The Minimization Problem
Specific Objectives

Finding global minimum

- The lowest possible value of the function
- Very hard problem to solve generally

Finding local minimum

- Smallest value within finite neighborhood
- Relatively easier problem
A quick detour - The root finding problem

- Consider the problem of finding zeros for $f(x)$
- Assume that you know
 - Point a where $f(a)$ is positive
 - Point b where $f(b)$ is negative
 - $f(x)$ is continuous between a and b
- How would you proceed to find x such that $f(x) = 0$?
A C++ Example: defining a function object

```cpp
#include <iostream>

class myFunc {  // a typical way to define a function object
public:
    double operator()(double x) const {
        return (x*x-1);
    }
};

int main(int argc, char** argv) {
    myFunc foo;
    std::cout << "foo(0) = " << foo(0) << std::endl;
    std::cout << "foo(2) = " << foo(2) << std::endl;
}
```
Root Finding with C++

// binary-search-like root finding algorithm
double binaryZero(myFunc foo, double lo, double hi, double e) {
 for (int i=0;; ++i) {
 double d = hi - lo;
 double point = lo + d * 0.5; // find midpoint between lo and hi
 double fpoint = foo(point); // evaluate the value of the function
 if (fpoint < 0.0) {
 d = lo - point; lo = point;
 } else {
 d = point - hi; hi = point;
 }
 // e is tolerance level (higher e makes it faster but less accurate)
 if (fabs(d) < e || fpoint == 0.0) {
 std::cout << "Iteration " << i << ", point = " << point
 << ", d = " << d << std::endl;
 return point;
 }
 }
}
Improvements to Root Finding

Approximation using linear interpolation

\[f^*(x) = f(a) + (x - a) \frac{f(b) - f(a)}{b - a} \]

Root Finding Strategy

- Select a new trial point such that \(f^*(x) = 0 \)
Root Finding Using Linear Interpolation

double linearZero (myFunc foo, double lo, double hi, double e) {
 double flo = foo(lo); // evaluate the function at the end pointss
 double fhi = foo(hi);
 for(int i=0;;++i) {
 double d = hi - lo;
 double point = lo + d * flo / (flo - fhi); //
 double fpoint = foo(point);
 if (fpoint < 0.0) {
 d = lo - point;
 lo = point;
 flo = fpoint;
 }
 else {
 d = point - hi;
 hi = point;
 fhi = fpoint;
 }
 if (fabs(d) < e || fpoint == 0.0) {
 std::cout << "Iteration " << i << ", point = " << point << ", d = " << d << std::endl;
 return point;
 }
 }
}
Performance Comparison

Finding $\sin(x) = 0$ between $-\pi/4$ and $\pi/2$

```cpp
#include <cmath>
class myFunc {
public:
    double operator()(double x) const { return sin(x); }
};
...
int main(int argc, char** argv) {
    myFunc foo;
    binaryZero(foo,0-M_PI/4,M_PI/2,1e-5);
    linearZero(foo,0-M_PI/4,M_PI/2,1e-5);
    return 0;
}
```

Experimental results

- binaryZero() : Iteration 17, point = -2.99606e-06, d = -8.98817e-06
- linearZero() : Iteration 5, point = 0, d = -4.47489e-18
R example of root finding

> uniroot(sin, c(0-pi/4,pi/2))

$root
[1] -3.531885e-09

$f.root
[1] -3.531885e-09

$iter
[1] 4

$estim.prec
[1] 8.719466e-05
Summary on root finding

- Implemented two methods for root finding
 - Bisection Method: binaryZero()
 - False Position Method: linearZero()

- In the bisection method, the bracketing interval is halved at each step
- For well-behaved function, the False Position Method will converge faster, but there is no performance guarantee.
Back to the Minimization Problem

- Consider a complex function \(f(x) \) (e.g. likelihood)
- Find \(x \) which \(f(x) \) is maximum or minimum value
- Maximization and minimization are equivalent
 - Replace \(f(x) \) with \(-f(x)\)
Notes from Root Finding

- Two approaches possibly applicable to minimization problems
- Bracketing
 - Keep track of intervals containing solution
- Accuracy
 - Recognize that solution has limited precision
Notes on Accuracy - Consider the Machine Precision

- When estimating minima and bracketing intervals, floating point accuracy must be considered.
- In general, if the machine precision is ϵ, the achievable accuracy is no more than $\sqrt{\epsilon}$.
- $\sqrt{\epsilon}$ comes from the second-order Taylor approximation:

$$f(x) \approx f(b) + \frac{1}{2} f''(b) (x - b)^2$$

- For functions where higher order terms are important, accuracy could be even lower.
 - For example, the minimum for $f(x) = 1 + x^4$ is only estimated to about $\epsilon^{1/4}$.

