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Last Lecture 

 Linkage Equilibrium 
• Expected state for distant markers 

 

 Linkage Disequilibrium 
• Association between neighboring alleles 
• Expected to decrease with distance 

 

 Measures of linkage disequilibrium 
• D, D’ and ∆² or r2 



Previously … 

 DNA sequence variation 
• Types of DNA variants 

 

 Allele frequencies 
 

 Genotype frequencies 
• Hardy-Weinberg Equilibrium 



Making predictions… 

 
 What allele frequencies do we expect? 

 
 How much variation in a gene? 

 
 How are neighboring variants related? 



Simple Approach: Simulation 

1. N starting sequences  
2. Sample N offspring sequences 

 Apply mutations according to µ 
3. Increment time 
4. If enough time has passed… 

 Generate final sample 
 Stop. 

5. Otherwise, return to step 1. 



Simulating a Population … 
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Today 

 Introduce coalescent approach 
 
• Framework for studying genetic variation 

 
• Provides intuition on patterns of variation 

 
• Provides analytical solutions 



Aim … 

 Gene genealogies: 
• Descriptions of relatedness between sequences 
• Analogous to phylogenetic trees for species 

 
 The shape of the genealogy depends on 

population history, selection, etc. 
 

 Together with mutation rate, genealogy 
predicts DNA variation 



Genealogy 

 History of a particular set of sequences 
• Describes their relatedness 
• Specifies divergence times 

 
 Includes only a subset of the population 

 
 Most Recent Common Ancestor (MRCA) 



Coalescent approach 

 Generate genealogy for a sample of 
sequences. 
• Introduces computational and analytical 

convenience. 
 

 Instead of proceeding forward through 
time, go backwards! 



History of the Population 



Genealogy of Final Population 



Levels of Complexity 

 History of the population 
• Includes sequences that are “extinct” 

 

 History of all modern sequences 
• Includes sequences that we haven’t sampled 

 

 History of a subset of modern sequences 
• Minimalist approach! 

 



Parameters we will focus on… 

 Mutation rate (µ) 
 Population Size 

• Haploid population (N chromosomes) 
• Diploid population (2N chromosomes) 

 Time (t) 
 Sample size (n) 
 Recombination rate (r) 



Other Parameters 

 Selection 
• For gene of interest 
• For neighboring gene 

 

 Demographic parameters 
• Migration 
• Population Structure 
• Population Growth 

 



Mutation Model 

 The mutation process is complex 
• Rate depends on surrounding sequence 
• Reverse mutations are possible 

 
 Two simple models are popular 

• Infinite alleles  
• Every mutation generates a different allele 

• Infinite sites 
• Every mutation occurs at a different site 



Mutation Model 

 Focus on infinite sites model 
• Mutation rate in genomic DNA is ~10-8 / bp 
• Recurrent mutations should be very rare 

 

 Scaled mutation rate parameter, e.g.: 
• 1000 bp sequence 
• 10-8 mutations per base pair per generation 
• μ = 10-5 per sequence per generation 



Neutral Variants 

 
 Variants that do not affect fitness 

 
 Accumulate inexorably through time 

• Lost through genetic drift 
 

 Do not affect genealogy 



Example: 
Modeling Accumulation of Mutations 

 Population of identical sequences 
 

 Sample one descendant after t  generations 
 
 How many mutations have accumulated? 

• Hint: depends on mutation rate μ and time t 
 

 Tougher questions 
• How many mutations have been fixed? 
• How much variation in the total population? 



So far … 

 Divergence of a single sequence 
• Accumulation of mutations 
• Depends on time t 
• Depends on mutation rate μ 
• Does not depend on population size N 
• Does not depend on population growth 

 
 Next: A pair of sequences!  



A tougher example … 

 Sample of two sequences 
• 100 bp each… 

 

 How many differences are expected? 
• Population of size, N = 1000 
• Mutation rate 

• µ = 10-8 / bp / generation 
• µ ≈ 10-6 / 100 bp / generation 



Genealogy of two sequences 

MRCA 

Sequence 1 Sequence 2 

Time T(2) 

Mutations between MRCA and Sequence 1? 



Genealogy of two sequences 

MRCA 

Sequence 1 Sequence 2 

Time T(2) 

Total mutations in genealogy? 



Number of mutations S 

 Distributed as Poisson, conditional on 
total tree length 
 
• E(S) = µE(Ttot) 
• Var(S) = µE(Ttot) + µ²Var(Ttot) 

 

 Ttot is the total length of all branches 



Estimating T(2) 

 Probability that two sequences have distinct 
ancestors in previous generation 
 
 
 

 Probability of distinct ancestors for t 
generations is P(2)t 
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Probability of MRCA at time t+1 
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For n > 2 
 Coalescence when two sequences have 

common ancestor 
• For simplicity, consider the possibility of multiple 

simultaneous coalescent events to be negligible 
 

 Requirements for no coalescence: 
• Pick one ancestor for sequence 1 
• Pick distinct ancestor for sequence 2 
• Pick yet another ancestor for sequence 3 
• … 

 



Estimating P(n) 
 Probability that n sequences have n distinct 

ancestors in previous generation 

 
 

 Assume: 
• N is large 
• n is small 

 
• Terms of order N-2 can 

be ignored N
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Probability of Coalescence at 
Time t+1 
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Time to next coalescent event 

 Use an exponential distribution to approximate 
time to next coalescent event… 
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T(j)  

 For convenience, measure time to next 
coalescent event in units: 
•  N generations for haploids 
•  2N generations for diploids 

 
 
 
 

 How would you calculate time to MRCA of n 
sequences? 
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Total “Time in Tree” 

 Sum of all the branch lengths 
 Total evolutionary time available 

• e.g. for mutations to occur 
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TMRCA vs. TTOT 
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Number of Segregating Sites 

 Commonly named S 
 

 Total number of mutations in genealogy 
• Assuming no recurrent mutation 

 
• A function of the total length of the genealogy 

• Ttot 



Expected number of mutations 
 Factor N for haploids, 2N for diploids 

 
 
 
 
 
 

 Population geneticists define θ=4Nµ (for diploids) 
• For gene mappers, θ is usually the recombination rate 
• For population geneticists, r is the recombination rate 
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Expected number of mutations 
 Factor N for haploids, 2N for diploids 

 
 
 
 
 
 

 Population geneticists define θ=4Nµ (for diploids) 
• For gene mappers, θ is usually the recombination rate 
• Population geneticists, use r for recombination rates 
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E(S) as a function of n 
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N = 10,000 individuals 
μ = 10-4  
 
θ = 4 



More about S… 

 Very large variance 
 
 
 

 Most of the variance contributed by early 
coalescent events (i.e. with small n) 
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Var(S) as a function of n 

Parameters 
 
N = 10,000 individuals 
μ = 10-4  
 
θ = 4 
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Inferences about θ 
 Could be estimated from S 

• Divide by expected length of genealogy 
 
 
 
 

 Could then be used to: 
• Estimate N, if mutation rate µ is known 
• Estimate µ, if population size N is known 
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Var(θ) as a function of n 
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Alternative Estimator for θ … 

 Count pairwise differences between 
sequences 
 

 Compute average number of differences 
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Today… 

 Probability of coalescence events 
 

 Length of genealogy and its branches 
 

 Expected number of mutations 
 

 Simple estimates of θ 



Recommended Reading 

 
Richard R. Hudson (1990)  

Gene genealogies and the coalescent process 
 

Oxford Surveys in Evolutionary Biology, Vol. 7. 
D. Futuyma and J. Antonovics (Eds).  
Oxford University Press, New York.  
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