Biostatistics 615/815 Lecture 20:
Expectation-Maximization (EM) Algorithm

Hyun Min Kang

March 31st, 2011
Recap - The Simplex Method

- General method for optimization
 - Makes few assumptions about function
- Crawls towards minimum using simplex
- Some recommendations
 - Multiple starting points
 - Restart maximization at proposed solution
Summary: The Simplex Method

- Original Simplex
- High
- Low
- Reflection
- Contraction
- Reflection and expansion
- Multiple contraction
Recap: Mixture of normals - Avoiding boundary conditions

// from class mixLLKFunc...

virtual double operator() (std::vector<double>& x) { // x has (3*k-1) dims
 std::vector<double> priors;
 std::vector<double> means;
 std::vector<double> sigmas;

 // transform (k-1) real numbers to priors
 double p = 1.;
 for(int i=0; i < numComponents-1; ++i) {
 double logit = 1./(1.+exp(0-x[i]));
 priors.push_back(p*logit);
 p = p*(1.-logit);
 }
 priors.push_back(p);

 for(int i=0; i < numComponents; ++i) {
 means.push_back(x[numComponents-1+i]);
 sigmas.push_back(x[2*numComponents-1+i]);
 }

 return 0-mixLLK(data, priors, means, sigmas);
}
Defining a function using inheritance

```cpp
// this is an abstract base class, which CAN NOT be used as class instance
class optFunc {
public:
    // 'virtual' means inherited method can be used when
    // optFunc class is used via pointer or reference
    virtual double operator() (std::vector<double>& x) = 0; // function disabled
};

// Define a function inherits the function
// when foo() is called at the simplex, this function is actually called
class arbitraryOptFunc : public optFunc {
public:
    virtual double operator() (std::vector<double>& x) {
        // 100*(x1-x0^2)^2 + (1-x0)^2
        return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
    }
};
```
An appetizer for dynamic polymorphism

```cpp
#include <cmath>
#include <vector>
#include <iostream>

class rectangle {
    public:
        double x;
        double y;
        double area() { return x*y; }
};

class circle {
    public:
        double r;
        circle(double _r) : r(_r) {}
        double area() { return M_PI*r*r; }
};
```

Hyun Min Kang
Using rectangles and circles

```cpp
void printArea(rectangle& r) {
    std::cout << "Area = " << r.area() << std::endl;
}

void printArea(circle& c) {
    std::cout << "Area = " << c.area() << std::endl;
}

int main(int argc, char** argv) {
    rectangle r(3,4);
    circle c(1);
    printArea(r);
    printArea(c);
    return 0;
}
```
Avoiding redundancy

// We want to do something like this..
void printArea(shape& s) {
 std::cout << "Area = " << s.area() << std::endl;
}

int main(int argc, char** argv) {
 rectangle r(3,4);
 circle c(1);
 printArea(r);
 printArea(c);
 return 0;
}
Using class inheritance

class shape {
public:
 double area() { return -1; } // return a dummy value
}

class rectangle : public shape {
public:
 double x;
 double y;
 double area() { return x*y; }
};

