Biostatistics 602 - Statistical Inference Lecture 25 Bayesian Test & Practice Problems

Hyun Min Kang

April 18th, 2013

1 / 34

Recap •000

• What is an E-M algorithm?

Recap

•000

- What is an E-M algorithm?
- When would the E-M algorithm be useful?

Recap

•000

- What is an E-M algorithm?
- When would the E-M algorithm be useful?
- Is MLE via E-M algorithm always guaranteed to converge?

Recap

•000

- What is an E-M algorithm?
- When would the E-M algorithm be useful?
- Is MLE via E-M algorithm always guaranteed to converge?
- What are the practical limitations of the E-M algorithm?

Overview of E-M Algorithm (cont'd)

Objective

Recap

- Maximize $L(\theta|\mathbf{y})$ or $l(\theta|\mathbf{y})$.
- Let $f(\mathbf{y}, \mathbf{z}|\theta)$ denotes the pdf of complete data. In E-M algorithm, rather than working with $l(\theta|\mathbf{y})$ directly, we work with the surrogate function

$$Q(\theta|\theta^{(r)}) = \mathbb{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

where $\theta^{(r)}$ is the estimation of θ in r-th iteration.

• $Q(\theta|\theta^{(r)})$ is the expected log-likelihood of complete data, conditioning on the observed data and $\theta^{(r)}$.

Key Steps of E-M algorithm

Expectation Step

Recap

- Compute $Q(\theta|\theta^{(r)})$.
- This typically involves in estimating the conditional distribution $\mathbf{Z}|\mathbf{Y}$, assuming $\theta = \theta^{(r)}$.
- After computing $Q(\theta|\theta^{(r)})$, move to the M-step

Maximization Step

- Maximize $Q(\theta|\theta^{(r)})$ with respect to θ .
- The $\arg\max_{\theta} Q(\theta|\theta^{(r)})$ will be the (r+1)-th θ to be fed into the E-step.
- Repeat E-step until convergence

Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence

The sequence $\{\hat{\theta}^{(r)}\}$ defined by the E-M procedure satisfies $L\left(\hat{\theta}^{(r+1)}|\mathbf{y}\right) \geq L\left(\hat{\theta}^{(r)}|\mathbf{y}\right)$

with equality holding if and only if successive iterations yield the same value of the maximized expected complete-data log likelihood, that is

$$E\left[\log L\left(\hat{\theta}^{(r+1)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right] \ = \ E\left[\log L\left(\hat{\theta}^{(r)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right]$$

Theorem 7.5.2 further guarantees that $L(\hat{\theta}^{(r)}|\mathbf{y})$ converges monotonically to $L(\hat{\theta}|\mathbf{y})$ for some stationary point $\hat{\theta}$.

Recap

• Hypothesis testing problems can be formulated in a Bayesian model

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes
 - Sampling distribution $f(\mathbf{x}|\theta)$

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes
 - Sampling distribution $f(\mathbf{x}|\theta)$
 - Prior distribution $\pi(\theta)$

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes
 - Sampling distribution $f(\mathbf{x}|\theta)$
 - Prior distribution $\pi(\theta)$
- Bayesian hypothesis testing is based on the posterior probability

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes
 - Sampling distribution $f(\mathbf{x}|\theta)$
 - Prior distribution $\pi(\theta)$
- Bayesian hypothesis testing is based on the posterior probability
 - In Frequentist's framework, posterior probability cannot be calculated.

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes
 - Sampling distribution $f(\mathbf{x}|\theta)$
 - Prior distribution $\pi(\theta)$
- Bayesian hypothesis testing is based on the posterior probability
 - In Frequentist's framework, posterior probability cannot be calculated.
 - In Bayesian framework, the probability of \mathcal{H}_0 and \mathcal{H}_1 can be calculated

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes
 - Sampling distribution $f(\mathbf{x}|\theta)$
 - Prior distribution $\pi(\theta)$
- Bayesian hypothesis testing is based on the posterior probability
 - In Frequentist's framework, posterior probability cannot be calculated.
 - In Bayesian framework, the probability of H_0 and H_1 can be calculated
 - $\Pr(\theta \in \Omega_0 | \mathbf{x}) = \Pr(H_0 \text{ is true})$

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes
 - Sampling distribution $f(\mathbf{x}|\theta)$
 - Prior distribution $\pi(\theta)$
- Bayesian hypothesis testing is based on the posterior probability
 - In Frequentist's framework, posterior probability cannot be calculated.
 - In Bayesian framework, the probability of H_0 and H_1 can be calculated
 - $\Pr(\theta \in \Omega_0 | \mathbf{x}) = \Pr(H_0 \text{ is true})$
 - $\Pr(\theta \in \Omega_0^c | \mathbf{x}) = \Pr(H_1 \text{ is true})$

- Hypothesis testing problems can be formulated in a Bayesian model
- Bayesian model includes
 - Sampling distribution $f(\mathbf{x}|\theta)$
 - Prior distribution $\pi(\theta)$
- Bayesian hypothesis testing is based on the posterior probability
 - In Frequentist's framework, posterior probability cannot be calculated.
 - In Bayesian framework, the probability of H_0 and H_1 can be calculated
 - $\Pr(\theta \in \Omega_0 | \mathbf{x}) = \Pr(H_0 \text{ is true})$
 - $\Pr(\theta \in \Omega_0^c | \mathbf{x}) = \Pr(H_1 \text{ is true})$
 - Rejection region can be determined directly based on the posterior probability

Frequentist's Framework

• θ is considered to be a fixed number

7 / 34

Frequentist's Framework

- θ is considered to be a fixed number
- Consequently, a hypothesis is either true of false

Frequentist's Framework

- θ is considered to be a fixed number
- Consequently, a hypothesis is either true of false
 - If $\theta \in \Omega_0$, $\Pr(H_0 \text{ is true}|\mathbf{x}) = 1$ and $\Pr(H_1 \text{ is true}|\mathbf{x}) = 0$
 - If $\theta \in \Omega_0^c$, $\Pr(H_0 \text{ is true}|\mathbf{x}) = 0$ and $\Pr(H_1 \text{ is true}|\mathbf{x}) = 1$

Bayesian Framework

• $\Pr(H_0 \text{ is } \text{true}|\mathbf{x}) \text{ and } \Pr(H_1 \text{ is } \text{true}|\mathbf{x}) \text{ are function of } \mathbf{x}, \text{ between } 0$ and 1.

