Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 0000 0000 00000000 0000 0000 # Biostatistics 602 - Statistical Inference Lecture 25 Bayesian Test & Practice Problems Hyun Min Kang April 18th, 2013 #### Last Lecture - What is an E-M algorithm? - When would the E-M algorithm be useful? - Is MLE via E-M algorithm always guaranteed to converge? - What are the practical limitations of the E-M algorithm? Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 1 / 34 cap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 000 00000 00000 000000 000000 00000 00000 # Overview of E-M Algorithm (cont'd) #### Objective - Maximize $L(\theta|\mathbf{y})$ or $l(\theta|\mathbf{y})$. - Let $f(\mathbf{y}, \mathbf{z}|\theta)$ denotes the pdf of complete data. In E-M algorithm, rather than working with $l(\theta|\mathbf{y})$ directly, we work with the surrogate function $$Q(\theta|\theta^{(r)}) = \mathrm{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$ where $\theta^{(r)}$ is the estimation of θ in r-th iteration. • $Q(\theta|\theta^{(r)})$ is the expected log-likelihood of complete data, conditioning on the observed data and $\theta^{(r)}$. # Key Steps of E-M algorithm #### **Expectation Step** Hyun Min Kang - Compute $Q(\theta|\theta^{(r)})$. - This typically involves in estimating the conditional distribution $\mathbf{Z}|\mathbf{Y}$, assuming $\theta = \theta^{(r)}$. Biostatistics 602 - Lecture 25 • After computing $Q(\theta|\theta^{(r)})$, move to the M-step #### Maximization Step Hyun Min Kang - Maximize $Q(\theta|\theta^{(r)})$ with respect to θ . - The $\arg\max_{\theta} Q(\theta|\theta^{(r)})$ will be the (r+1)-th θ to be fed into the E-step. - Repeat E-step until convergence Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 3 / Biostatistics 602 - Lecture 25 April 18th, 2013 April 18th, 2013 2 / 34 April 18th, 2013 # Does E-M iteration converge to MLE? #### Theorem 7.2.20 - Monotonic EM sequence The sequence $\{\hat{\theta}^{(r)}\}$ defined by the E-M procedure satisfies $$L\left(\hat{\theta}^{(r+1)}|\mathbf{y}\right) \geq L\left(\hat{\theta}^{(r)}|\mathbf{y}\right)$$ with equality holding if and only if successive iterations yield the same value of the maximized expected complete-data log likelihood, that is $$E\left[\log L\left(\hat{\theta}^{(r+1)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right] \quad = \quad E\left[\log L\left(\hat{\theta}^{(r)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right]$$ Theorem 7.5.2 further guarantees that $L(\hat{\theta}^{(r)}|\mathbf{y})$ converges monotonically to $L(\hat{\theta}|\mathbf{y})$ for some stationary point $\hat{\theta}$. # **Bayesian Tests** Hyun Min Kang Bayesian Tests - Hypothesis testing problems can be formulated in a Bayesian model - Bayesian model includes - Sampling distribution $f(\mathbf{x}|\theta)$ - Prior distribution $\pi(\theta)$ - Bayesian hypothesis testing is based on the posterior probability - In Frequentist's framework, posterior probability cannot be calculated. - In Bayesian framework, the probability of H_0 and H_1 can be calculated - $\Pr(\theta \in \Omega_0 | \mathbf{x}) = \Pr(H_0 \text{ is true})$ - $\Pr(\theta \in \Omega_0^c | \mathbf{x}) = \Pr(H_1 \text{ is true})$ - Rejection region can be determined directly based on the posterior probability | Bayesian Tests Bayesian Intervals P1 P2 P3 P4 00 0 ● 000 0000 000 0000000 | Hyun Min Kang | | Biostatistics 602 | Biostatistics 602 - Lecture 25 | | April 18th, 2013 | 5 / 34 | |---|---------------|--|-------------------|--------------------------------|--|------------------|------------| | | | | | | | | P4