Outline of Minimization Strategy

1. Bracket minimum
2. Successively tighten bracket interval
Detailed Minimization Strategy

1. Find 3 points such that
 - $a < b < c$
 - $f(b) < f(a)$ and $f(b) < f(c)$

2. Then search for minimum by
 - Selecting trial point in the interval
 - Keep minimum and flanking points
Minimization after Bracketing
Part I: Finding a Bracketing Interval

- Consider two points
 - x-values a, b
 - y-values $f(a) > f(b)$
Bracketing in C++

```cpp
#define SCALE 1.618

void bracket( myFunc foo, double& a, double& b, double& c ) {
    double fa = foo(a);
    double fb = foo(b);
    double fc = foo(c = b + SCALE*(b-a) );
    while( fb > fc ) {
        a = b; fa = fb;
        b = c; fb = fc;
        c = b + SCALE * (b-a);
        fc = foo(c);
    }
}
```
Part II : Finding Minimum After Bracketing

- Given 3 points such that
 - $a < b < c$
 - $f(b) < f(a)$ and $f(b) < f(c)$

- How do we select new trial point?
What is the best location for a new point X?
What we want

We want to minimize the size of next search interval, which will be either from A to X or from B to C
Minimizing worst case possibility

- **Formulae**

 \[w = \frac{b-a}{c-a} \]

 \[z = \frac{x-b}{c-a} \]

 Segments will have length either \(1 - w\) or \(w + z\).

- **Optimal case**

 \[\frac{z}{1-w} = w \]

 \[w = \frac{3-\sqrt{5}}{2} = 0.38197 \]
The Golden Search
The Golden Ratio

Bracketing Triplet

A B C
The Golden Ratio

The number 0.38196 is related to the *golden mean* studied by Pythagoras.
The Golden Ratio

New Bracketing Triplet

Alternative New Bracketing Triplet

0.38196

0.38196
Golden Search

- Reduces bracketing by \(\sim 40\% \) after function evaluation
- Performance is independent of the function that is being minimized
- In many cases, better schemes are available
Golden Step

```c
#define GOLD 0.38196
#define ZEPS 1e-10    // precision tolerance

double goldenStep (double a, double b, double c) {
    double mid = ( a + c ) * .5;
    if ( b > mid )
        return GOLD * (a-b);
    else
        return GOLD * (c-b);
}
```
Golden Search

double goldenSearch(myFunc foo, double a, double b, double c, double e) {
 int i = 0;
 double fb = foo(b);
 while (fabs(c-a) > fabs(b*e)) {
 double x = b + goldenStep(a, b, c);
 double fx = foo(x);
 if (fx < fb) {
 (x > b) ? (a = b) : (c = b);
 b = x; fb = fx;
 }
 else {
 (x < b) ? (a = x) : (c = x);
 }
 ++i;
 }
 std::cout << "i = " << i << " , b = " << b << " , f(b) = " << foo(b) << std::endl;
 return b;
}
A running example

Finding minimum of $f(x) = -\cos(x)$

```cpp
class myFunc {
public:
    double operator()(double x) const {
        return 0-cos(x);
    }
};

int main(int argc, char** argv) {
    myFunc foo;
    goldenSearch(foo,0-M_PI/4,M_PI/4,M_PI/2,1e-5);
    return 0;
}
```

Results

$i = 66, b = -4.42163e-09, f(b) = -1$
R example of minimization

```r
> optimize(cos, interval = c(0 - pi/4, pi/2), maximum = TRUE)
$maximum
[1] -8.648147e-07

$objective
[1] 1
```
Further improvements

- As with root finding, performance can improve substantially when local approximation is used.
- However, a linear approximation won't do in this case.
Approximation Using Parabola

parabola through 1 2 3

parabola through 1 2 4
Summary

Today

- Root Finding Algorithms
 - Bisection Method: Simple but likely less efficient
 - False Position Method: More efficient for most well-behaved function

- Single-dimensional minimization
 - Golden Search

Next Lecture

- More Single-dimensional minimization
 - Brent’s method

- Multidimensional optimization
 - Simplex method