Frequentist's Framework

- θ is considered to be a fixed number
- Consequently, a hypothesis is either true of false
 - If $\theta \in \Omega_0$, $\Pr(H_0 \text{ is true}|\mathbf{x}) = 1$ and $\Pr(H_1 \text{ is true}|\mathbf{x}) = 0$
 - If $\theta \in \Omega_0^c$, $\Pr(H_0 \text{ is true}|\mathbf{x}) = 0$ and $\Pr(H_1 \text{ is true}|\mathbf{x}) = 1$

Bayesian Framework

- $\Pr(H_0 \text{ is } \text{true}|\mathbf{x}) \text{ and } \Pr(H_1 \text{ is } \text{true}|\mathbf{x}) \text{ are function of } \mathbf{x}, \text{ between 0}$ and 1.
- These probabilities give useful information about the veracity of H_0 and H_1 .

A neutral test between \mathcal{H}_0 and \mathcal{H}_1

A neutral test between H_0 and H_1

- Accept H_0 is $\Pr(\theta \in \Omega_0 | \mathbf{x}) \ge \Pr(\theta \in \Omega_0^c | \mathbf{x})$
- Reject H_0 is $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$

A neutral test between H_0 and H_1

- Accept H_0 is $\Pr(\theta \in \Omega_0 | \mathbf{x}) \ge \Pr(\theta \in \Omega_0^c | \mathbf{x})$
- Reject H_0 is $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$
- In other words, the rejection region is $\{\mathbf{x}: \Pr(\theta \in \Omega_0^c | \mathbf{x}) > \frac{1}{2}\}$

A neutral test between H_0 and H_1

- Accept H_0 is $\Pr(\theta \in \Omega_0 | \mathbf{x}) \ge \Pr(\theta \in \Omega_0^c | \mathbf{x})$
- Reject H_0 is $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$
- In other words, the rejection region is $\{\mathbf x:\Pr(\theta\in\Omega_0^c|\mathbf x)>\frac12\}$

A more conservative (smaller size) test in rejecting H_0

- Reject H_0 is $\Pr(\theta \in \Omega_0^c | \mathbf{x}) > 0.99$
- Accept H_0 is $\Pr(\theta \in \Omega_0^c | \mathbf{x}) \le 0.99$

Problem

Let X_1, \cdots, X_n be iid samples $\mathcal{N}(\theta, \sigma^2)$ and let the prior distribution of θ be $\mathcal{N}(\mu, \tau^r)$, where σ^2, μ , and τ^2 are known.

Problem

Let X_1, \dots, X_n be iid samples $\mathcal{N}(\theta, \sigma^2)$ and let the prior distribution of θ be $\mathcal{N}(\mu, \tau^r)$, where σ^2, μ , and τ^2 are known. Construct a Bayesian test rejecting H_0 if and only if $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$

Problem

Let X_1, \dots, X_n be iid samples $\mathcal{N}(\theta, \sigma^2)$ and let the prior distribution of θ be $\mathcal{N}(\mu, \tau^r)$, where σ^2, μ , and τ^2 are known. Construct a Bayesian test rejecting H_0 if and only if $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$

Solution

Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. From previous lectures, the posterior is

Problem

Let X_1, \cdots, X_n be iid samples $\mathcal{N}(\theta, \sigma^2)$ and let the prior distribution of θ be $\mathcal{N}(\mu, \tau^r)$, where σ^2, μ , and τ^2 are known. Construct a Bayesian test rejecting H_0 if and only if $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$

Solution

Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. From previous lectures, the posterior is

$$\pi(\theta|\mathbf{x}) \sim \mathcal{N}\left(\frac{n\tau^2\overline{x} + \sigma^2\mu}{n\tau^2 + \sigma^2}, \frac{\sigma^2\tau^2}{n\tau^2 + \sigma^2}\right)$$

Problem

Let X_1, \dots, X_n be iid samples $\mathcal{N}(\theta, \sigma^2)$ and let the prior distribution of θ be $\mathcal{N}(\mu, \tau^r)$, where σ^2, μ , and τ^2 are known. Construct a Bayesian test rejecting H_0 if and only if $\Pr(\theta \in \Omega_0 | \mathbf{x}) < \Pr(\theta \in \Omega_0^c | \mathbf{x})$

Solution

Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. From previous lectures, the posterior is

$$\pi(\theta|\mathbf{x}) \sim \mathcal{N}\left(\frac{n\tau^2\overline{x} + \sigma^2\mu}{n\tau^2 + \sigma^2}, \frac{\sigma^2\tau^2}{n\tau^2 + \sigma^2}\right)$$

We will reject H_0 if and only if

$$\Pr(\theta \in \Omega_0 | \mathbf{x}) = \Pr(\theta \le \theta_0 | \mathbf{x}) < \frac{1}{2}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 久 ()

Solution (cont'd)

Because $\pi(\theta|\mathbf{x})$ is symmetric, this is true if and only if the mean for $\pi(\theta|\mathbf{x})$ is less than or equal to θ_0 . Therefore, H_0 will be rejected if

Solution (cont'd)

Because $\pi(\theta|\mathbf{x})$ is symmetric, this is true if and only if the mean for $\pi(\theta|\mathbf{x})$ is less than or equal to θ_0 . Therefore, H_0 will be rejected if

$$\frac{n\tau^2\overline{x} + \sigma^2\mu}{n\tau^2 + \sigma^2} < \theta_0$$

Solution (cont'd)

Because $\pi(\theta|\mathbf{x})$ is symmetric, this is true if and only if the mean for $\pi(\theta|\mathbf{x})$ is less than or equal to θ_0 . Therefore, H_0 will be rejected if

$$\frac{n\tau^2 \overline{x} + \sigma^2 \mu}{n\tau^2 + \sigma^2} < \theta_0$$

$$\overline{x} < \theta_0 + \frac{\sigma^2 (\theta_0 - \mu)}{n\tau^2}$$

Confidence interval and the parameter

Frequentist's view of intervals

Frequentist's view of intervals

• We have carefully said that the interval covers the parameter

Frequentist's view of intervals

- We have carefully said that the interval covers the parameter
- not that the parameter is inside the interval, on purpose.

