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Recap
@000

Last Lecture

What is an E-M algorithm?
When would the E-M algorithm be useful?

= |s MLE via E-M algorithm always guaranteed to converge?

= What are the practical limitations of the E-M algorithm?
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Recap
[e] lele}

Overview of E-M Algorithm (cont'd)

= Maximize L(f]y) or i(f]y).
= Let f(y,z|0) denotes the pdf of complete data. In E-M algorithm,

rather than working with [(f]y) directly, we work with the surrogate
function

QOI™) = E [logfly,Z|6)ly,0"]

where 0(7) is the estimation of @ in r-th iteration.

= Q(]6") is the expected log-likelihood of complete data, conditioning
on the observed data and 6("),

Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 3/34



Recap
[e]e] e}

Key Steps of E-M algorithm

Expectation Step
= Compute Q(8|6).
= This typically involves in estimating the conditional distribution Z|Y,
assuming 6 = 0(").
= After computing Q(8|6(")), move to the M-step

Maximization Step

= Maximize Q(0]0(")) with respect to 6.
= The argmaxy Q(0|6(")) will be the (r+ 1)-th  to be fed into the
E-step.

= Repeat E-step until convergence

v

Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 4 /34



Recap
[e]e]e] }

Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence

The sequence {#("} defined by the E-M procedure satisfies
L(I0y) = 1(30))

with equality holding if and only if successive iterations yield the same
value of the maximized expected complete-data log likelihood, that is

E|log L (60+Vly,z) |00,y| = E[logL(87))y,Z)6%,y]

Theorem 7.5.2 further guarantees that L(G(T ly) converges monotonically
to L(Aly) for some stationary point 6.
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= Prior distribution 7(6)
= Bayesian hypothesis testing is based on the posterior probability

= In Frequentist's framework, posterior probability cannot be calculated.
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Bayesian Tests
0000

Bayesian Tests

= Hypothesis testing problems can be formulated in a Bayesian model
= Bayesian model includes

= Sampling distribution f(x|6)

= Prior distribution 7(6)
= Bayesian hypothesis testing is based on the posterior probability

= In Frequentist's framework, posterior probability cannot be calculated.
= In Bayesian framework, the probability of Hy and H; can be calculated
= Pr(0 € Qo|x) = Pr(Hp is true)
= Pr(0 € Qf|x) = Pr(H, is true)
= Rejection region can be determined directly based on the posterior
probability
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Bayesian vs Frequentist Framework

Frequentist's Framework
= @ is considered to be a fixed number
= Consequently, a hypothesis is either true of false

= If 0 € Qo, Pr(Hp is true|x) = 1 and Pr(H; is truelx) = 0
= If 0 € QF, Pr(Hy is true|x) = 0 and Pr(H; is true|x) =1

Bayesian Framework

= Pr(Hp is true|x) and Pr(H; is true|x) are function of x, between 0
and 1.
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(o] Jelele]

Bayesian vs Frequentist Framework

Frequentist's Framework
= @ is considered to be a fixed number
= Consequently, a hypothesis is either true of false

= If 0 € Qo, Pr(Hp is true|x) = 1 and Pr(H; is truelx) = 0
= If 0 € QF, Pr(Hy is true|x) = 0 and Pr(H; is true|x) =1

Bayesian Framework

= Pr(Hp is true|x) and Pr(H; is true|x) are function of x, between 0
and 1.

= These probabilities give useful information about the veracity of Hy
and Hi.
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Bayesian Tests
[e]e] Tele]

Examples of Bayesian hypothesis testing procedure

A neutral test between Hy and H;
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[e]e] Tele]

Examples of Bayesian hypothesis testing procedure

A neutral test between Hy and H;

= Accept Hj is Pr(6 € Qp|x) > Pr(0 € Qf|x)
= Reject Hy is Pr(6 € Qy|x) < Pr(6 € Qf|x)
= In other words, the rejection region is {x : Pr(6 € Q§|x) > 3}

