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Last Lecture

Biostatistics 602 - Statistical Inference

Lecture 25

Bayesian Test & Practice Problems = What is an E-M algorithm?
= When would the E-M algorithm be useful?

u i - i ?
Hyun Min Kang Is MLE via E-M algorithm always guaranteed to converge?

= What are the practical limitations of the E-M algorithm?
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Overview of E-M Algorithm (cont'd) Key Steps of E-M algorithm

Expectation Step
« Compute Q(O]6").

= Maximize L(f]y) or l(f]y).

= This typically involves in estimating the conditional distribution Z|Y,

= Let f(y,z|0) denotes the pdf of complete data. In E-M algorithm, assuming 6 = (7).
rather than working with [(f|y) directly, we work with the surrogate = After computing Q(0]0(")), move to the M-step
function )
QIO) = B |logfly,ZI0)ly, 0]
where #(") is the estimation of @ in r-th iteration. = Maximize Q(0|0(") with respect to 6.
= Q(A]6(") is the expected log-likelihood of complete data, conditioning = The argmaxy Q(6]6(") will be the (r+ 1)-th 6 to be fed into the
on the observed data and 6("), E-step.

* Repeat E-step until convergence
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Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence
The sequence {#("} defined by the E-M procedure satisfies
L <é(T+1)\y> > L <é(r)|y>

with equality holding if and only if successive iterations yield the same
value of the maximized expected complete-data log likelihood, that is

E[logL(é(TH)]y,Z) \é”),y} _ E[logL(é(T)bh Z) lé(r),y]

Theorem 7.5.2 further guarantees that L(A")|y) converges monotonically
to L(f|y) for some stationary point 6.
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Bayesian vs Frequentist Framework

Frequentist's Framework

= @ is considered to be a fixed number
= Consequently, a hypothesis is either true of false

= If 6 € Qp, Pr(H,y is true|x) = 1 and Pr(H; is true|x) =0
= If 6 € QF, Pr(Hy is true|x) = 0 and Pr(H; is true|x) =1

Bayesian Framework

= Pr(H is true|x) and Pr(H; is true|x) are function of x, between 0
and 1.

= These probabilities give useful information about the veracity of Hj
and Hi.

A\
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Bayesian Tests

* Hypothesis testing problems can be formulated in a Bayesian model
= Bayesian model includes

= Sampling distribution f(x|6)

= Prior distribution ()
= Bayesian hypothesis testing is based on the posterior probability

= In Frequentist's framework, posterior probability cannot be calculated.
= In Bayesian framework, the probability of Hy and H; can be calculated
= Pr(6 € Qo|x) = Pr(Hp is true)
= Pr(0 € Qf|x) = Pr(H; is true)
= Rejection region can be determined directly based on the posterior
probability
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Examples of Bayesian hypothesis testing procedure

A neutral test between Hy and H;
= Accept Hy is Pr(6 € Qo|x) > Pr(6 € Qf|x)
= Reject Hy is Pr(6 € Qo|x) < Pr(8 € Qf|x)
= In other words, the rejection region is {x : Pr(6 € Q§[x) > 3}

A more conservative (smaller size) test in rejecting H,
= Reject Hy is Pr(6 € Q§[x) > 0.99
= Accept Hy is Pr(6 € Qf|x) < 0.99

Hyun Min Kang
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Bayesian Tests Bayesian Tests

Example: Normal Bayesian Test Solution (cont'd)

Problem

Let X7,---, X, be iid samples A/(#, c?) and let the prior distribution of &

be NV (i, 7"), where o2, 1, and 72 are known. Construct a Bayesian test Because 7(6|x) is symmetric, this is true if and only if the mean for 7(6|x)
rejecting Hy if and only if Pr(6 € Qo|x) < Pr(6 € Qf|x) is less than or equal to 8. Therefore, Hy will be rejected if

2+, 2
IR < gy

2 2
. . . nre +o
Consider testing Hy : 0 < 0y versus H; : 0 > 6y. From previous lectures, 2(9 )
. o —
the posterior is T < O+ oW — 1)
nT3T + o2 22 nr?
ol o°T
(0)x) ~ N > = 5
nre 4+ o nre + o
We will reject Hy if and only if
1
Pr(6 € Qo|x) = Pr(0 <6p|x) < 3
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Confidence interval and the parameter Bayesian interpretation of intervals

Frequentist's view of intervals

= We have carefully said that the interval covers the parameter

= not that the parameter is inside the interval, on purpose. = Bayesian setup allows us to say that 6§ is inside [.262, 1.184] with

= The random quantity is the interval, not the parameter some probability.

. = Under Bayesian model, # is a random variable with a probability
distribution.