0000 | # Bayesian vs Frequentist Framework #### Frequentist's Framework - ullet θ is considered to be a fixed number - Consequently, a hypothesis is either true of false - If $\theta \in \Omega_0$, $\Pr(H_0 \text{ is true}|\mathbf{x}) = 1$ and $\Pr(H_1 \text{ is true}|\mathbf{x}) = 0$ - If $\theta \in \Omega_0^c$, $\Pr(H_0 \text{ is true}|\mathbf{x}) = 0$ and $\Pr(H_1 \text{ is true}|\mathbf{x}) = 1$ #### Bayesian Framework - $Pr(H_0 \text{ is true}|\mathbf{x})$ and $Pr(H_1 \text{ is true}|\mathbf{x})$ are function of \mathbf{x} , between 0 and 1. - These probabilities give useful information about the veracity of H_0 and H_1 . # Examples of Bayesian hypothesis testing procedure #### A neutral test between H_0 and H_1 - Accept H_0 is $\Pr(\theta \in \Omega_0 | \mathbf{x}) > \Pr(\theta \in \Omega_0^c | \mathbf{x})$ - Reject H_0 is $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$ - In other words, the rejection region is $\{\mathbf{x}: \Pr(\theta \in \Omega_0^c | \mathbf{x}) > \frac{1}{2}\}$ #### A more conservative (smaller size) test in rejecting H_0 - Reject H_0 is $\Pr(\theta \in \Omega_0^c | \mathbf{x}) > 0.99$ - Accept H_0 is $\Pr(\theta \in \Omega_0^c | \mathbf{x}) < 0.99$ Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 0000 0000 00000000 00000000 0000 0000 # Example: Normal Bayesian Test #### Problem Let X_1, \dots, X_n be iid samples $\mathcal{N}(\theta, \sigma^2)$ and let the prior distribution of θ be $\mathcal{N}(\mu, \tau^r)$, where σ^2, μ , and τ^2 are known. Construct a Bayesian test rejecting H_0 if and only if $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$ #### Solution Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. From previous lectures, the posterior is $$\pi(\theta|\mathbf{x}) \sim \mathcal{N}\left(\frac{n\tau^2\overline{x} + \sigma^2\mu}{n\tau^2 + \sigma^2}, \frac{\sigma^2\tau^2}{n\tau^2 + \sigma^2}\right)$$ We will reject H_0 if and only if Hyun Min Kang $$\Pr(\theta \in \Omega_0 | \mathbf{x}) = \Pr(\theta \le \theta_0 | \mathbf{x}) < \frac{1}{2}$$ Biostatistics 602 - Lecture 25 # Solution (cont'd) Because $\pi(\theta|\mathbf{x})$ is symmetric, this is true if and only if the mean for $\pi(\theta|\mathbf{x})$ is less than or equal to θ_0 . Therefore, H_0 will be rejected if $$\frac{n\tau^2 \overline{x} + \sigma^2 \mu}{n\tau^2 + \sigma^2} < \theta_0$$ $$\overline{x} < \theta_0 + \frac{\sigma^2 (\theta_0 - \mu)}{n\tau^2}$$ | Hyun Min Kang | | Biostatistics 60 | Biostatistics 602 - Lecture 25 | | April 18th, 2013 | | | |---------------|----------------|--------------------|--------------------------------|----------|------------------|------|--| | Recap | Bayesian Tests | Bayesian Intervals | P1 | P2 | P3 | P4 | | | 0000 | | ○●○○○ | 000 | 00000000 | 0000 | 0000 | | # Confidence interval and the parameter #### Frequentist's view of intervals - We have carefully said that the interval covers the parameter - not that the parameter is *inside* the interval, on purpose. Bayesian Intervals • The random quantity is the interval, not the parameter #### Example - A 95% confidence interval for θ is $.262 < \theta < 1.184$ - "The probability that θ is in the interval [.262,1.184] is 95%" : Incorrect, because the parameter is assumed fixed - Formally, the interval [.262,1.184] is one of the possible *realized* values of the random intervals (depending on the observed data) # Bayesian interpretation of intervals - Bayesian setup allows us to say that θ is inside [.262, 1.184] with some probability. - Under Bayesian model, θ is a random variable with a probability distribution. - All Bayesian claims of coverage are made with respect to the posterior distribution of the parameter. April 18th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 11 / 34 Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 0000 000 000 0000 #### Credible sets - To distinguish Bayesian estimates of coverage, we use credible sets rather than confidence sets - If $\pi(\theta|\mathbf{x})$ is a posterior distribution, for any set $A\subset\Omega$ - The credible probability of A is $\Pr(\theta \in A|\mathbf{x}) = \int_A \pi(\theta|\mathbf{x}) d\theta$ - and A is a credible set (or creditable interval) for θ . - Both the interpretation and construction of the Bayes credible set are more straightforward than those of a classical confidence set, but with additional assumptions (for Bayesian framework). Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 13 / 3 cap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 00 0000 0000 00000 00000 00000 00000 ## Remark: Credible probability and coverage probability - It is important not to confuse credible probability with coverage probability - Credible probabilities are the Bayes posterior probability, which reflects the experimenter's subjective beliefs, as expressed in the prior distribution. - A Bayesian assertion of 90% coverage means that the experimenter, upon combining prior knowledge with data, is 90% sure of coverage - Coverage probability reflects the uncertainty in the sampling procedure, getting its probability from the objective mechanism of repeated experimental trials. - A classical assertion of 90% coverage means that in a long sequence of identical trials, 90% of the realized confidence sets will cover the true parameter. ## Example: Possible credible set #### Problem Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$ and assume that $\lambda \sim \operatorname{Gamma}(a, b)$. Find a 90% credible set for λ . #### Solution The posterior pdf of λ becomes $$\pi(\lambda|\mathbf{x}) = \operatorname{Gamma}\left(a + \sum x_i, [n + (1/b)]^{-1}\right)$$ If we simply split the α equally between the upper and lower endpoints, $$\frac{2(nb+1)}{b}\lambda \sim \chi^2_{2(a+\sum x_i)}$$ (if a is an integer) Therefore, a $1-\alpha$ confidence interval is $$\left\{\lambda : \frac{b}{2(nb+1)}\chi^2_{2(\sum x_i + a), 1 - \alpha/2} \le \lambda \le \frac{b}{2(nb+1)}\chi^2_{2(\sum x_i + a), \alpha/2}\right\}$$ Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 14 / 34 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 ## Practice Problem 1 (from last lecture) #### Problem Suppose X_1, \dots, X_n are iid samples from $f(x|\theta) = \theta \exp(-\theta x)$. Suppose the prior distribution of θ is $$\pi(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$ where α, β are known. - (a) Derive the posterior distribution of θ . - (b) If we use the loss function $L(\theta, a) = (a \theta)^2$, what is the Bayes rule estimator for θ ? April 18th, 2013 16 / 34 Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 15 / 34 Hyun Min Kang Biostatistics 602 - Lecture 25 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 00000 0000 0000000 0000000 0000000 0000000 # (a) Posterior distribution of heta $$\begin{split} f(\mathbf{x},\theta) &= \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta) \\ &= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} \left[\theta \exp\left(-\theta x_{i}\right)\right] \\ &= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^{n} \exp\left(-\theta \sum_{i=1}^{n} x_{i}\right) \\ &= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha+n-1} \exp\left[-\theta \left(1/\beta + \sum_{i=1}^{n} x_{i}\right)\right] \\ &\propto \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_{i}}\right) \\ \pi(\theta|\mathbf{x}) &= \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_{i}}\right) \end{split}$$ Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 17 / 34 Bayesian Tests Bayesian Intervals P1 P2 P3 P4 00000 00000 00000 00000 00000 00000 00000 #### Practice Problem 2 #### Problem Suppose X_1, \dots, X_n are iid random samples from Gamma distribution with parameter $(3, \theta)$, which has the pdf $$f(x|\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta} \qquad (x > 0)$$ You may use the result that $2\sum_{i=1}^n X_i/\theta \sim \chi_{6n}^2$. - (a) Derive the asymptotic size α LRT for testing $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. - (b) Derive the UMP level α test for $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, where $\theta_1 > \theta_0$. - (c) Derive the UMP level α test for $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$. #### (b) Bayes' rule estimator with squared error loss Bayes' rule estimator with squared error loss is posterior mean. Note that the mean of $\operatorname{Gamma}(\alpha, \beta)$ is $\alpha\beta$. $$\pi(\theta|\mathbf{x}) = \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$ $$E[\theta|\mathbf{x}] = E[\pi(\theta|\mathbf{x})]$$ $$= \frac{\alpha + n - 1}{\beta^{-1} + \sum_{i=1}^{n} x_i}$$ Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 18 / 34 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 0000 0000 00000 0000 0000 0000 # Solution (a) - Obtaining MLEs Hyun Min Kang $$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \left[\frac{1}{2\theta^{3}} x_{i}^{2} e^{-x_{i}/\theta} \right]$$ $$l(\theta|\mathbf{x}) = \sum_{i=1}^{n} \left[-\log 2 - 3\log \theta + 2\log x_{i} - \frac{x_{i}}{\theta} \right]$$ $$= -n\log 2 - 3n\log \theta + 2\sum_{i=1}^{n} \log x_{i} - \frac{1}{\theta} \sum_{i=1}^{n} x_{i}$$ $$l'(\theta|\mathbf{x}) = -\frac{3n}{\theta} + \frac{1}{\theta^{2}} \sum_{i=1}^{n} x_{i} = 0$$ $$\hat{\theta} = \frac{1}{3n} \sum_{i=1}^{n} x_{i}$$ Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 19 / 34 Biostatistics 602 - Lecture 25 April 18th, 2013 20 / 34 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 00000 000 000 000 000 000 # Solution (a) - Obtaining MLEs $$l''(\theta|\mathbf{x})\big|_{\theta=\hat{\theta}} = \frac{3n}{\theta^2} - \frac{2}{\theta^3} \sum_{i=1}^n x_i \bigg|_{\theta=\hat{\theta}}$$ $$= \frac{3n}{\hat{\theta}^2} - \frac{6n}{\hat{\theta}^2} < 0$$ Because $L(\theta|\mathbf{x}) \to 0$ as θ approaches zero or infinity, $\hat{\theta} = \frac{1}{3n} \sum_{i=1}^{n} x_i$. # Solution (b) - UMP level α test for simple hypothesis For $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, $$\frac{L(\theta_1|\mathbf{x})}{L(\theta_0|\mathbf{x})} = \frac{\frac{1}{2^n \theta_1^{3n}} \exp\left[-\frac{\sum x_i}{\theta_1}\right] \prod x_i^2}{\frac{1}{2^n \theta_0^{3n}} \exp\left[-\frac{\sum x_i}{\theta_0}\right] \prod x_i^2} = \left(\frac{\theta_0}{\theta_1}\right)^{3n} \exp\left[\frac{\theta_1 - \theta_0}{\theta_0 \theta_1} \sum x_i\right]$$ ## Solution (a) - Constructing asymptotic size α LRT The rejection region of asymptotic size α LRT is $$-2\log \lambda(\mathbf{x}) = -2\left[l(\theta_0|\mathbf{x}) - l(\hat{\theta}|\mathbf{x})\right]$$ $$= 6n\log \theta_0 + \frac{2}{\theta_0} \sum x_i - 6n\log \hat{\theta} - \frac{2}{\hat{\theta}} \sum x_i$$ $$= 6n\log \theta_0 + \frac{2}{\theta_0} \sum x_i - 6n\log \left(\frac{1}{3n} \sum x_i\right) - 6n > \chi_{1,\alpha}^2$$ $$R = \left\{ \mathbf{x} : \frac{2}{\theta_0} \sum x_i - 6n \log \sum x_i > \chi_{1,\alpha}^2 + 6n[1 - \log(3n\theta_0)] \right\}$$ $$= \left\{ \mathbf{x} : \sum x_i - 3n\theta_0 \log \sum x_i > \frac{\theta_0}{2} \chi_{1,\alpha}^2 + 3n\theta_0 [1 - \log(3n\theta_0)] \right\}$$ # Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 00000 0000 000 00000●00 0000 000 ## Solution (b) - UMP level α test (cont'd) Let $T = \sum X_i$. Then under H_0 , $\frac{2}{\theta_0} T \sim \chi_{6n}^2$. $$\alpha = \Pr\left[\left(\frac{\theta_0}{\theta_1} \right)^{3n} \exp\left[\frac{\theta_1 - \theta_0}{\theta_0 \theta_1} T \right] > k \right]$$ $$= \Pr(T > k^*)$$ So, the rejection region is $$R = \left\{ \mathbf{x} : T(\mathbf{x}) = \sum x_i > \frac{\theta_0}{2} \chi_{6n,\alpha}^2 \right\}$$ Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 23 / 34 Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 00000 000 000000●0 0000 0000 ## Solution (c) - UMP level α test for composite hypothesis We need to check whether T has MLR. Because $Y = 2T/\theta \sim \chi_{6n}^2$. $$f_Y(y|\theta) = \frac{1}{2^{3n}\Gamma(3n)}y^{3n-1}e^{-y/2}$$ $$f_T(t|\theta) = \frac{1}{2^{3n-1}\Gamma(3n)\theta} \left(\frac{2t}{\theta}\right)^{3n-1}e^{-t/\theta} = \frac{1}{\Gamma(3n)\theta} \left(\frac{t}{\theta}\right)^{3n-1}e^{-t/\theta}$$ For arbitrary $\theta_1 < \theta_2$, $$\frac{f_T(t|\theta_2)}{f_T(t|\theta_1)} = \frac{\frac{1}{\Gamma(3n)\theta_2} \left(\frac{t}{\theta_2}\right)^{3n-1} e^{-t/\theta_2}}{\frac{1}{\Gamma(3n)\theta_1} \left(\frac{t}{\theta_1}\right)^{3n-1} e^{-t/\theta_1}} = \left(\frac{\theta_1}{\theta_2}\right)^{3n} \exp\left[\frac{\theta_2 - \theta_1}{\theta_1 \theta_2} t\right]$$ is an increasing function of t. This T has MLR property. # Solution (c) - Constructing UMP level α test Because T has MLR property, UMP level α test for $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ has a rejection region T>k, and $\Pr(T>k)=\alpha$. Therefore, the UMP level α test is identical to the answer of part (b), whose rejection is $$R = \left\{ \mathbf{x} : T(\mathbf{x}) = \sum x_i > \frac{\theta_0}{2} \chi_{6n,\alpha}^2 \right\}$$ | Hyun Min Kang | | Biostatistics 602 - Lecture 25 | | | April 18th, 2013 | 25 / 34 | |---------------|----------------|--------------------------------|-----|----------|------------------|---------| | Recap | Bayesian Tests | Bayesian Intervals | P1 | P2 | P3 | P4 | | 0000 | 00000 | | 000 | 00000000 | ●000 | 0000 | #### Practice Problem 3 #### Problem Let $(X_1, Y_1), \cdots, (X_n, Y_n)$ be a random samples from a bivariate normal $\begin{pmatrix} X_i \\ Y_i \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix} \right)$ We are interested in testing $H_0: \mu_X = \mu_Y$ vs. $H_1: \mu_X \neq \mu_Y$. - (a) Show that the random variables $W_i = X_i Y_i$ are iid $\mathcal{N}(\mu_W, \sigma_W^2)$. - (b) Show that the above hypothesis can be tested with the statistic $$T_W = \frac{W}{\sqrt{S_W^2/n}}$$ where $\overline{W}=\frac{1}{n}\sum_{i=1}^n W_i$ and $S_W^2=\frac{1}{n-1}\sum_{i=1}^n (W_i-\overline{W})^2$. Furthermore, show that, under H_0 , T_W follows the Student's t distribution with n-1 degrees of freedom. ## Solution (a) To solve Problem (a), we first need to know that, if $\mathbf{Z} \sim \mathcal{N}(\mathbf{m}, \Sigma)$, then $$A\mathbf{Z} \sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$ Let $\mathbf{Z} = [X_i \ Y_i]^T$, $\mathbf{m} = [\mu_X \ \mu_Y]^T$, and $A = [1 \ -1]$. Then $$AZ = X_i - Y_i = W_i$$ $$\sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$ $$= \mathcal{N}(\mu_X - \mu_Y, \sigma_X^2 - 2\rho\sigma_X\sigma_Y + \sigma_Y^2)$$ $$= \mathcal{N}(\mu_W, \sigma_W^2)$$ Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 27 / 34 Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 26 / 34 # Solution (b) Because $\mu_W = \mu_X - \mu_Y$, testing $$H_0: \mu_X = \mu_Y$$ vs. $H_1: \mu_X \neq \mu_Y$ is equivalent to testing $$H_0: \mu_W = 0$$ vs. $H_1: \mu_W \neq 0$ When $U_i \sim \mathcal{N}(\mu, \sigma^2)$ and both mean and variance are unknown, we know that LRT testing $H_0: \mu = \mu_0$ vs. $H_0: \mu \neq \mu_0$ follows that $$T_U = \frac{\overline{U} - \mu_0}{\sqrt{S_U^2/n}}$$ and T_U follows T_{n-1} under H_0 . | Hyun Min Kang | Biostatistics 602 | Biostatistics 602 - Lecture 25 | | April 18th, 2013 2 | | | | |----------------|--------------------|--------------------------------|----------|--------------------|------|--|--| | Bayesian Tests | Bayesian Intervals | P1 | P2 | P3 | P4 | | | | | 00000 | 000 | 00000000 | | ●000 | | | #### Practice Problem 4 #### Problem Let $f(x|\theta)$ be the logistic location pdf $$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2} - \infty < x < \infty, -\infty < \theta < \infty$$ - (a) Show that this family has an MLR - (b) Based on one observation X, find the most powerful size α test of $H_0: \theta = 0$ versus $H_1: \theta = 1$. - (c) Show that the test in part (b) is UMP size α for testing $H_0: \theta < 0$ vs. $H_1: \theta > 0.$ ## Solution (b) (cont'd) Therefore, the LRT test for the original test, $H_0: \mu_W = 0$ vs. $H_1: \mu_W \neq 0$ $$T_W = \frac{\overline{W}}{\sqrt{S_W^2/n}}$$ and T_W follows T_{n-1} under H_0 . # Solution for (a) Hyun Min Kang For $\theta_1 < \theta_2$, $$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\frac{e^{(x-\theta_2)}}{(1+e^{(x-\theta_2)})^2}}{\frac{e^{(x-\theta_1)}}{(1+e^{(x-\theta_1)})^2}}$$ $$= e^{(\theta_1-\theta_2)} \left(\frac{1+e^{(x-\theta_1)}}{1+e^{(x-\theta_2)}}\right)^2$$ Biostatistics 602 - Lecture 25 Let $$r(x) = (1 + e^{x-\theta_1})/(1 + e^{x-\theta_2})$$ $$r'(x) = \frac{e^{(x-\theta_1)}(1 + e^{(x-\theta_2)}) - (1 + e^{(x-\theta_1)})e^{(x-\theta_2)}}{(1 + e^{(x-\theta_2)})^2}$$ $$= \frac{e^{(x-\theta_1)} - e^{(x-\theta_2)}}{(1 + e^{(x-\theta_2)})^2} > 0 \quad (\because x - \theta_1 > x - \theta_2)$$ Therefore, the family of X has an MLR. Hyun Min Kang April 18th, 2013 30 / 34 P4 0000 32 / 34 Recap Bayesian Tests Bayesian Intervals P1 P2 P3 P4 0000 00000 0000 0000000 0000 0000 0000 0000 # Solution for (b) Hyun Min Kang The UMP test rejects H_0 if and only if $$\frac{f(x|1)}{f(x|0)} = e\left(\frac{1+e^x}{1+e^{(x-1)}}\right)^2 > k$$ $$\frac{1+e^x}{1+e^{(x-1)}} > k^*$$ $$\frac{1+e^x}{e+e^x} > k^*$$ $$X > x_0$$ Because under H_0 , $F(x|\theta=0)=\frac{e^x}{1+e^x}$, the rejection region of UMP level α test satisfies $$1 - F(x|\theta = 0) = \frac{1}{1 + e^{x_0}} = \alpha$$ $$x_0 = \log\left(\frac{1 - \alpha}{\alpha}\right)$$ Biostatistics 602 - Lecture 25 April 18th, 2013 33 / 34 Solution for (c) Because the family of X has an MLR, UMP size α for testing $H_0: \theta \leq 0$ vs. $H_1: \theta > 0$ should be a form of $$X > x_0$$ $$Pr(X > x_0 | \theta = 0) = \alpha$$ Therefore, $x_0 = \log\left(\frac{1-\alpha}{\alpha}\right)$, which is identical to the test defined in (b). Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 34 / 34