A more conservative (smaller size) test in rejecting Hy
= Reject Hy is Pr(0 € Q§|x) > 0.99
= Accept Hy is Pr(6 € Q§|x) < 0.99
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Bayesian Tests
[e]e]e] o]

Example: Normal Bayesian Test

Problem

Let Xi,---, X, be iid samples N(0,0?) and let the prior distribution of 6
be N (i, 7"), where o2, i1, and 72 are known.
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Example: Normal Bayesian Test

Problem

Let Xi,---, X, be iid samples N(0,0?) and let the prior distribution of 6
be N(/L,TT), where 02,,u, and 72 are known. Construct a Bayesian test
rejecting Hp if and only if Pr(6 € Qo|x) < Pr(6 € Q§|x)

Solution

Consider testing Hy : 6 < 0y versus H; : 6 > 6y. From previous lectures,
the posterior is
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Example: Normal Bayesian Test

Problem

Let Xi,---, X, be iid samples N(0,0?) and let the prior distribution of 6
be N(/L,TT), where 02,,u, and 72 are known. Construct a Bayesian test
rejecting Hp if and only if Pr(6 € Qo|x) < Pr(6 € Q§|x)

Solution

Consider testing Hy : 6 < 0y versus H; : 6 > 6y. From previous lectures,
the posterior is

7(6]x) ~N<

nr2T -+ 02,u o212
nt2 4+ o2 ' nr? + o2
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Example: Normal Bayesian Test

Problem

Let Xi,---, X, be iid samples N(0,0?) and let the prior distribution of 6
be N(/L,TT), where 02,,u, and 72 are known. Construct a Bayesian test
rejecting Hp if and only if Pr(6 € Qo|x) < Pr(6 € Q§|x)

Solution

Consider testing Hy : 6 < 0y versus H; : 6 > 6y. From previous lectures,
the posterior is

7(6]x) ~N<

nr2T -+ 02,u o212
nt2 4+ o2 ' nr? + o2

We will reject Hy if and only if
Pr(6 € Qp|x) = Pr(0 <6p|x) <

1
2

v
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Bayesian Tests
0000e

Solution (cont'd)

Because 7(0|x) is symmetric, this is true if and only if the mean for 7 (0|x)
is less than or equal to 8y. Therefore, Hy will be rejected if
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Solution (cont'd)

Because 7(0|x) is symmetric, this is true if and only if the mean for 7 (0|x)
is less than or equal to 8y. Therefore, Hy will be rejected if
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Bayesian Tests
0000e

Solution (cont'd)

Because 7(0|x) is symmetric, this is true if and only if the mean for 7 (0|x)
is less than or equal to 8y. Therefore, Hy will be rejected if
nT?zT + 02,u,
meronr 0o
nr? 4 o2

29_
T < 004—70(02”)
nrt
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Bayesian Intervals
@0000

Confidence interval and the parameter

Frequentist's view of intervals
= We have carefully said that the interval covers the parameter
= not that the parameter is inside the interval, on purpose.

= The random quantity is the interval, not the parameter

Example
= A 95% confidence interval for 0 is .262 < 0 < 1.184

= "The probability that 6 is in the interval [.262,1.184] is 95%" :
Incorrect, because the parameter is assumed fixed

| A
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Bayesian Intervals
@0000

Confidence interval and the parameter

Frequentist's view of intervals

= We have carefully said that the interval covers the parameter
= not that the parameter is inside the interval, on purpose.

= The random quantity is the interval, not the parameter

Example

| A

= A 95% confidence interval for 0 is .262 < 0 < 1.184

= "The probability that 6 is in the interval [.262,1.184] is 95%" :
Incorrect, because the parameter is assumed fixed

= Formally, the interval [.262,1.184] is one of the possible realized
values of the random intervals (depending on the observed data)
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Bayesian Intervals
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Bayesian interpretation of intervals

= Bayesian setup allows us to say that 6 is inside [.262, 1.184] with
some probability.
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Bayesian Intervals
(o] Jelele]

Bayesian interpretation of intervals

= Bayesian setup allows us to say that 6 is inside [.262, 1.184] with
some probability.