= A 95% confidence interval for 6 is .262 < § < 1.184 = All Bayesian claims of coverage are made with respect to the

= "The probability that  is in the interval [.262,1.184] is 95%" - posterior distribution of the parameter.
Incorrect, because the parameter is assumed fixed

= Formally, the interval [.262,1.184] is one of the possible realized
values of the random intervals (depending on the observed data)

A\
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Credible sets

= To distinguish Bayesian estimates of coverage, we use credible sets
rather than confidence sets
= If w(0]x) is a posterior distribution, for any set A C 2
= The credible probability of A is Pr(f € Alx) = [, 7(6|x)dd
= and A is a credible set (or creditable interval) for 6.

= Both the interpretation and construction of the Bayes credible set are
more straightforward than those of a classical confidence set, but with
additional assumptions (for Bayesian framework).
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Bayesian Intervals
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Remark: Credible probability and coverage probability

= |t is important not to confuse credible probability with coverage
probability

= Credible probabilities are the Bayes posterior probability, which
reflects the experimenter’s subjective beliefs, as expressed in the prior
distribution.

= A Bayesian assertion of 90% coverage means that the experimenter,
upon combining prior knowledge with data, is 90% sure of coverage

= Coverage probability reflects the uncertainty in the sampling
procedure, getting its probability from the objective mechanism of
repeated experimental trials.
= A classical assertion of 90% coverage means that in a long sequence of

identical trials, 90% of the realized confidence sets will cover the true
parameter.

Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 15 / 34

Bayesian Intervals
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Example: Possible credible set

Let X1, -, X, S Poisson(A) and assume that A ~ Gamma(a, b). Find
a 90% credible set for A.

Solution

\ A

The posterior pdf of A becomes

7(Ax) = Gamma <a-|- Z zi, [0+ (1/b)]_1)

If we simply split the a equally between the upper and lower endpoints,
2(nb+1)

2 . . .
2 A~ Xy @) (if @ is an integer)

Therefore, a 1 — a confidence interval is
b

" o(nb + 1) A ata)l—a/2 = A = 50 ) X2(Tata)a/2

.
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Practice Problem 1 (from last lecture)

Problem

Suppose Xi,--- , X, are iid samples from f(x|0) = 0 exp(—0z). Suppose
the prior distribution of 8 is

1
(@) = ————02"1e VP
O = T
where «, 5 are known.
(a) Derive the posterior distribution of 6.

(b) If we use the loss function L(f, a) = (a — 0)?, what is the Bayes rule
estimator for 67
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(a) Posterior distribution of ¢

fix,0) = m(0)f(x|0)7(6)

_ L a1 —o/p T b (— O
= F(@)ﬁae e il;[l[Ge p (—0z;)]

1 a+n—1 -
= W@ + exp [—9 <1/5—|—Z],‘Z>]

G ( -1 ! )
X amma | & n—1, ——~—n
B4

7T(9|X) = Gamma (Oé +n— 1, W)
=1 >
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Practice Problem 2

Problem
Suppose X7, -+, X, are iid random samples from Gamma distribution
with parameter (3,6), which has the pdf
1 —xz/6
f(z]0) = ﬁﬁe / (2> 0)

You may use the result that 2) 7 | X;/0 ~ x2,.

(a) Derive the asymptotic size o LRT for testing Hy : 6 = 69 vs.
H1 : 0 75 90.

(b) Derive the UMP level « test for Hy : 0 = 6y vs. H; : 6 = 61, where
01 > 0.

(c) Derive the UMP level « test for Hy : 0 < 6y vs. Hy : 0 > 0.

P1
ooe

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that
the mean of Gamma(a, ) is af.

m(f|x) = Gamma (a +n—1, @)
Elo]x] = Elm(0]x)]

B a+n—1

IR DY
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Solution (a) - Obtaining MLEs

L(6]x) = ﬁ {% z%e_xi/e}

I0x) = Z [—log2 — 3logf + 2log x; — %]
=1

n 1 n
= —nlog?2 —3n10g9+2210g$i— 52%
j i=1

=1
3n 1 —
/ — J—
0% = 2+ ;::@ 0
. 1 &
9 = ﬁélfl’z
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Solution (a) - Obtaining MLEs Solution (a) - Constructing asymptotic size a LRT
The rejection region of asymptotic size o LRT is
“2logA(x) = -2 [Z(l90|x) - z(é|x)]
2 A2
§ an 2 & = 6n10g90+9—02xi—6n10g9—52zi
MOy = g o
¢ ¢ =1 lg=0 = 6nlog90+22x~—6nlog in —6n> Y2
3n  6n fo ' 3n ' be
= —— =<0
02 62
C e 2 2
Because L(6|x) — 0 as 6 approaches zero or infinity, 0 = 3= 3" | ;. R = {x : i Z T — 6nlog2x¢ > X%,a + 601 — log(3n90)]}
)
= {x : Z x; — 3nbg logz x; > 30)&,0[ + 3nbho[1 — 10g(3n00)]}
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Solution (b) - UMP level « test for simple hypothesis Solution (b) - UMP level « test (cont'd)