11 / 34

Frequentist's view of intervals

- We have carefully said that the interval covers the parameter
- not that the parameter is *inside* the interval, on purpose.
- The random quantity is the interval, not the parameter

Frequentist's view of intervals

- We have carefully said that the interval covers the parameter
- not that the parameter is *inside* the interval, on purpose.
- The random quantity is the interval, not the parameter

Example

• A 95% confidence interval for θ is $.262 \le \theta \le 1.184$

Frequentist's view of intervals

- We have carefully said that the interval covers the parameter
- not that the parameter is inside the interval, on purpose.
- The random quantity is the interval, not the parameter

Example

- A 95% confidence interval for θ is $.262 \le \theta \le 1.184$
- "The probability that θ is in the interval [.262,1.184] is 95%" : Incorrect, because the parameter is assumed fixed

Frequentist's view of intervals

- We have carefully said that the interval covers the parameter
- not that the parameter is *inside* the interval, on purpose.
- The random quantity is the interval, not the parameter

Example

- A 95% confidence interval for θ is $.262 \le \theta \le 1.184$
- "The probability that θ is in the interval [.262,1.184] is 95%" : Incorrect, because the parameter is assumed fixed
- Formally, the interval [.262,1.184] is one of the possible realized values of the random intervals (depending on the observed data)

Bayesian interpretation of intervals

• Bayesian setup allows us to say that θ is inside [.262, 1.184] with some probability.

Bayesian interpretation of intervals

- Bayesian setup allows us to say that θ is inside [.262, 1.184] with some probability.
- Under Bayesian model, θ is a random variable with a probability distribution.

Bayesian interpretation of intervals

- Bayesian setup allows us to say that θ is inside [.262, 1.184] with some probability.
- Under Bayesian model, θ is a random variable with a probability distribution.
- All Bayesian claims of coverage are made with respect to the posterior distribution of the parameter.

 To distinguish Bayesian estimates of coverage, we use credible sets rather than confidence sets

- To distinguish Bayesian estimates of coverage, we use credible sets rather than confidence sets
- If $\pi(\theta|\mathbf{x})$ is a posterior distribution, for any set $A \subset \Omega$

- To distinguish Bayesian estimates of coverage, we use credible sets rather than confidence sets
- If $\pi(\theta|\mathbf{x})$ is a posterior distribution, for any set $A\subset\Omega$
 - The credible probability of A is $\Pr(\theta \in A | \mathbf{x}) = \int_A \pi(\theta | \mathbf{x}) d\theta$

- To distinguish Bayesian estimates of coverage, we use credible sets rather than confidence sets
- If $\pi(\theta|\mathbf{x})$ is a posterior distribution, for any set $A\subset\Omega$
 - The credible probability of A is $\Pr(\theta \in A|\mathbf{x}) = \int_{A} \pi(\theta|\mathbf{x}) d\theta$
 - and A is a credible set (or creditable interval) for θ .

- To distinguish Bayesian estimates of coverage, we use credible sets rather than confidence sets
- If $\pi(\theta|\mathbf{x})$ is a posterior distribution, for any set $A \subset \Omega$
 - The credible probability of A is $\Pr(\theta \in A|\mathbf{x}) = \int_{\Delta} \pi(\theta|\mathbf{x}) d\theta$
 - and A is a credible set (or creditable interval) for θ .
- Both the interpretation and construction of the Bayes credible set are more straightforward than those of a classical confidence set, but with additional assumptions (for Bayesian framework).

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$ and assume that $\lambda \sim \operatorname{Gamma}(a, b)$. Find a 90% credible set for λ .

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$ and assume that $\lambda \sim \operatorname{Gamma}(a, b)$. Find a 90% credible set for λ .

Solution

The posterior pdf of λ becomes

$$\pi(\lambda|\mathbf{x}) = \operatorname{Gamma}\left(a + \sum x_i, [n + (1/b)]^{-1}\right)$$

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$ and assume that $\lambda \sim \operatorname{Gamma}(a, b)$. Find a 90% credible set for λ .

Solution

The posterior pdf of λ becomes

$$\pi(\lambda|\mathbf{x}) = \operatorname{Gamma}\left(a + \sum x_i, [n + (1/b)]^{-1}\right)$$

If we simply split the α equally between the upper and lower endpoints,

$$\frac{2(nb+1)}{b}\lambda \sim \chi^2_{2(a+\sum x_i)}$$
 (if a is an integer)

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$ and assume that $\lambda \sim \operatorname{Gamma}(a, b)$. Find a 90% credible set for λ .

Solution

The posterior pdf of λ becomes

$$\pi(\lambda|\mathbf{x}) = \operatorname{Gamma}\left(a + \sum x_i, [n + (1/b)]^{-1}\right)$$

If we simply split the α equally between the upper and lower endpoints,

$$\frac{2(nb+1)}{b}\lambda \sim \chi^2_{2(a+\sum x_i)}$$
 (if a is an integer)

Therefore, a $1-\alpha$ confidence interval is

$$\left\{\lambda: \frac{b}{2(nb+1)}\chi^2_{2(\sum x_i+a),1-\alpha/2} \leq \lambda \leq \frac{b}{2(nb+1)}\chi^2_{2(\sum x_i+a),\alpha/2}\right\}$$

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$ and assume that $\lambda \sim \operatorname{Gamma}(a, b)$. Find a 90% credible set for λ .

Solution

The posterior pdf of λ becomes

$$\pi(\lambda|\mathbf{x}) = \operatorname{Gamma}\left(a + \sum x_i, [n + (1/b)]^{-1}\right)$$

If we simply split the α equally between the upper and lower endpoints,

$$\frac{2(nb+1)}{b}\lambda \sim \chi^2_{2(a+\sum x_i)}$$
 (if a is an integer)

Therefore, a $1-\alpha$ confidence interval is

$$\left\{\lambda: \frac{b}{2(nb+1)}\chi^2_{2(\sum x_i+a),1-\alpha/2} \leq \lambda \leq \frac{b}{2(nb+1)}\chi^2_{2(\sum x_i+a),\alpha/2}\right\}$$

Hyun Min Kang

It is important not to confuse credible probability with coverage probability

- It is important not to confuse credible probability with coverage probability
- Credible probabilities are the Bayes posterior probability, which reflects the experimenter's subjective beliefs, as expressed in the prior distribution.

- It is important not to confuse credible probability with coverage probability
- Credible probabilities are the Bayes posterior probability, which reflects the experimenter's subjective beliefs, as expressed in the prior distribution.
 - A Bayesian assertion of 90% coverage means that the experimenter, upon combining prior knowledge with data, is 90% sure of coverage

- It is important not to confuse credible probability with coverage probability
- Credible probabilities are the Bayes posterior probability, which reflects the experimenter's subjective beliefs, as expressed in the prior distribution.
 - A Bayesian assertion of 90% coverage means that the experimenter, upon combining prior knowledge with data, is 90% sure of coverage
- Coverage probability reflects the uncertainty in the sampling procedure, getting its probability from the objective mechanism of repeated experimental trials.