= Under Bayesian model, 0 is a random variable with a probability
distribution.

= All Bayesian claims of coverage are made with respect to the
posterior distribution of the parameter.
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Credible sets

= To distinguish Bayesian estimates of coverage, we use credible sets
rather than confidence sets
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Bayesian Intervals
[e]e] Tele]

Credible sets

= To distinguish Bayesian estimates of coverage, we use credible sets
rather than confidence sets
= If 7(A|x) is a posterior distribution, for any set A C Q

= The credible probability of A is Pr(f € A|x) = [, m(6|x)df
= and A is a credible set (or cred/table interval) for 6.

= Both the interpretation and construction of the Bayes credible set are
more straightforward than those of a classical confidence set, but with
additional assumptions (for Bayesian framework).
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Bayesian Intervals
[e]e]e] o]

Example: Possible credible set

Problem

Let X3, -+, X, 2 Poisson(A) and assume that A ~ Gamma(a, b). Find
a 90% credible set for \.
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Example: Possible credible set

Problem

Let X3, -+, X, 2 Poisson(\) and assume that A ~ Gamma(a, b). Find
a 90% credible set for \.

Solution
The posterior pdf of A becomes

7(A]x) = Gamma (a + Z i, [n+ (1/b)]_1)

| A

v
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Example: Possible credible set

Problem

Let X3, -+, X, 2 Poisson(\) and assume that A ~ Gamma(a, b). Find
a 90% credible set for \.

Solution
The posterior pdf of A becomes

7(A]x) = Gamma (a+ Z% [n+ (1/b)]_1)

| A

If we simply split the o equally between the upper and lower endpoints,
TA ~ X2(atY m) (if @ is an integer)

y
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Example: Possible credible set

Problem

Let X3, -+, X, 2 Poisson(\) and assume that A ~ Gamma(a, b). Find
a 90% credible set for \.

Solution

| A

The posterior pdf of A becomes

7(A]x) = Gamma (a+ Z% [n+ (1/b)]_1)

If we simply split the o equally between the upper and lower endpoints,
TA ~ X2(atY m) (if @ is an integer)

Therefore, a 1 — « confidence interval is
PP <a<— b2
: mXQ(ZzH—a),l—a/Q =AZS sz(z zit+a),a/2
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Remark: Credible probability and coverage probability

= |t is important not to confuse credible probability with coverage
probability
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= |t is important not to confuse credible probability with coverage
probability
= Credible probabilities are the Bayes posterior probability, which
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distribution.
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upon combining prior knowledge with data, is 90% sure of coverage
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Remark: Credible probability and coverage probability

= |t is important not to confuse credible probability with coverage
probability
= Credible probabilities are the Bayes posterior probability, which
reflects the experimenter’s subjective beliefs, as expressed in the prior
distribution.
= A Bayesian assertion of 90% coverage means that the experimenter,
upon combining prior knowledge with data, is 90% sure of coverage

= Coverage probability reflects the uncertainty in the sampling
procedure, getting its probability from the objective mechanism of
repeated experimental trials.

Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 15 / 34



Bayesian Intervals
0000e

Remark: Credible probability and coverage probability

= |t is important not to confuse credible probability with coverage
probability
= Credible probabilities are the Bayes posterior probability, which
reflects the experimenter’s subjective beliefs, as expressed in the prior
distribution.
= A Bayesian assertion of 90% coverage means that the experimenter,
upon combining prior knowledge with data, is 90% sure of coverage

= Coverage probability reflects the uncertainty in the sampling
procedure, getting its probability from the objective mechanism of
repeated experimental trials.
= A classical assertion of 90% coverage means that in a long sequence of
identical trials, 90% of the realized confidence sets will cover the true
parameter.
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P1
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Practice Problem 1 (from last lecture)

Problem

Suppose X1, - -+, X, are iid samples from f(z|0) = 0 exp(—0z). Suppose
the prior distribution of 6 is
1

_ a—1_-6/p8
w(0) = F(a)ﬁae e

where «, 3 are known.