Let 7= X;. Then under Hy, %Tw X2,
FOI’H()ZHZQ()VS. H1:9:91,

00\ >" 01 — 6,
S a a = Pr (—) ex{ T >k
L(61]x) 2”%’" oxp [_ 01 } [T 01 P17 6001
L(90|X> QTLégn €xXp |:_ z9:ozz:| HI% - PI‘(T> k*)
0
[ 3n 0, — 6 So, the rejection region is

to
R= {x : T(x) = Zzz > Exgn’a}
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Solution (c) - UMP level « test for composite hypothesis Solution (c) - Constructing UMP level « test

We need to check whether T has MLR. Because Y =2T/0 ~ x2,.
1 1
fr(ylo) = m?/‘% Lemu/2 Because T has MLR property, UMP level « test for Hy : 0 < 6 vs.
_— _— Hy : 6 > 6y has a rejection region T > k, and Pr(T > k) = a.
fr(to) = ; <2_t> e 0 — ; (f) o t/0 Therefore, the UMP level « test is identical to the answer of part (b),
2310 (3n)0 \ ¢ I'(3n)6 \ 6 whose rejection is
For arbitrary 6 < 65, 0
0
- R = {x : T(X) = sz > EX%W‘}
1 2\ /s 3n
fr(tlf2) TG \ 0 B (ﬁ) exp {92 — b6 t]
fr(t]61) 1 <i>3”_1 o—t/01 6> 6162
T(3n)0; \ 01
is an increasing function of . This 7" has MLR property.
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Practice Problem 3 Solution (a)

To solve Problem (a), we first need to know that, if Z ~ A (m,3), then

Let (X3, Y1), -+, (X,, Yy,) be a random samples from a bivariate normal
. 2
(XZ)NN({“X},{“X p;’X"YD AZ ~ N(Am, AZAT)
Y; 5% poXoy Oy

iy VIT m— T -
We are interested in testing Hy : pux = py vs. Hy : pux # fy. Let Z=[X; Yi|", m = [ux py]", and A =1 —1]. Then

(a) Show that the random variables W; = X; — Y; are iid N (uw, a%v).

(b) Show that the above hypothesis can be tested with the statistic AZ = X;=Yi=W,

. W ~ N(Am,AxAT)
W:
A/ S/ = N(px— py,0% — 2p0x0y + 0%)
_ 2
- N(MW,Uw)

where W= 15"  W;and $%, = -L- 3% | (W; — W)2. Furthermore,
show that, under Hy, Ty follows the Student’s t distribution with
n — 1 degrees of freedom.
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Solution (b)

Because puw = pux — py, testing

Hy:px=py vs.  Hy:ipx#py
is equivalent to testing
Hy:pw=20 VS. H :pw#0

When U; ~ N (p1,0?) and both mean and variance are unknown, we know
that LRT testing Hy : t = po vs. Hy : o # o follows that

and Ty follows T,,_1 under Hj.
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Practice Problem 4

Let f(z]0) be the logistic location pdf

elz—0)

m —OO<£L'<OO,—OO<9<OO
(&

flf)

(a) Show that this family has an MLR

(b) Based on one observation X, find the most powerful size « test of
Hy:0=0versus Hy : § = 1.

(c) Show that the test in part (b) is UMP size « for testing Hp : 0 < 0 vs.
H;:0>0.

Solution (b) (cont'd)

Therefore, the LRT test for the original test, Hy : pw =0 vs. Hy : pw # 0

IS

W
\/ S/

and Ty follows T),_1 under Hy.
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Solution for (a)

For 01 < 09,
e(z—02)
flalfa) gy
f($|91) o e(z—01)

(14e(e=01)2
2

6(01_92) 1+ e(x—@l)

1+ elz=02)
Let r(z) = (14 e %) /(1 4 e %)
e(m—el)(l _|_ 6(%—92)) _ (1 + e(z—el))e(l‘—GQ)

(1 + elz=02))2
6(93—91) _ e(x_OQ)
T iy Y

Therefore, the family of X has an MLR.
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Solution for (b)

The UMP test rejects Hy if and only if

fal1) e( 1+ ¢

Because under Hy, F(z|6 = 0) = <, the rejection region of UMP level o

test satisfies

Hyun Min Kang

f(2/0) 1+ elz=1)
1+ € .
1D ~ F
1 XL
te > kK
e+ er
X > x
T Tder
1 — a0 = 0) !
—_ €T = =
1+ e%o

0 = 10g(
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Solution for (c)

Because the family of X has an MLR, UMP size « for testing Hy : 6 < 0
vs. Hy : 8 > 0 should be a form of

X > x
Pr(X>x|0=0) = «

Therefore, 25 = log (%) which is identical to the test defined in (b).
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