- It is important not to confuse credible probability with coverage probability
- Credible probabilities are the Bayes posterior probability, which reflects the experimenter's subjective beliefs, as expressed in the prior distribution.
 - A Bayesian assertion of 90% coverage means that the experimenter, upon combining prior knowledge with data, is 90% sure of coverage
- Coverage probability reflects the uncertainty in the sampling procedure, getting its probability from the objective mechanism of repeated experimental trials.
 - A classical assertion of 90% coverage means that in a long sequence of identical trials, 90% of the realized confidence sets will cover the true parameter.

P1 ●00

Practice Problem 1 (from last lecture)

Problem

Suppose X_1, \dots, X_n are iid samples from $f(x|\theta) = \theta \exp(-\theta x)$. Suppose the prior distribution of θ is

$$\pi(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$

where α, β are known.

(a) Derive the posterior distribution of θ .

Practice Problem 1 (from last lecture)

Problem

Suppose X_1, \dots, X_n are iid samples from $f(x|\theta) = \theta \exp(-\theta x)$. Suppose the prior distribution of θ is

$$\pi(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$

where α, β are known.

- (a) Derive the posterior distribution of θ .
- (b) If we use the loss function $L(\theta, a) = (a \theta)^2$, what is the Bayes rule estimator for θ ?

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$
$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^n \exp\left(-\theta \sum_{i=1}^{n} x_i\right)$$

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^n \exp\left(-\theta \sum_{i=1}^{n} x_i\right)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha+n-1} \exp\left[-\theta \left(1/\beta + \sum_{i=1}^{n} x_i\right)\right]$$

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^n \exp\left(-\theta \sum_{i=1}^{n} x_i\right)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha+n-1} \exp\left[-\theta \left(1/\beta + \sum_{i=1}^{n} x_i\right)\right]$$

$$\propto \text{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} \left[\theta \exp\left(-\theta x_{i}\right)\right]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^{n} \exp\left(-\theta \sum_{i=1}^{n} x_{i}\right)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha+n-1} \exp\left[-\theta \left(1/\beta + \sum_{i=1}^{n} x_{i}\right)\right]$$

$$\propto \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_{i}}\right)$$

$$\pi(\theta|\mathbf{x}) = \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_{i}}\right)$$

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that the mean of $Gamma(\alpha, \beta)$ is $\alpha\beta$.

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that the mean of $\operatorname{Gamma}(\alpha,\beta)$ is $\alpha\beta$.

$$\pi(\theta|\mathbf{x}) = \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

000

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that the mean of $\operatorname{Gamma}(\alpha,\beta)$ is $\alpha\beta$.

$$\pi(\theta|\mathbf{x}) = \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

$$E[\theta|\mathbf{x}] = E[\pi(\theta|\mathbf{x})]$$

$$= \frac{\alpha + n - 1}{\beta^{-1} + \sum_{i=1}^{n} x_i}$$

Practice Problem 2

Problem

Suppose X_1, \dots, X_n are iid random samples from Gamma distribution with parameter $(3, \theta)$, which has the pdf

$$f(x|\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta} \qquad (x > 0)$$

You may use the result that $2\sum_{i=1}^{n} X_i/\theta \sim \chi_{6n}^2$.

Problem

Suppose X_1, \dots, X_n are iid random samples from Gamma distribution with parameter $(3, \theta)$, which has the pdf

$$f(x|\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta} \qquad (x > 0)$$

You may use the result that $2\sum_{i=1}^n X_i/\theta \sim \chi_{6n}^2$.

(a) Derive the asymptotic size α LRT for testing $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$.

•0000000

Practice Problem 2

Problem

Suppose X_1, \dots, X_n are iid random samples from Gamma distribution with parameter $(3, \theta)$, which has the pdf

$$f(x|\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta} \qquad (x > 0)$$

You may use the result that $2\sum_{i=1}^{n} X_i/\theta \sim \chi_{6n}^2$.

- (a) Derive the asymptotic size α LRT for testing $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0.$
- (b) Derive the UMP level α test for $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, where $\theta_1 > \theta_0$.

Problem

Suppose X_1, \dots, X_n are iid random samples from Gamma distribution with parameter $(3, \theta)$, which has the pdf

$$f(x|\theta) = \frac{1}{2\theta^3} x^2 e^{-x/\theta} \qquad (x > 0)$$

You may use the result that $2\sum_{i=1}^n X_i/\theta \sim \chi_{6n}^2$.

- (a) Derive the asymptotic size α LRT for testing $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$.
- (b) Derive the UMP level α test for $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, where $\theta_1 > \theta_0$.
- (c) Derive the UMP level α test for $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$.

ロト (個) (意) (意) (意) の(で

$$L(\theta|\mathbf{x}) =$$

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \left[\frac{1}{2\theta^3} x_i^2 e^{-x_i/\theta} \right]$$

$$l(\theta|\mathbf{x}) = \sum_{i=1}^{n} \left[-\log 2 - 3\log \theta + 2\log x_i - \frac{x_i}{\theta} \right]$$

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \left[\frac{1}{2\theta^{3}} x_{i}^{2} e^{-x_{i}/\theta} \right]$$

$$l(\theta|\mathbf{x}) = \sum_{i=1}^{n} \left[-\log 2 - 3\log \theta + 2\log x_{i} - \frac{x_{i}}{\theta} \right]$$

$$= -n\log 2 - 3n\log \theta + 2\sum_{i=1}^{n} \log x_{i} - \frac{1}{\theta}\sum_{i=1}^{n} x_{i}$$

$$\begin{split} L(\theta|\mathbf{x}) &= \prod_{i=1}^n \left[\frac{1}{2\theta^3} x_i^2 e^{-x_i/\theta} \right] \\ l(\theta|\mathbf{x}) &= \sum_{i=1}^n \left[-\log 2 - 3\log \theta + 2\log x_i - \frac{x_i}{\theta} \right] \\ &= -n\log 2 - 3n\log \theta + 2\sum_{i=1}^n \log x_i - \frac{1}{\theta} \sum_{i=1}^n x_i \\ l'(\theta|\mathbf{x}) &= -\frac{3n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n x_i = 0 \end{split}$$