(a) Derive the posterior distribution of 6.
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Practice Problem 1 (from last lecture)

Problem

Suppose X1, - -+, X, are iid samples from f(z|0) = 0 exp(—0z). Suppose
the prior distribution of 6 is

_ L a1 —6/8
w(0) = F(a)ﬁae e

where «, 3 are known.
(a) Derive the posterior distribution of 6.

(b) If we use the loss function L(6, a) = (a — 0)2, what is the Bayes rule
estimator for 67
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

_ L et 0/ T b (— Oz
I‘(a)ﬁae e il;[l[ﬁe p (—0x;)]
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

SRS SRPREURYER & _0s,
= I‘(a)ﬁo‘e le 1_[1[9exp( Ox;)]

1=

1 n
= —— 9 e Bgrexp [ -0
I (a)8° P02
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

_ L et 0/ T b (— Oz
I‘(a)ﬁae e il;[l[ﬁe p (—0x;)]

_ 1 a—1_-6/Bpn - - )
= 7F(oz)ﬁa9 e 0" exp ( 0 E xz>
_ 1 a+n—1 .
- F(a)ﬁae e [_0 (1/5 * Z xl)]

1
x Gamma|la+n—1,——cF—
< B+ Iz)
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

- rt e e o)

_ F(al)ﬁaeale@/ﬁgnexp (—Hg;xz-)

_ I‘(cyl)ﬁa 9ot L exp [—0 (1/5 + lzn; Jiz)]

x G (o4 =1, 5o ger )
) = Gomn (1)
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ooe

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that
the mean of Gammal(a, ) is af.
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(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that
the mean of Gammal(a, ) is af.

1
7T(0|X) = Gamma (Oé + n— ]., W)
=1
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ooe

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that
the mean of Gammal(a, ) is af.

7T(0|X) = Gamma (Oé +n— ]., m)
Elf]x] = E[x(0]x)]

_ a+n—1

IR D
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P2
[ TeleleleloYele}

Practice Problem 2

Suppose X3, ---, X, are iid random samples from Gamma distribution
with parameter (3,6), which has the pdf
1
f=o) = ﬁfﬁ/a (z>0)

You may use the result that 2> " | X;/0 ~ X%n'
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Problem
Suppose X3, ---, X, are iid random samples from Gamma distribution
with parameter (3,6), which has the pdf
1
f=o) = ﬁfﬁ/a (z>0)

You may use the result that 2> " | X;/0 ~ X%n'

(a) Derive the asymptotic size o LRT for testing Hy : 6 = g vs.
H1 10 7£ 90.
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1
f=o) = ﬁfﬁ/a (z>0)

You may use the result that 2> " | X;/0 ~ X%n'

(a) Derive the asymptotic size o LRT for testing Hy : 6 = g vs.
H1 10 7£ 90.

(b) Derive the UMP level « test for Hy : 0 = 0y vs. Hy : 6 = 01, where
01 > 0.
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Practice Problem 2

Suppose X3, ---, X, are iid random samples from Gamma distribution
with parameter (3,6), which has the pdf
1
f=o) = ﬁfﬁ/a (z>0)

You may use the result that 2> " | X;/0 ~ X%n'

(a) Derive the asymptotic size o LRT for testing Hy : 6 = g vs.
H1 : 0 7£ 90.

(b) Derive the UMP level « test for Hy : 0 = 0y vs. Hy : 6 = 01, where
01 > 0.

(c) Derive the UMP level « test for Hy : 0 < 6y vs. Hy : 0 > 6.
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Solution (a) - Obtaining MLEs
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Solution (a) - Obtaining MLEs

ox) = > [— log2 — 3log § + 2log z; — %
=1
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Solution (a) - Obtaining MLEs

