Talk:Evaluating a Read Mapper on Simulated Data

From Genome Analysis Wiki
Jump to: navigation, search

This stuff was originally included in the main page, but seems pretty specific to our local uses, so I have moved it here, to the talk page. Probably even better to go into our internal wiki.

Available Test Datasets

  • Location: wonderland:~zhanxw/BigSimulation
  • Scenarios:

no polymorphism ; 1, 2, 3 SNP ; Deletion 5, 30, 200; Insertion 5, 30

  • Quality String

Picked the 75 percentile of Sanger Iluumina 108 mer test data set BCCCCBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAA@@@@@@@@@@@@@@@???????????>>>>>>>>>>>>=========<<<<<<<<<<;;";

  • Format

Both base space and color space

Both single end and paired end, and paired end reads are given insert size 1500.

Forward strand and reverse strand are randomly assign with probability 1/2

  • Tag



@2:12345:F:PE+offset:SNP:2,12345,A,G (ref is A, read is G)


  • File Naming







For PE, appending "_1" and "_2", e.g.:



  • Program (generator)


        generator [bs|cs] [se|pe] [exact|snpXX|indelXX|delXX] -n numbers -l readLength -i insertSize
        exact: Accurate sample from reference genome
        snpXX: Bring total XXX SNP for a single read or a pair of reads
        indelXX: Insert a random XX-length piece for a single read, or at the same position for a paired reads
        delXX: Delete a random XX-length piece for a single read, or at the same position for a paired reads
        e.g. ./generator bs se exact -n 100 -l 35
  • Output

Simulation file are named like: BS_SE_EXACT_1000000_35, meaning base space, single end, exact (no polymorphism), 1M reads, 35 bp per read. For each read, the tag was named in a similar way to Sanger's.

  • Example

For illumina (from Sanger, 108mer hap1 test file):


_1 file:


_2 file:



If the first read is forward, then itself is the same as reference sequence and the second read is reverse complement to the reference sequence.

If the first read is backward, then itself is reverse complement to the reference genome and the second read is the same as the reference sequence.

The first strand always position can always obtain from tag, first two fields (seperated by colon).

The second strand position is first strand position plus the offset.

For SOLiD (from Sanger, 50 mer hap1 test file) e.g.

_1 file:
  22212031230012003021211022213220000123013022112123 (ref)

_2 file:
  30312230230230122012100200033121201111113033112112 (ref)

Conclusion: The first strand and second strand have the same direction (both either same as the reference genome, or reverse complement to reference genome), where their positions are the same as Illumina reads.

Bulk statistics result

Running time (all submitted to the MOSIX client nodes)
Calculated by "./ batch2.log |cutrange 0,-1|charrange :-1".

Log file is from and negative time means unfinished (at the moment of editing).

TODO: Add file size comparison; add link to memory page summarized by Dharknes.

BWA(second)	Karma(second)	Scenarios
7561	4638	BS_PE_DEL200_1000000_50_?.fastq
7548	4677	BS_PE_DEL30_1000000_50_?.fastq
7225	4730	BS_PE_DEL5_1000000_50_?.fastq
975	6531	BS_PE_EXACT_1000000_50_?.fastq
1726	793	BS_PE_INDEL30_1000000_50_?.fastq
6199	4140	BS_PE_INDEL5_1000000_50_?.fastq
1193	4949	BS_PE_SNP1_1000000_50_?.fastq
1646	4513	BS_PE_SNP2_1000000_50_?.fastq
2064	4089	BS_PE_SNP3_1000000_50_?.fastq
2594	3707	BS_SE_DEL200_1000000_50.fastq
2641	3942	BS_SE_DEL30_1000000_50.fastq
2355	4263	BS_SE_DEL5_1000000_50.fastq
441	4228	BS_SE_EXACT_1000000_50.fastq
809	764	BS_SE_INDEL30_1000000_50.fastq
2217	3932	BS_SE_INDEL5_1000000_50.fastq
645	3808	BS_SE_SNP1_1000000_50.fastq
1102	3473	BS_SE_SNP2_1000000_50.fastq
1142	3267	BS_SE_SNP3_1000000_50.fastq
6193	6909	CS_PE_DEL200_1000000_50_?.fastq
6173	6636	CS_PE_DEL30_1000000_50_?.fastq
6096	6702	CS_PE_DEL5_1000000_50_?.fastq
858	8496	CS_PE_EXACT_1000000_50_?.fastq
1743	948	CS_PE_INDEL30_1000000_50_?.fastq
5517	5412	CS_PE_INDEL5_1000000_50_?.fastq
1253	8454	CS_PE_SNP1_1000000_50_?.fastq
2113	7420	CS_PE_SNP2_1000000_50_?.fastq
2622	6076	CS_PE_SNP3_1000000_50_?.fastq
3878	1493	CS_SE_DEL200_1000000_50.fastq
3859	1513	CS_SE_DEL30_1000000_50.fastq
3775	1542	CS_SE_DEL5_1000000_50.fastq
621	1666	CS_SE_EXACT_1000000_50.fastq
1392	289	CS_SE_INDEL30_1000000_50.fastq
3525	1390	CS_SE_INDEL5_1000000_50.fastq
874	1661	CS_SE_SNP1_1000000_50.fastq
1965	1449	CS_SE_SNP2_1000000_50.fastq
3314	1237	CS_SE_SNP3_1000000_50.fastq