P2

$$\begin{split} L(\theta|\mathbf{x}) &= \prod_{i=1}^n \left[\frac{1}{2\theta^3} x_i^2 e^{-x_i/\theta} \right] \\ l(\theta|\mathbf{x}) &= \sum_{i=1}^n \left[-\log 2 - 3\log \theta + 2\log x_i - \frac{x_i}{\theta} \right] \\ &= -n\log 2 - 3n\log \theta + 2\sum_{i=1}^n \log x_i - \frac{1}{\theta} \sum_{i=1}^n x_i \\ l'(\theta|\mathbf{x}) &= -\frac{3n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n x_i = 0 \\ \hat{\theta} &= \frac{1}{3n} \sum_{i=1}^n x_i \end{split}$$

$$l''(\theta|\mathbf{x})\big|_{\theta=\hat{\theta}} = \frac{3n}{\theta^2} - \frac{2}{\theta^3} \sum_{i=1}^n x_i \bigg|_{\theta=\hat{\theta}}$$

$$l''(\theta|\mathbf{x})\big|_{\theta=\hat{\theta}} = \frac{3n}{\theta^2} - \frac{2}{\theta^3} \sum_{i=1}^n x_i \bigg|_{\theta=\hat{\theta}}$$
$$= \frac{3n}{\hat{\theta}^2} - \frac{6n}{\hat{\theta}^2} < 0$$

$$l''(\theta|\mathbf{x})\big|_{\theta=\hat{\theta}} = \frac{3n}{\theta^2} - \frac{2}{\theta^3} \sum_{i=1}^n x_i \bigg|_{\theta=\hat{\theta}}$$
$$= \frac{3n}{\hat{\theta}^2} - \frac{6n}{\hat{\theta}^2} < 0$$

Because $L(\theta|\mathbf{x}) \to 0$ as θ approaches zero or infinity, $\hat{\theta} = \frac{1}{3n} \sum_{i=1}^{n} x_i$.

$$-2\log\lambda(\mathbf{x}) = -2\left[l(\theta_0|\mathbf{x}) - l(\hat{\theta}|\mathbf{x})\right]$$

$$-2\log \lambda(\mathbf{x}) = -2\left[l(\theta_0|\mathbf{x}) - l(\hat{\theta}|\mathbf{x})\right]$$
$$= 6n\log \theta_0 + \frac{2}{\theta_0}\sum x_i - 6n\log \hat{\theta} - \frac{2}{\hat{\theta}}\sum x_i$$

$$-2\log \lambda(\mathbf{x}) = -2\left[l(\theta_0|\mathbf{x}) - l(\hat{\theta}|\mathbf{x})\right]$$

$$= 6n\log \theta_0 + \frac{2}{\theta_0} \sum x_i - 6n\log \hat{\theta} - \frac{2}{\hat{\theta}} \sum x_i$$

$$= 6n\log \theta_0 + \frac{2}{\theta_0} \sum x_i - 6n\log \left(\frac{1}{3n} \sum x_i\right) - 6n > \chi_{1,\alpha}^2$$

$$\begin{aligned}
-2\log\lambda(\mathbf{x}) &= -2\left[l(\theta_0|\mathbf{x}) - l(\hat{\theta}|\mathbf{x})\right] \\
&= 6n\log\theta_0 + \frac{2}{\theta_0}\sum x_i - 6n\log\hat{\theta} - \frac{2}{\hat{\theta}}\sum x_i \\
&= 6n\log\theta_0 + \frac{2}{\theta_0}\sum x_i - 6n\log\left(\frac{1}{3n}\sum x_i\right) - 6n > \chi_{1,\alpha}^2
\end{aligned}$$

$$R = \left\{ \mathbf{x} : \frac{2}{\theta_0} \sum x_i - 6n \log \sum x_i > \chi_{1,\alpha}^2 + 6n[1 - \log(3n\theta_0)] \right\}$$

The rejection region of asymptotic size α LRT is

$$-2\log \lambda(\mathbf{x}) = -2\left[l(\theta_0|\mathbf{x}) - l(\hat{\theta}|\mathbf{x})\right]$$

$$= 6n\log \theta_0 + \frac{2}{\theta_0} \sum x_i - 6n\log \hat{\theta} - \frac{2}{\hat{\theta}} \sum x_i$$

$$= 6n\log \theta_0 + \frac{2}{\theta_0} \sum x_i - 6n\log \left(\frac{1}{3n} \sum x_i\right) - 6n > \chi_{1,\alpha}^2$$

$$R = \left\{ \mathbf{x} : \frac{2}{\theta_0} \sum x_i - 6n \log \sum x_i > \chi_{1,\alpha}^2 + 6n[1 - \log(3n\theta_0)] \right\}$$
$$= \left\{ \mathbf{x} : \sum x_i - 3n\theta_0 \log \sum x_i > \frac{\theta_0}{2} \chi_{1,\alpha}^2 + 3n\theta_0 [1 - \log(3n\theta_0)] \right\}$$

- (ロ) (個) (重) (重) (重) のQで

For
$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$,

00000000

Solution (b) - UMP level α test for simple hypothesis

For
$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$,

$$\frac{L(\theta_1|\mathbf{x})}{L(\theta_0|\mathbf{x})} = \frac{\frac{1}{2^n\theta_1^{3n}}\exp\left[-\frac{\sum x_i}{\theta_1}\right]\prod x_i^2}{\frac{1}{2^n\theta_0^{3n}}\exp\left[-\frac{\sum x_i}{\theta_0}\right]\prod x_i^2}$$

For
$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$,

$$\frac{L(\theta_1|\mathbf{x})}{L(\theta_0|\mathbf{x})} = \frac{\frac{1}{2^n \theta_1^{3n}} \exp\left[-\frac{\sum x_i}{\theta_1}\right] \prod x_i^2}{\frac{1}{2^n \theta_0^{3n}} \exp\left[-\frac{\sum x_i}{\theta_0}\right] \prod x_i^2}$$

$$= \left(\frac{\theta_0}{\theta_1}\right)^{3n} \exp\left[\frac{\theta_1 - \theta_0}{\theta_0 \theta_1} \sum x_i\right]$$

Solution (b) - UMP level α test (cont'd)

Let $T = \sum X_i$. Then under H_0 , $\frac{2}{\theta_0} T \sim \chi_{6n}^2$.