Ox) = i[—log2—3log9+2logxi—?}
i=1

n n
1
= —nlog2—3nlog«9+2§ logxi—gg X
=1 =1

1=
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Solution (a) - Obtaining MLEs

n
[(9)x) = Z[—log2—3log9+2]ogxi_%}
=1
n 1 n
= —nlog2—3nlog«9+2210gxi_EZ%
=1 i=1

1=

3n 1 —
I(0)x) = f?Jr@in:O

=1
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(o] IeleleloYele}

Solution (a) - Obtaining MLEs

Ox) = i[—log2—3log9+2logxi—?}
i=1

1 n
= —nlog2— 3n10g«9+2210gx¢— 52%
=1 =1

1=

I(0)x) = f?Jr@in:O

D>
Il
w
Ll
]
8
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Solution (a) - Obtaining MLEs

3n 2
(e‘x)|99 = ﬁ—@zxz
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Obtaining MLEs

3n 2 —
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L
92 2

Biostatistics 602 - Lecture 25

April 18th, 2013

21/ 34



P2
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Solution (a) - Obtaining MLEs

y 3n 2 &
O)]peg = 23— g5 2
=1 lg=0
3
_ s Oy
62 62
Because L(f|x) — 0 as 0 approaches zero or infinity, § = =50
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Solution (a) - Constructing asymptotic size o« LRT

The rejection region of asymptotic size a LRT is
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Solution (a) - Constructing asymptotic size o« LRT

The rejection region of asymptotic size a LRT is

—2logA(x) = -2 [z<eo|x) e
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Solution (a) - Constructing asymptotic size o« LRT

The rejection region of asymptotic size a LRT is

—2log A(x) 2 [z<eo|x) - 1(é|x)}

2 N~ 2
= 6nlogb — ; — 6nlogf — — i
nlog 0+HOZ:B nlog ezx
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Solution (a) - Constructing asymptotic size o« LRT

The rejection region of asymptotic size a LRT is

—2log A(x)

2 [z<eo|x) - 1(é|x)}

2 N~ 2
= 6nlogb — ; — 6nlogf — — i
nlog 0+HOZ:B nlog ezx

2 1
= O6nlogfy + % Zzpz — 6nlog <3n Z$’> —6n > X%,a
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Solution (a) - Constructing asymptotic size o« LRT

The rejection region of asymptotic size a LRT is

—2log A(x)

2 [z<eo|x) - 1(é|x)}

2 N~ 2
= 6nlogb — ; — 6nlogf — — i
nlog 0+HOZ$ nlog ezx

2 1
= O6nlogfy + % Zzpz — 6nlog <3n ZJ:Z> —6n > X%,a

2
R = {x : % Z T — 6nlogz x> x%a + 601 — log(3n00)]}
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Solution (a) - Constructing asymptotic size o« LRT

The rejection region of asymptotic size a LRT is

—2log A(x)

2 [z<eo|x) - 1(é|x)}

2 N~ 2
= 6nlogb — ; — 6nlogf — — i
nlog 0+HOZ$ nlog ezx

2 1
= O6nlogfy + % Zzpz — 6nlog <3n ZJ:Z> —6n > X%,a

2
R = {x P — Z T — 6nlogz x> x%a + 601 — log(3n00)]}
{ Z x; — 3nbp log Z x; > X1 ot 3nbo[1 — log(3n90)]}
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Solution (b) - UMP level « test for simple hypothesis

FOI’H():@:@QVS. H1219:91,
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Solution (b) - UMP level « test for simple hypothesis

FOI’H():@:@QVS. H1219:91,

He

(]
8
—_

1 :
L(61]x) gngn OXP [_ 01

) Il
L(Bob) 1

1
2ng3n exp [_ to

g/
8
S
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Solution (b) - UMP level « test for simple hypothesis

FOI’H():@:@QVS. H1219:91,

L(6:1]x) g OXP [‘ 29:] [T

L(6ox) QWég’” exp [— %Oxi] INE

(00" [0
_ (ﬁ) exp[ 0
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Solution (b) - UMP level « test (cont’d)

Let T= " X;. Then under Hy, 7T ~ xZ,.
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Solution (b) - UMP level « test (cont’d)

Let T= " X;. Then under Hy, 7T ~ xZ,.

00\ >" 01 — 6y
— pr|(2 T
« r[<91> exp[ 8ol >k

= Pr(T> k)
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Solution (b) - UMP level « test (cont’d)

Let T= " X;. Then under Hy, 7T ~ xZ,.