class circle : public shape {
public:
 double r;
 circle(double _r) : r(_r) {}
double area() { return M_PI*r*r; }
};
What actually happens is..

```cpp
void printArea(shape& s) {
    std::cout << "Area = " << s.area() << std::endl;
}

int main(int argc, char** argv) {
    rectangle r(3,4);
    circle c(1);
    printArea(r);  // -1 is printed... why?
    printArea(c);  // -1 is printed... why?
    return 0;
}
```
Using 'virtual' to dynamically bind member functions

```cpp
class shape { // shape is an abstract class
public:
    virtual double area() = 0; // shape object will never be created
};

class rectangle : public shape {
public:
    double x;
    double y;
    virtual double area() { return x*y; }
};

class circle : public shape {
public:
    double r;
    circle(double _r) : r(_r) {}  
    virtual double area() { return M_PI*r*r; }
};
```
A working example

```cpp
int main(int argc, char** argv) {
    rectangle r(3,4);
    circle c(1);
    printArea(r); // 12 is printed
    printArea(c); // 3.14159 is printed

    // must use pointers for referring object using a superclass type
    std::vector<shape*> myShapes; // myShape can store multiple types
    myShapes.push_back(new rectangle(2,3));
    myShapes.push_back(new circle(2));
    for(int i=0; i < (int)myShapes.size(); ++i) {
        printArea( *(myShapes[i]) ); // 6 and 12.5664 is printed
    }
}
Our previous examples

class optFunc {
    public:
        virtual double operator() (std::vector<double>& x) = 0;
};
class arbitraryOptFunc : public optFunc {
    public:
        virtual double operator() (std::vector<double>& x) {
            return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
        }
};
class mixLLKFunc : public optFunc {
    ... // many auxiliary functions
    public:
        std::vector<double> data;
        virtual double operator() (std::vector<double>& x) {
            ...
        }
};
Dynamic polymorphism with function objects

// Note that optFunc is an abstract class
// We can mas arbitraryFunc or mixLLKFunc as arguments

void simplex615::evaluateFunction(optFunc& foo) {
    for (int i=0; i < dim+1; ++i) {
        // when calling foo(X[i]), the right operator() is called
        // based on the type of the function
        Y[i] = foo(X[i]);
    }
}
Summary: Dynamic Polymorphism

- **Class inheritance**
  - Effective class design strategy to avoid redundancy
  - Typically an child-class object ‘is a’ super-class object
  - Call-by-reference is strongly encouraged when using inheritance

- **Dynamic Polymorphism**
  - `virtual` function allows to bind to the function that fits to the actual type of the object
  - Objects have to be passed as reference or pointer type
The E-M algorithm

- General algorithm for missing data problem
- Requires ”specialization” to the problem in hand
- Frequently applied to mixture distributions
Some citation records

- The E-M algorithm
  - Cited in over 19,624 research articles
- The Simplex Method
  - Nelder and Mead (1965) Computer Journal 7:308-313
  - Cited in over 10,727 research articles
The Basic E-M Strategy

- $X = (Y, Z)$
  - Complete data $X$ - what we would like to have
  - Observed data $Y$ - individual observations
  - Missing data $Z$ - hidden / missing variables

- The algorithm
  - Use estimated parameters to infer $Z$
  - Update estimated parameters using $Y$
  - Repeat until convergence
The E-M Strategy in Gaussian Mixtures

When are the E-M algorithms useful?

- Problem is simpler to solve for complete data
  - Maximum likelihood estimates can be calculated using standard methods
- Estimates of mixture parameters would be obtained straightforwardly
  - if the origin of each observation is known

Filling in Missing Data in Gaussian Mixtures

- Missing data is the group assignment of each observation
- Complete data generated by assigning observations to groups 'probabilistically'
E-M formulation of Gaussian Mixture

- Gaussian mixture distribution given $\theta = (\pi, \mu, \sigma)$.

$$p(x_i) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | \mu_k, \sigma_k^2)$$

- Introducing latent variable $z$
  - $z_i \in \{1, \cdots, K\}$ is class assignment
- The marginal likelihood of observed data

$$L(\theta; x) = p(x|\theta) = \sum_{z} p(x, z|\theta)$$

is often intractable
- Use complete data likelihood to approximate $L(\theta; x)$
The E-M algorithm

Expectation step (E-step)

- Given the current estimates of parameters $\theta^{(t)}$, calculate the conditional distribution of latent variable $z$.
- Then the expected log-likelihood of data given the conditional distribution of $z$ can be obtained

\[
Q(\theta|\theta^{(t)}) = \mathbf{E}_{z|x,\theta^{(t)}} [\log p(x, z|\theta)]
\]

Maximization step (M-step)

- Find the parameter that maximize the expected log-likelihood

\[
\theta^{(t+1)} = \arg \max_{\theta} Q(\theta|\theta^{t})
\]
Implementing Gaussian Mixture E-M

class normMixEM {
  public:
    int k;               // # of components
    int n;               // # of data
    std::vector<double> data;     // observed data
    std::vector<double> pis;      // pis
    std::vector<double> means;    // means
    std::vector<double> sigmas;   // sds
    std::vector<double> probs;    // (n*k) class probability
  normMixEM(std::vector<double>& input, int _k);
  void initParams();
  void updateProbs();           // E-step
  void updatePis();             // M-step (1)
  void updateMeans();           // M-step (2)
  void updateSigmas();          // M-step (3)
  double runEM(double eps);
};
Gaussian mixture: The E-step

**Key idea**

- Estimate the missing data - 'class assignment'
- By conditioning on current parameter values
- Basically, "classify" each observation to the best of current step.
Gaussian mixture: The E-step

**Key idea**

- Estimate the missing data - 'class assignment'
- By conditioning on current parameter values
- Basically, ”classify” each observation to the best of current step.

**Classification Probabilities**

\[
Pr(z_i = j | x_i, \pi, \mu, \sigma) = \frac{\pi_j N(x_i | \mu_j, \sigma_j^2)}{\sum_k \pi_k N(x_i | \mu_k, \sigma_k^2)}
\]
void normMixEM::updateProbs() {
    for(int i=0; i < n; ++i) {
        double cum = 0;
        for(int j=0; j < k; ++j) {
            probs[i*k+j] = pis[j]*mixLLKFunc::dnorm(data[i],means[j],sigmas[j]);
            cum += probs[i*k+j];
        }
        for(int j=0; j < k; ++j) {
            probs[i*k+j] /= cum;
        }
    }
}
Mixture of Normals: The M-step

- Update mixture parameters to maximize the likelihood of the data
- Becomes simple when we assume that the current class assignment are correct
- Simply use the same proportions, weighted means and variances to update parameters
- This step is guaranteed never to decrease the likelihood
Updating Mixture Proportions

\[ \pi_k = \frac{\sum_{i=1}^{n} \Pr(z_i = k | x_i, \mu, \sigma^2)}{n} \]

- Count the observations assigned to each group
Updating Mixture Proportions - Implementations