Solution (b) - UMP level α test (cont'd)

Let $T = \sum X_i$. Then under H_0 , $\frac{2}{\theta_0} T \sim \chi^2_{6n}$.

$$\alpha = \Pr\left[\left(\frac{\theta_0}{\theta_1}\right)^{3n} \exp\left[\frac{\theta_1 - \theta_0}{\theta_0 \theta_1} T\right] > k\right]$$
$$= \Pr(T > k^*)$$

Solution (b) - UMP level α test (cont'd)

Let $T = \sum X_i$. Then under H_0 , $\frac{2}{\theta_0} T \sim \chi_{6n}^2$.

$$\alpha = \Pr\left[\left(\frac{\theta_0}{\theta_1} \right)^{3n} \exp\left[\frac{\theta_1 - \theta_0}{\theta_0 \theta_1} T \right] > k \right]$$
$$= \Pr(T > k^*)$$

So, the rejection region is

$$R = \left\{ \mathbf{x} : T(\mathbf{x}) = \sum x_i > \frac{\theta_0}{2} \chi_{6n,\alpha}^2 \right\}$$

We need to check whether T has MLR. Because $Y = 2T/\theta \sim \chi_{6n}^2$.

We need to check whether T has MLR. Because $Y = 2T/\theta \sim \chi_{6n}^2$.

$$f_{Y}(y|\theta) = \frac{1}{2^{3n}\Gamma(3n)}y^{3n-1}e^{-y/2}$$

$$f_{T}(t|\theta) = \frac{1}{2^{3n-1}\Gamma(3n)\theta} \left(\frac{2t}{\theta}\right)^{3n-1}e^{-t/\theta} = \frac{1}{\Gamma(3n)\theta} \left(\frac{t}{\theta}\right)^{3n-1}e^{-t/\theta}$$

We need to check whether T has MLR. Because $Y = 2T/\theta \sim \chi_{6n}^2$.

$$f_{Y}(y|\theta) = \frac{1}{2^{3n}\Gamma(3n)}y^{3n-1}e^{-y/2}$$

$$f_{T}(t|\theta) = \frac{1}{2^{3n-1}\Gamma(3n)\theta} \left(\frac{2t}{\theta}\right)^{3n-1}e^{-t/\theta} = \frac{1}{\Gamma(3n)\theta} \left(\frac{t}{\theta}\right)^{3n-1}e^{-t/\theta}$$

For arbitrary $\theta_1 < \theta_2$,

$$\frac{f_T(t|\theta_2)}{f_T(t|\theta_1)} \ = \ \frac{\frac{1}{\Gamma(3n)\theta_2} \left(\frac{t}{\theta_2}\right)^{3n-1} e^{-t/\theta_2}}{\frac{1}{\Gamma(3n)\theta_1} \left(\frac{t}{\theta_1}\right)^{3n-1} e^{-t/\theta_1}} = \left(\frac{\theta_1}{\theta_2}\right)^{3n} \exp\left[\frac{\theta_2 - \theta_1}{\theta_1\theta_2} t\right]$$

We need to check whether T has MLR. Because $Y = 2\,T/\theta \sim \chi_{6n}^2$.

$$f_Y(y|\theta) = \frac{1}{2^{3n}\Gamma(3n)}y^{3n-1}e^{-y/2}$$

$$f_T(t|\theta) = \frac{1}{2^{3n-1}\Gamma(3n)\theta} \left(\frac{2t}{\theta}\right)^{3n-1}e^{-t/\theta} = \frac{1}{\Gamma(3n)\theta} \left(\frac{t}{\theta}\right)^{3n-1}e^{-t/\theta}$$

For arbitrary $\theta_1 < \theta_2$,

$$\frac{f_T(t|\theta_2)}{f_T(t|\theta_1)} = \frac{\frac{1}{\Gamma(3n)\theta_2} \left(\frac{t}{\theta_2}\right)^{3n-1} e^{-t/\theta_2}}{\frac{1}{\Gamma(3n)\theta_1} \left(\frac{t}{\theta_1}\right)^{3n-1} e^{-t/\theta_1}} = \left(\frac{\theta_1}{\theta_2}\right)^{3n} \exp\left[\frac{\theta_2 - \theta_1}{\theta_1 \theta_2} t\right]$$

is an increasing function of t. This T has MLR property.

Solution (c) - Constructing UMP level α test

Because T has MLR property, UMP level α test for $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ has a rejection region T > k, and $\Pr(T > k) = \alpha$.

Solution (c) - Constructing UMP level α test

Because T has MLR property, UMP level α test for $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ has a rejection region T > k, and $\Pr(T > k) = \alpha$. Therefore, the UMP level α test is identical to the answer of part (b), whose rejection is

Solution (c) - Constructing UMP level α test

Because T has MLR property, UMP level α test for $H_0:\theta\leq\theta_0$ vs. $H_1:\theta>\theta_0$ has a rejection region T>k, and $\Pr(T>k)=\alpha$. Therefore, the UMP level α test is identical to the answer of part (b), whose rejection is

$$R = \left\{ \mathbf{x} : T(\mathbf{x}) = \sum x_i > \frac{\theta_0}{2} \chi_{6n,\alpha}^2 \right\}$$

Problem

Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random samples from a bivariate normal

$$\begin{pmatrix} X_i \\ Y_i \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix} \right)$$

We are interested in testing $H_0: \mu_X = \mu_Y$ vs. $H_1: \mu_X \neq \mu_Y$.

Problem

Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random samples from a bivariate normal $\begin{pmatrix} X_i \\ Y_i \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix} \right)$

We are interested in testing $H_0: \mu_X = \mu_Y$ vs. $H_1: \mu_X \neq \mu_Y$.

(a) Show that the random variables $W_i = X_i - Y_i$ are iid $\mathcal{N}(\mu_W, \sigma_W^2)$.

Problem

Let $(X_1, Y_1), \cdots, (X_n, Y_n)$ be a random samples from a bivariate normal $\begin{pmatrix} X_i \\ Y_i \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix} \right)$

We are interested in testing $H_0: \mu_X = \mu_Y$ vs. $H_1: \mu_X \neq \mu_Y$.

- (a) Show that the random variables $W_i = X_i Y_i$ are iid $\mathcal{N}(\mu_W, \sigma_W^2)$.
- (b) Show that the above hypothesis can be tested with the statistic

Problem

Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random samples from a bivariate normal $\begin{pmatrix} X_i \\ Y_i \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix} \right)$

We are interested in testing $H_0: \mu_X = \mu_Y \text{ vs. } H_1: \mu_X \neq \mu_Y.$

- (a) Show that the random variables $W_i = X_i Y_i$ are iid $\mathcal{N}(\mu_W, \sigma_W^2)$.
- (b) Show that the above hypothesis can be tested with the statistic

$$T_W = \frac{\overline{W}}{\sqrt{S_W^2/n}}$$

Problem

Let $(X_1, Y_1), \cdots, (X_n, Y_n)$ be a random samples from a bivariate normal $\begin{pmatrix} X_i \\ Y_i \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix} \right)$

We are interested in testing $H_0: \mu_X = \mu_Y$ vs. $H_1: \mu_X \neq \mu_Y$.