00\ >" 01 — 6y
— pr|(2 T
« r[<91> exp[ 8ol >k

= Pr(T> k)

So, the rejection region is

R= { Z% Xﬁna}
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Solution (c) - UMP level « test for composite hypothesis

We need to check whether T has MLR. Because Y =2T/6 ~ x2,.
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Solution (c) - UMP level « test for composite hypothesis

We need to check whether T has MLR. Because Y =2T/6 ~ x2,.

1

_ 3n—1 _—y/2
fr(916) 230 (3n)" ¢

1 2¢ 3n—1 , 1 ¢ 3n—1
1 e 1 ([t —1/6
fr(t)0) 23717 (3n)0 <9> ¢ I'(3n)6 <9> ’
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Solution (c) - UMP level « test for composite hypothesis

We need to check whether T has MLR. Because Y =2T/6 ~ x2,.

1

_ 3n—1 _—y/2
fr(916) 230 (3n)" ¢

1 2¢ 3n—1 , 1 ¢ 3n—1
1 e 1 ([t —1/6
fr(t)0) 23717 (3n)0 <9> ¢ I'(3n)6 <9> ’

For arbitrary 61 < 65,

3n—1
frtien) o (%) et/92_<91>3“exp o)
fr(6n) r(sz)el (%>3"—1 e~ t/01 02 0102
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P2
00000000

Solution (c) - UMP level « test for composite hypothesis

We need to check whether T has MLR. Because Y =2T/6 ~ x2,.

o 1 3n—1_—y/2
M) = Smran? ¢

1 2¢ 3n—1 , 1 ¢ 3n—1
1 o 1 —1/6
fr(t)0) 23717 (3n)0 <9> ¢ I'(3n)6 <9> ’

For arbitrary 61 < 65,

3n—1
frtien) o (%) E‘t/92_<91>3“exp o)
fr(6n) r(sz)el (%>3"—1 e~ t/01 02 0102

is an increasing function of t. This T has MLR property.
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Solution (c) - Constructing UMP level « test

Because T has MLR property, UMP level « test for Hy : 6 < 6 vs.
Hy : 0 > 0y has a rejection region T'> k, and Pr(T > k) = «.
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Solution (c) - Constructing UMP level « test

Because T has MLR property, UMP level « test for Hy : 6 < 6 vs.
Hy : 0 > 0y has a rejection region T'> k, and Pr(T > k) = «.
Therefore, the UMP level « test is identical to the answer of part (b),
whose rejection is
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Solution (c) - Constructing UMP level « test

Because T has MLR property, UMP level « test for Hy : 6 < 6 vs.
Hy : 0 > 0y has a rejection region T'> k, and Pr(T > k) = «.
Therefore, the UMP level « test is identical to the answer of part (b),
whose rejection is

R:{ Z% Xﬁna}
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Practice Problem 3

Let (X3, Y1), ,(Xy, Yy) be a random samples from a bivariate normal
()= (L] [ &)
Yi ny ’ PO X0y U%/

We are interested in testing Hy : ux = py vs. Hy : ux # py.
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Intervals

Practice Problem 3

Let (X3, Y1), ,(Xy, Yy) be a random samples from a bivariate normal
()= (L] [ &)
Yi ny ’ PO X0y U%/

We are interested in testing Hy : ux = py vs. Hy : ux # py.

(a) Show that the random variables W; = X; — Y; are iid N (uw, o%).
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Practice Problem 3

Problem

Let (X3, Y1), ,(Xy, Yy) be a random samples from a bivariate normal
()= (L] [ &)
v: ) ” ’ 3
i Hy POXOy Oy
We are interested in testing Hy : ux = py vs. Hy : ux # py.

(a) Show that the random variables W; = X; — Y; are iid N (uw, o%).
(b) Show that the above hypothesis can be tested with the statistic
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Problem

Let (X3, Y1), ,(Xy, Yy) be a random samples from a bivariate normal
()= (L] [ &)
Yi ny ’ PO X0y U%/

We are interested in testing Hy : ux = py vs. Hy : ux # py.

