Gibbs Sampler

- Another MCMC Method
- Update a single parameter at a time
- Sample from conditional distribution when other parameters are fixed

Gibbs Sampler Algorithm

1. Consider a particular choice of parameter values $\lambda^{(t)}$.
2. Define the next set of parameter values by
 - Selecting a component to update, say i.
 - Sample value for $\lambda^{(t+1)}_i$, from $p(\lambda_i|x, \lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_k)$.
3. Increment t and repeat the previous steps.

An alternative Gibbs Sampler Algorithm

1. Consider a particular choice of parameter values $\lambda^{(t)}$.
2. Define the next set of parameter values by
 - Sample value for $\lambda^{(t+1)}_1$, from $p(\lambda_1|x, \lambda_2, \ldots, \lambda_k)$.
 - Sample value for $\lambda^{(t+1)}_2$, from $p(\lambda_1|x, \lambda_1, \lambda_3, \ldots, \lambda_k)$.
 - Sample value for $\lambda^{(t+1)}_k$, from $p(\lambda_k|x, \lambda_1, \lambda_2, \ldots, \lambda_{k-1})$.
3. Increment t and repeat the previous steps.
Gibbs Sampling for Gaussian Mixture

Using conditional distributions
- Observed data: $x = (x_1, \cdots, x_n)$
- Parameters: $\lambda = (\pi_1, \cdots, \pi_k, \mu_1, \cdots, \mu_k, \sigma_1^2, \cdots, \sigma_k^2)$.
- Sample each λ_i from conditional distribution - not very straightforward

Using source of each observations
- Observed data: $x = (x_1, \cdots, x_n)$
- Parameters: $z = (z_1, \cdots, z_n)$ where $z_i \in \{1, \cdots, k\}$.
- Sample each z_i conditioned by all the other z.

Gibbs Sampler

Initialization
- Must start with an initial assignment of component labels for each observed data point
- A simple choice is to start with random assignment with equal probabilities

Update procedure in Gibbs sampler
- $\Pr(z_j = i | x_j, \lambda) = \frac{\pi_i N(x_j | \mu_i, \sigma_i^2)}{\sum_i \pi_i N(x_j | \mu_i, \sigma_i^2)}$
- Calculate the probability that the observation is originated from a specific component
- For a random $j \in \{1, \cdots, n\}$, sample z_j based on the current estimates of mixture parameters.

The Gibbs Sampler
- Select initial parameters
- Repeat a large number of times
 - Select an element
 - Update conditional on other elements
Implementing Gaussian Mixture Gibbs Sampler

```cpp
class normMixGibbs {
    public:
    int k; // # of components
    int n; // # of data
    std::vector<double> data; // size n : observed data
    std::vector<double> labels; // size n : label assignment for each observations
    std::vector<double> pis; // size k : pis
    std::vector<double> means; // size k : means
    std::vector<double> sigmas; // size k : sigs
    std::vector<int> counts; // size k : # of elements in each labels
    std::vector<double> sums; // size k: sum across each label
    std::vector<double> sumsq; // size k : squared sum across each label
    normMixGibbs(std::vector<double>& _data, int _k); // constructor
    void initParams(); // initialize parameters
    void updateParams(int numObs); // update parameters
    void remove(int i); // remove elements
    void add(int i, int label); // add an element with new label
    int sampleLabel(double x); // sample the label of an element
    void runGibbs(); // run Gibbs sampler
};
```

Hyun Min Kang Biostatistics 615/815 - Lecture 21 November 29th, 2012 9 / 29

Update procedure in Gibbs sampler

\[
Pr(z_j = i|x_j, \pi, \lambda) = \frac{\pi_i N(x_j|\mu_i, \sigma_i^2)}{\sum_{i=1}^{k} \pi_i N(x_j|\mu_i, \sigma_i^2)}
\]

- Calculate the probability that the observation is originated from a specific component.
- For a random \(j \in \{1, \cdots, n\} \), sample \(z_j \) based on the current estimates of mixture parameters.

Sampling label of selected value

```cpp```
int normMixGibbs::sampleLabel(double x) {
    double p = randu(0, 1); // generate a random probability
    // evaluate the likelihood of the observations given parameters
    double lk = NormMixGibss::dmix(x, pis, means, sigmas); // use randomized values to randomly assign labels
    // based on the likelihood contributed by each component,
    for(int i=0; i < k; ++i) {
        double pl = pis[i] * NormMixGibss::dnorm(x, means[i], sigmas[i])/lk;
        if (p < pl) return i;
        p -= pl;
    }
    // evaluate only k-1 components and assign to the last one if not found
    return k-1;
}
```


Calculating the parameters at each update

- For each \(i \in \{1, \cdots, k\} \)
 - \(n_i = \sum_{j=1}^{n} I(z_j = i) \)
 - \(\pi_i = n_i / n \)
 - \(\mu_i = \sum_{j=1}^{n} x_j I(z_j = i) / n_i \)
 - \(\sigma_i^2 = \sum_{j=1}^{n} (x_j - \mu_i)^2 / n_i \)
- This procedure takes \(O(n) \), which is quite expensive to run over a large number of iterations.
- Is it possible to reduce the time complexity to constant (\(O(k) \))?
Constant time update of parameters

