_t = S_t|\lambda)
 \]
- \(\alpha_t(i) \) can be efficiently computed using dynamic programming
 - \(\alpha_1(i) = \pi_i b_i(o_1) \)
 - \(\alpha_t(i) = \sum_{j=1}^{n} \alpha_{t-1}(j) a_{ij} b_i(o_t) \)
 - \(Pr(o|\lambda) = \sum_{i=1}^{n} \alpha_t(i) \)
- Time complexity is \(\Theta(n^2t) \).

Forward-backward algorithm (cont’d)

- Backward probability \(\beta_t(i) \) as
 \[
 \beta_t(i) = Pr(o_{t+1}, \ldots, o_T|q_t = S_t, \lambda)
 \]
- \(\beta_t(i) \) can also be efficiently computed using dynamic programming
 - \(\beta_T(i) = 1 \)
 - \(\beta_t(i) = \sum_{j=1}^{n} a_{ji} b_j(o_{t+1}) \beta_{t+1}(j) \)
- Time complexity is \(\Theta(n^2(T-t)) \).

Forward-backward algorithm (cont’d)

- We can infer the conditional probability of each state given observations by
 \[
 \gamma_t(i) = \frac{Pr(q_t = S_t|o, \lambda)}{\sum_{j=1}^{n} Pr(o, q_t = S_j|\lambda)}
 = \frac{\alpha_t(i) \beta_t(i)}{\sum_{j=1}^{n} \alpha_t(j) \beta_t(j)}
 \]
- Time complexity is \(\Theta(n^2T) \).
Viterbi algorithm

- Finding the most likely trajectory of states given a series of observations
- Want to compute
 \[\arg \max_q \Pr(q \mid o, \lambda) \]
- Define \(\delta_t(i) \) as
 \[\delta_t(i) = \max_q \Pr(q, o \mid \lambda) \]
- Use dynamic programming algorithm to find the 'shortest' path

Viterbi algorithm (cont’d)

Initialization \(\delta_1(i) = \pi_i(b_i(o_1)) \) for \(1 \leq i \leq n \).

Maintenance \(\delta_t(i) = \max_j \delta_{t-1}(i) a_{ji} b_j(o_t) \)

Termination Max likelihood is \(\max_i \delta_T(i) \)

Reconstruction How to reconstruct the optimal path?