(a) Show that the random variables W; = X; — Y; are iid N (uw, o%).

(b) Show that the above hypothesis can be tested with the statistic
w

1/ %l

Tw =
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Practice Problem 3

Problem

Let (X3, Y1), ,(Xy, Yy) be a random samples from a bivariate normal
()= (L] [ &)
Yi ny ’ PO X0y U%/

We are interested in testing Hy : ux = py vs. Hy : ux # py.

(a) Show that the random variables W; = X; — Y; are iid N (uw, o%).

(b) Show that the above hypothesis can be tested with the statistic
w

1/ %l

where W= 13" W;and $, = 1537 | (W;— W)2. Furthermore,
show that, under Hy, Ty follows the Student’s t distribution with
n — 1 degrees of freedom.

Tw =
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Solution (a)

To solve Problem (a), we first need to know that, if Z ~ A (m,X), then

AZ ~ N (Am, AXAT)
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Solution (a)

To solve Problem (a), we first need to know that, if Z ~ A (m,X), then
AZ ~ N (Am, AXAT)

Let Z=[X; V3|7, m=[ux py]?, and A=[1 —1]. Then
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Solution (a)

To solve Problem (a), we first need to know that, if Z ~ A (m,X), then
AZ ~ N (Am, AXAT)

Let Z=[X; V3|7, m=[ux py]?, and A=[1 —1]. Then

AZ = X;—Yi=W,;
~ N(Am, AxAT)
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Solution (a)

To solve Problem (a), we first need to know that, if Z ~ A (m,X), then
AZ ~ N (Am, AXAT)

Let Z=[X; V3|7, m=[ux py]?, and A=[1 —1]. Then

AZ = X;—Yi=W,;
~ N(Am, AxAT)

= N(ux—py,0% —2p0x0y+0%)
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Solution (a)

To solve Problem (a), we first need to know that, if Z ~ A (m,X), then
AZ ~ N (Am, AXAT)

Let Z=[X; V3|7, m=[ux py]?, and A=[1 —1]. Then

AZ = X;— Yi= W,
~ N(Am, ASAT)
= N(ux—py,0% —2p0x0y+0%)
= N(uw,o%)
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Solution (b)

Because pw = px — py, testing

Hy:px=py  vs. Hy:px #py

is equivalent to testing

Hy:pw=0 vs. H :pw#0
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Solution (b)

Because pw = px — py, testing
Ho:px=py vs.  Hi:px#py
is equivalent to testing
Hy:pw=0 vs. Hy:pw#0

When U; ~ N(u,0?) and both mean and variance are unknown, we know
that LRT testing Hy : u = po vs. Hy : o # po follows that
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Solution (b)

Because pw = px — py, testing
Ho:px=py vs.  Hi:px#py
is equivalent to testing
Ho:pw=0 vs. Hi:pw#0

When U; ~ N(u,0?) and both mean and variance are unknown, we know
that LRT testing Hy : u = po vs. Hy : o # po follows that

U—po

\/ 5%/

Ty =

and Ty follows T,_1 under Hj.
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Solution (b) (cont'd)

Therefore, the LRT test for the original test, Hy : pyw=0vs. Hy : pw # 0
is

Ty— W
\/ S/

and Ty follows T,_1 under Hj.
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Practice Problem 4

Let f(z|0) be the logistic location pdf
(z—0)

e
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Practice Problem 4

Let f(z|0) be the logistic location pdf

(z—0)
e

(a) Show that this family has an MLR
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Practice Problem 4

Let f(z|0) be the logistic location pdf
(z—0)

flz|0) = a3 )y —o00 << 00, —00 < f < oo

e

(a) Show that this family has an MLR

(b) Based on one observation X, find the most powerful size « test of
Hy:0=0versus H; : 0 = 1.
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Practice Problem 4

Problem
Let f(z|0) be the logistic location pdf
(z—6)
flzl0) = S — —o00 <z <00, —00 <l < oo

(1 + el==9))2

(a) Show that this family has an MLR

(b) Based on one observation X, find the most powerful size « test of
Hy:0=0versus H; : 0 = 1.