- (a) Show that the random variables $W_i = X_i Y_i$ are iid $\mathcal{N}(\mu_W, \sigma_W^2)$.
- (b) Show that the above hypothesis can be tested with the statistic

$$T_W = \frac{\overline{W}}{\sqrt{S_W^2/n}}$$

where $\overline{W}=\frac{1}{n}\sum_{i=1}^n W_i$ and $S_W^2=\frac{1}{n-1}\sum_{i=1}^n (W_i-\overline{W})^2$. Furthermore, show that, under H_0 , T_W follows the Student's t distribution with n-1 degrees of freedom.

Solution (a)

To solve Problem (a), we first need to know that, if $\mathbf{Z} \sim \mathcal{N}(\mathbf{m}, \Sigma)$, then

$$A\mathbf{Z} \sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

To solve Problem (a), we first need to know that, if $\mathbf{Z} \sim \mathcal{N}(\mathbf{m}, \Sigma)$, then

$$A\mathbf{Z} \sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

Let
$$\mathbf{Z} = [X_i \ Y_i]^T$$
, $\mathbf{m} = [\mu_X \ \mu_Y]^T$, and $A = [1 \ -1]$. Then

To solve Problem (a), we first need to know that, if $\mathbf{Z} \sim \mathcal{N}(\mathbf{m}, \Sigma)$, then

$$A\mathbf{Z} \sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

Let
$$\mathbf{Z} = [X_i \ Y_i]^T$$
, $\mathbf{m} = [\mu_X \ \mu_Y]^T$, and $A = [1 \ -1]$. Then

$$AZ = X_i - Y_i = W_i$$

To solve Problem (a), we first need to know that, if $\mathbf{Z} \sim \mathcal{N}(\mathbf{m}, \Sigma)$, then

$$A\mathbf{Z} \sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

Let $\mathbf{Z} = [X_i \ Y_i]^T$, $\mathbf{m} = [\mu_X \ \mu_Y]^T$, and $A = [1 \ -1]$. Then

$$AZ = X_i - Y_i = W_i$$
$$\sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

To solve Problem (a), we first need to know that, if $\mathbf{Z} \sim \mathcal{N}(\mathbf{m}, \Sigma)$, then

$$A\mathbf{Z} \sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

Let $\mathbf{Z} = [X_i \ Y_i]^T$, $\mathbf{m} = [\mu_X \ \mu_Y]^T$, and $A = [1 \ -1]$. Then

$$AZ = X_i - Y_i = W_i$$

$$\sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

$$= \mathcal{N}(\mu_X - \mu_Y, \sigma_X^2 - 2\rho\sigma_X\sigma_Y + \sigma_Y^2)$$

To solve Problem (a), we first need to know that, if $\mathbf{Z} \sim \mathcal{N}(\mathbf{m}, \Sigma)$, then

$$A\mathbf{Z} \sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

Let $\mathbf{Z} = [X_i \ Y_i]^T$, $\mathbf{m} = [\mu_X \ \mu_Y]^T$, and $A = [1 \ -1]$. Then

$$AZ = X_i - Y_i = W_i$$

$$\sim \mathcal{N}(A\mathbf{m}, A\Sigma A^T)$$

$$= \mathcal{N}(\mu_X - \mu_Y, \sigma_X^2 - 2\rho\sigma_X\sigma_Y + \sigma_Y^2)$$

$$= \mathcal{N}(\mu_W, \sigma_W^2)$$

Because $\mu_W = \mu_X - \mu_Y$, testing

$$H_0: \mu_X = \mu_Y$$
 vs. $H_1: \mu_X \neq \mu_Y$

is equivalent to testing

$$H_0: \mu_W = 0$$
 vs. $H_1: \mu_W \neq 0$

Because $\mu_W = \mu_X - \mu_Y$, testing

$$H_0: \mu_X = \mu_Y$$
 vs. $H_1: \mu_X \neq \mu_Y$

is equivalent to testing

$$H_0: \mu_W = 0$$
 vs. $H_1: \mu_W \neq 0$

When $U_i \sim \mathcal{N}(\mu, \sigma^2)$ and both mean and variance are unknown, we know that LRT testing $H_0: \mu = \mu_0$ vs. $H_0: \mu \neq \mu_0$ follows that

Because $\mu_W = \mu_X - \mu_Y$, testing

$$H_0: \mu_X = \mu_Y$$
 vs. $H_1: \mu_X \neq \mu_Y$

is equivalent to testing

$$H_0: \mu_W = 0$$
 vs. $H_1: \mu_W \neq 0$

When $U_i \sim \mathcal{N}(\mu, \sigma^2)$ and both mean and variance are unknown, we know that LRT testing $H_0: \mu = \mu_0$ vs. $H_0: \mu \neq \mu_0$ follows that

$$T_U = \frac{\overline{U} - \mu_0}{\sqrt{S_U^2/n}}$$

and T_{II} follows T_{n-1} under H_0 .

Solution (b) (cont'd)

Therefore, the LRT test for the original test, $H_0: \mu_W = 0$ vs. $H_1: \mu_W \neq 0$ is

$$T_W = \frac{\overline{W}}{\sqrt{S_W^2/n}}$$

and T_W follows T_{n-1} under H_0 .

Practice Problem 4

Problem

Let $f(x|\theta)$ be the logistic location pdf

$$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2} - \infty < x < \infty, -\infty < \theta < \infty$$

Practice Problem 4

Problem

Let $f(x|\theta)$ be the logistic location pdf

$$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2} - \infty < x < \infty, -\infty < \theta < \infty$$

(a) Show that this family has an MLR

Practice Problem 4

Problem

Let $f(x|\theta)$ be the logistic location pdf

$$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2} - \infty < x < \infty, -\infty < \theta < \infty$$

- (a) Show that this family has an MLR
- (b) Based on one observation X, find the most powerful size α test of $H_0: \theta = 0$ versus $H_1: \theta = 1$.

P4 ●000

Practice Problem 4

Problem

Let $f(x|\theta)$ be the logistic location pdf

$$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2} - \infty < x < \infty, -\infty < \theta < \infty$$

- (a) Show that this family has an MLR
- (b) Based on one observation X, find the most powerful size α test of $H_0: \theta = 0$ versus $H_1: \theta = 1$.
- (c) Show that the test in part (b) is UMP size α for testing $H_0: \theta \leq 0$ vs. $H_1: \theta > 0$.