```c
void normMixEM::updatePis() {
 for(int j=0; j < k; ++j) {
 pis[j] = 0;
 for(int i=0; i < n; ++i) {
 pis[j] += probs[i*k+j];
 }
 pis[j] /= n;
 }
}
```
Updating Component Means

\[ \hat{\mu}_k = \frac{\sum_i x_i \Pr(z_i = k \mid x_i, \mu, \sigma^2)}{\sum_i \Pr(z_i = k \mid x_i, \mu, \sigma^2)} \]

- Calculate weighted mean for group
- Weights are probabilities of group membership
void normMixEM::updateMeans() {
    for(int j=0; j < k; ++j) {
        means[j] = 0;
        for(int i=0; i < n; ++i) {
            means[j] += data[i] * probs[i*k+j];
        }
        means[j] /= (n * pis[j] + TINY);
    }
}
Updating Component Variances

\[ \sigma^2_k = \sum_{i=1}^{n} \left( x_i - \mu_k \right)^2 \Pr(z_i = k | x_i, \mu, \sigma) \]

- Calculate weighted sum of squared differences
- Weights are probabilities of group membership
void normMixEM::updateSigmas() {
    for(int j=0; j < k; ++j) {
        sigmas[j] = 0;
        for(int i=0; i < n; ++i) {
            sigmas[j] += (data[i]-means[j])*(data[i]-means[j])*probs[i*k+j];
        }
        sigmas[j] = sqrt(sigmas[j] / (n * pis[j] + TINY));
    }
}
E-M Algorithm for Mixtures

1. Guesstimate starting parameters
2. Use Bayes’ theorem to calculate group assignment probabilities
3. Update parameters using estimated assignments
4. Repeat steps 2 and 3 until likelihood is stable
Implementation of E-M algorithm - putting things together

double normMixEM::runEM(double eps) {
    double llk = 0, prevLLK = 0;
    initParams();
    while ( ( llk == 0 ) || ( check_tol(llk, prevLLK, eps) == 0 ) ) {
        updateProbs();
        updatePis();
        updateMeans();
        updateSigmas();
        prevLLK = llk;
        llk = mixLLKFunc::mixLLK(data, pis, means, sigmas);
    }
    return llk;
}
Constructing `normMixEM` object

```cpp
normMixEM::normMixEM(std::vector<double>& input, int _k) {
 data = input;
 k = _k;
 n = (int)data.size();
 pis.resize(k);
 means.resize(k);
 sigmas.resize(k);
 probs.resize(k * data.size());
}
```
void normMixEM::initParams() {
    double sum = 0, sqsum = 0;
    for(int i=0; i < n; ++i) {
        sum += data[i];
        sqsum += (data[i]*data[i]);
    }
    double mean = sum/n;
    double sigma = sqrt(sqsum/n - sum*sum/n/n);
    for(int i=0; i < k; ++i) {
        pis[i] = 1./k; // uniform priors
        means[i] = data[rand()] % n; // pick random data points
        sigmas[i] = sigma; // pick uniform variance
    }
}
A working example

main() function

```cpp
int main(int main, char** argv) {
 std::vector<double> data;
 std::ifstream file(argv[1]);
 double tok;
 while (file >> tok) data.push_back(tok);
 normMixEM em(data, 2);
 double minLLK = em.runEM(1e-6);
 std::cout << "Minimim = " << minLLK << ", at pi = " << em.pis[0] << ","
 << "between N(" << em.means[0] << "," << em.sigmas[0] << "$^2) and N("
 << std::endl;
 return 0;
}
```

Running example

```
user@host~/> ./mixEM ./mix.dat
Minimim = -3043.46, at pi = 0.667842,
between N(-0.0299457,1.00791) and N(5.0128,0.913825)
```
Summary: The E-M Algorithm

- Iterative procedure to find maximum likelihood estimate
  - E-step: Calculate the distribution of latent variables and the expected log-likelihood of the parameters given the current set of parameters
  - M-step: Update the parameters based on the expected log-likelihood function

- The iteration does not decrease the marginal likelihood function

- But no guarantee that it will converge to the MLE

- Particularly useful when the likelihood is an exponential family
  - The E-step becomes the sum of expectations of sufficient statistics
  - The M-step involves maximizing a linear function, where a closed-form solution can often be found
Summary

Today

- Dynamic Polymorphisms in C++
- The E-M algorithm

Next lecture

- The Simulated Annealing