(c) Show that the test in part (b) is UMP size « for testing Hy : 6 < 0 vs.
Hi:60>0.
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Solution for (a)

For 61 < 05,
e(z—02)
f(.’L“ag) . (1+e(z—92))2
flalfr) — et

(Tt ez
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Solution for (a)

For 61 < 05,
e(z—02)
f(.’L“ag) . (1+e(z—92))2
flalfr) — et

(Tt ez

2
6(91_02) ]_ _|_ e(l’—el)
1 + elz—62)
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Solution for (a)

For 61 < 65,
fl02) Gy
f(l“el) - elz=01)

(Tt eE=o)2
2
z—0
(01—62) Ll
1+ elz—02)

Let r(z) = (1 + 1) /(1 + e*%2)
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Solution for (a)

For 61 < 05,
e(z—02)
f(.’L“ag) . (1+e(z—92))2
flalfr) — et

(1+e(z—91))2
2
6(91_02) ]_ _|_ e(l’—el)
1 + elz—62)
Let r(z) = (1 + %) /(1 + ¢*%)

6(1791)(1 + 6(1792)) _ (1 + 6(117701))6(1792)
(1 + e(z—@g))Q

r'(z) =
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Solution for (a)

For 61 < 05,
e(z—02)
f(.’L“ag) . (1+e(z—92))2
flalfr) — et

(1+e(z—91))2
2
6(91_02) ]_ _|_ e(l’—el)
1 + elz—62)
Let r(z) = (1 + %) /(1 + ¢*%)

6(1791)(1 + 6(1792)) _ (1 + 6(117701))6(1792)
(1 + e(z—@g))Q
6(23—91) _ e(z—@g)

= (1—|-e($_92))2 >0 ('.'x—&l >$—02)

r'(z) =
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Solution for (a)

For 61 < 05,
e(z—02)
f((L‘Wg) . (14elz=02))2
flalfr) — et

(1+e(z—91))2
2
6(91_02) ]_ _|_ e(l’—el)
1 + elz—62)
Let r(z) = (1 + %) /(1 + ¢*%)

6(1791)(1 + 6(1792)) _ (1 + 6(37701))6(1792)
(1 + e(z—@g))Q
6(23—91) _ e(z—@g)
- (EE=ne >0 (cx—01>z—06y)

Therefore, the family of X has an MLR.
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Solution for (b)

The UMP test rejects Hy if and only if

flall) 14er \?
fla0) 6<1+e<w—1>> >k
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Solution for (b)

The UMP test rejects Hy if and only if
fa]1) 1+e 1\’
= — >k
faoy = \1geleD
14 ¢€°
1+ elz=1)

k*
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Solution for (b)

The UMP test rejects Hy if and only if
o) _ (e

f)0) 1+ el
14 €* N
reen - F
1 L
e > K
e+ e*
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Solution for (b)

The UMP test rejects Hy if and only if
o) _ (e

f)0) 1+ el
1+ ¢€° N
reen - F
14 ¢€* 1
e+ e*
X > x
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Solution for (b)

The UMP test rejects Hj if and only if
1 14+ e \?
fl2]1) e( e )> Sk

f(2/0) 1+ ele—1
14 €* N
e~ F
1+ € o g
e+ e
X > x

Because under Hy, F(z|0 = 0) = 1few' the rejection region of UMP level «
test satisfies

1— Fzfo=0) = —a

(1—a
1 = log
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Solution for (c)

Because the family of X has an MLR, UMP size « for testing Hy : 0 <0
vs. Hi : 6 > 0 should be a form of

X > x
Pr(X>x|0=0) = «
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Solution for (c)

Because the family of X has an MLR, UMP size « for testing Hy : 0 <0
vs. Hi : 6 > 0 should be a form of

X > x
Pr(X>x|0=0) = «

Therefore, 19 = log (%) which is identical to the test defined in (b).
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