// update parameters for each component
// having counts, sums, sumsqs allows to reduce time complexity

void normMixGibbs::updateParams(int numObs) {
 for(int i=0; i < k; ++i) { // This takes O(k) complexity
 pis[i] = (double)counts[i]/(double)(numObs);
 means[i] = sums[i]/counts[i];
 sigmas[i] = sqrt((sumsqs[i]/counts[i] - means[i]*means[i])+1e-7);
 }
}

Removing and adding elements

// We want to remove object to calculate the conditional distribution
// excluding one component's label information

void normMixGibbs::remove(int i) {
 int l = labels[i];
 --counts[i];
 sums[l] -= data[i];
 sumsqs[l] -= (data[i]*data[i]);
}

// Adding the removed object with newer label assignment

void normMixGibbs::add(int i, int label) {
 labels[i] = label;
 ++counts[label];
 sums[label] += data[i];
 sumsqs[label] += (data[i]*data[i]);
}

The Gibbs Sampler

void normMixGibbs::runGibbs() {
 initParams(); // initialize label assignments
 for(int i=0; i < 10000000; ++i) { // repeat a large number of times
 int id = randn(0,n);
 if (counts[labels[id]] < MIN_COUNTS) continue; // avoid boundary conditions
 remove(id); // remove the elements
 updateParams(n-1); // update pis, means, sigmas
 int label = sampleLabel(data[id]); // sample new label conditionally
 add(id, label); // add the element back with new label

 if ((i > BURN_IN) && (i % THIN_INTERVAL == 0)) {
 // report intermediate results if needed
 // calculate summary statistics of the parameters to estimate
 }
 }
}

Initialization

void normMixGibbs::initParams() {
 // set everything to zero
 for(int i=0; i < k; ++i) {
 counts[i] = 0;
 sums[i] = sumsqs[i] = 0;
 }

 int r;
 for(int i=0; i < n; ++i) {
 r = randn(0, k);
 labels[i] = r; // assign random labels at the beginning
 ++counts[r]; // update counts, sums, sumsqs accordingly
 sums[r] += data[i];
 sumsqs[r] += (data[i]*data[i]);
 }
}
A running example

user@host:/> ./mixSimplex ./mix.dat
Minim = 3043.46, at pi = 0.667271,
 between N(-0.0304604,1.00326) and N(5.01226,0.956009)

user@host:/> ./mixEM ./mix.dat
Minim = 3043.46, at pi = 0.667842,
 between N(-0.0299457,1.00791) and N(5.0128,0.913825)

user@host:/> ./mixSA ./mix.dat
Minim = 3043.46, at pi = 0.667793,
 between N(-0.030148,1.00478) and N(5.01245,0.91296)

user@host:/> ./mixGibbs ./mix.dat
Minimum = 3043.46, pi = 0.667772,
 between N(-0.0301499,1.00764) and N(5.01214,0.915481)

Notes on Gibbs Sampler

- Previous optimizers settled on a minimum eventually
- The Gibbs sampler continues wandering through the stationary distribution
- Forever!

Drawing Inferences

- To draw inferences, summarize parameter values from stationary distribution
- For example, calculate the means or medians.
- Burn-in time required to converge to a reasonable solution before start collecting the estimated parameter values

Log-likelihoods changes

Log-likelihood Changes

```
0v00 2e+04 4e+04 6e+04 8e+04 1e+05
Log-likelihood
```

Hyun Min Kang Biostatistics 615/815 - Lecture 21 November 29th, 2012 17 / 29
Mixing proportions

Means

Standard deviations

Advantages of Gibbs Samplers

- Gibbs sampler allows to obtain posterior distribution of parameters, conditioned on the observed data.
- Joint distribution between parameters can also be obtained
Connecting Simulated Annealing and Gibbs Sampler

Both Methods are Markov Chains
- The distribution of $\lambda(i)$ only depends on $\lambda(i-1)$
- Update rule defines the transition probabilities between two states, requiring aperiodicity and irreducibility.

Both Methods are Metropolis-Hastings Algorithms
- Acceptance of proposed update is probabilistically determined by relative probabilities between the original and proposed states

Metropolis-Hastings Acceptance Probability
- Let $\theta_{ij} = \Pr(q_i = j | q_{i-1} = i)$
- Let π_i and π_j be the relative probabilities of each state
- The Metropolis-Hasting acceptance probability is
 \[a_{ij} = \min \left(1, \frac{\pi_j \theta_{ji}}{\pi_i \theta_{ij}} \right) \]
- We need to know relative ratio between π_j and π_i.
- The equilibrium distribution $\Pr(q_i = i) = \pi_i$ will be reached.

Gibbs Sampler
- The Gibbs sampler ensures that $\pi_i \theta_{ij} = \pi_j \theta_{ji}$
- As a consequence,
 \[a_{ij} = \min \left(1, \frac{\pi_j \theta_{ji}}{\pi_i \theta_{ij}} \right) = 1 \]

Simulated Annealing
- Given a temperature parameter τ
- π_i are replaced with
 \[\pi_i^{(\tau)} = \frac{\pi_i^{1/\tau}}{\sum_j \pi_j^{1/\tau}} \]
- At high temperatures, the probability distribution between the states are flattened.
- At low temperatures, larger weights are given to high probability states
Summary

Simulated Annealing
- Simulated Annealing
- Markov-Chain Monte-Carlo method
- Searching for global minimum among local minima

Gibbs Sampler
- MCMC + Metropolis-Hasting Method
- Proposed updates per each parameter based on conditional distribution
- Effective way to obtain joint distribution between the parameters empirically