4□ > 4ⓓ > 4≧ > 4≧ > ½ 90

For $\theta_1 < \theta_2$,

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\frac{e^{(x-\theta_2)}}{(1+e^{(x-\theta_2)})^2}}{\frac{e^{(x-\theta_1)}}{(1+e^{(x-\theta_1)})^2}}$$

P4

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\frac{e^{(x-\theta_2)}}{(1+e^{(x-\theta_2)})^2}}{\frac{e^{(x-\theta_1)}}{(1+e^{(x-\theta_1)})^2}}$$

$$= e^{(\theta_1-\theta_2)} \left(\frac{1+e^{(x-\theta_1)}}{1+e^{(x-\theta_2)}}\right)^2$$

P4

Solution for (a)

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\frac{e^{(x-\theta_2)}}{(1+e^{(x-\theta_2)})^2}}{\frac{e^{(x-\theta_1)}}{(1+e^{(x-\theta_1)})^2}}$$

$$= e^{(\theta_1-\theta_2)} \left(\frac{1+e^{(x-\theta_1)}}{1+e^{(x-\theta_2)}}\right)^2$$

Let
$$r(x) = (1 + e^{x-\theta_1})/(1 + e^{x-\theta_2})$$

P4

Solution for (a)

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\frac{e^{(x-\theta_2)}}{(1+e^{(x-\theta_2)})^2}}{\frac{e^{(x-\theta_1)}}{(1+e^{(x-\theta_1)})^2}}$$

$$= e^{(\theta_1-\theta_2)} \left(\frac{1+e^{(x-\theta_1)}}{1+e^{(x-\theta_2)}}\right)^2$$

Let
$$r(x) = (1 + e^{x-\theta_1})/(1 + e^{x-\theta_2})$$

$$r'(x) = \frac{e^{(x-\theta_1)}(1 + e^{(x-\theta_2)}) - (1 + e^{(x-\theta_1)})e^{(x-\theta_2)}}{(1 + e^{(x-\theta_2)})^2}$$

P4

Solution for (a)

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\frac{e^{(x-\theta_2)}}{(1+e^{(x-\theta_2)})^2}}{\frac{e^{(x-\theta_1)}}{(1+e^{(x-\theta_1)})^2}}$$

$$= e^{(\theta_1-\theta_2)} \left(\frac{1+e^{(x-\theta_1)}}{1+e^{(x-\theta_2)}}\right)^2$$

Let
$$r(x) = (1 + e^{x-\theta_1})/(1 + e^{x-\theta_2})$$

$$r'(x) = \frac{e^{(x-\theta_1)}(1 + e^{(x-\theta_2)}) - (1 + e^{(x-\theta_1)})e^{(x-\theta_2)}}{(1 + e^{(x-\theta_2)})^2}$$

$$= \frac{e^{(x-\theta_1)} - e^{(x-\theta_2)}}{(1 + e^{(x-\theta_2)})^2} > 0 \quad (\because x - \theta_1 > x - \theta_2)$$

For $\theta_1 < \theta_2$,

$$\frac{f(x|\theta_2)}{f(x|\theta_1)} = \frac{\frac{e^{(x-\theta_2)}}{(1+e^{(x-\theta_2)})^2}}{\frac{e^{(x-\theta_1)}}{(1+e^{(x-\theta_1)})^2}}$$

$$= e^{(\theta_1-\theta_2)} \left(\frac{1+e^{(x-\theta_1)}}{1+e^{(x-\theta_2)}}\right)^2$$

Let
$$r(x) = (1 + e^{x-\theta_1})/(1 + e^{x-\theta_2})$$

$$r'(x) = \frac{e^{(x-\theta_1)}(1 + e^{(x-\theta_2)}) - (1 + e^{(x-\theta_1)})e^{(x-\theta_2)}}{(1 + e^{(x-\theta_2)})^2}$$

$$= \frac{e^{(x-\theta_1)} - e^{(x-\theta_2)}}{(1 + e^{(x-\theta_2)})^2} > 0 \quad (\because x - \theta_1 > x - \theta_2)$$

Therefore, the family of X has an MLR.

$$\frac{f(x|1)}{f(x|0)} = e\left(\frac{1+e^x}{1+e^{(x-1)}}\right)^2 > k$$

$$\frac{f(x|1)}{f(x|0)} = e\left(\frac{1+e^x}{1+e^{(x-1)}}\right)^2 > k$$

$$\frac{1+e^x}{1+e^{(x-1)}} > k^*$$

$$\frac{f(x|1)}{f(x|0)} = e\left(\frac{1+e^x}{1+e^{(x-1)}}\right)^2 > k$$

$$\frac{1+e^x}{1+e^{(x-1)}} > k^*$$

$$\frac{1+e^x}{e+e^x} > k^*$$

$$\frac{f(x|1)}{f(x|0)} = e\left(\frac{1+e^x}{1+e^{(x-1)}}\right)^2 > k$$

$$\frac{1+e^x}{1+e^{(x-1)}} > k^*$$

$$\frac{1+e^x}{e+e^x} > k^*$$

$$X > x_0$$

The UMP test rejects H_0 if and only if

$$\frac{f(x|1)}{f(x|0)} = e\left(\frac{1+e^x}{1+e^{(x-1)}}\right)^2 > k$$

$$\frac{1+e^x}{1+e^{(x-1)}} > k^*$$

$$\frac{1+e^x}{e+e^x} > k^*$$

$$X > x_0$$

Because under H_0 , $F(x|\theta=0)=\frac{e^x}{1+e^x}$, the rejection region of UMP level α test satisfies

$$1 - F(x|\theta = 0) = \frac{1}{1 + e^{x_0}} = \alpha$$
$$x_0 = \log\left(\frac{1 - \alpha}{\alpha}\right)$$

Hyun Min Kang Biostatistics 602 - Lecture 25 April 18th, 2013 33 / 34

Because the family of X has an MLR, UMP size α for testing $H_0: \theta \leq 0$ vs. $H_1: \theta > 0$ should be a form of

$$X > x_0$$

$$Pr(X > x_0 | \theta = 0) = \alpha$$

Because the family of X has an MLR, UMP size α for testing $H_0: \theta \leq 0$ vs. $H_1: \theta > 0$ should be a form of

$$X > x_0$$

$$Pr(X > x_0 | \theta = 0) = \alpha$$

Therefore, $x_0 = \log\left(\frac{1-\alpha}{\alpha}\right)$, which is identical to the test defined in (b).