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Submit your answers (after the question ID) either
= At http://pollEv.com
= By text to 22333

117261 Which family of distribution is always guaranteed to satisfy
the interchangeability condition?

117322 For the rest of distributions, how can we check whether the
interchangeability condition holds or not?

117325 When the become the Cramer-Rao bound attainable?

HandsUp If the Cramer-Rao bound is not attainable, does it imply that
the estimator cannot be UMVUE?
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Recap
[e] lele}

Recap - Using Leibnitz's Rule

Leibnitz's Rule

fx(2l0) = 1/0
0 0
o [ (5) @ = 2P -nonon g+ [ g (5) e

9 1

The interchangeability condition is not satisfied.
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Recap
[e]e] e}

Recap - When is the Cramer-Rao Lower Bound Attainable?

It is possible that the value of Cramer-Rao bound may be strictly smaller
than the variance of any unbiased estimator

Corollary 7.3.15 : Attainment of Cramer-Rao Bound

Let Xi,---, X, be iid with pdf/pmf fx(z]0), where fx(z|0) satisfies the
assumptions of the Cramer-Rao Theorem.

Let L(A]x) = [[i, fx(x;]0) denote the likelihood function. If W(X) is
unbiased for 7(6), then W(X) attains the Cramer-Rao lower bound if and
only if

% log L(0|x) = Sn(x|0) = a(0)[W(X) — t(6)]

for some function a().
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Recap
[e]e]e] }

Recap - Attainability of C-R bound for o2 in N (u, o)

® If 11 is known, the best unbiased estimator for o2 is > (z; — p)?/n,
and it attains the Cramer-Rao lower bound, i.e.

2 i1 (Xi — u)? _ 20!

n

Var [

@ If 1 is not known, the Cramer-Rao lower-bound cannot be attained.

At this point, we do not know if 6% = 2= > | (; — 7)? is the best
unbiased estimator for o or not.
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Exponential Family
00000000

Fact for one-parameter exponential family

Let X1, -+, X, be iid from the one parameter exponential family with
pdf/pmf fx(z]0) = c(0)h(z) exp [w(0)t(z)].
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Exponential Family
00000000

Fact for one-parameter exponential family

Let X1, -+, X, be iid from the one parameter exponential family with
pdf/pmf fx(210) = c(6)h(z) exp [w(0)1(x)].

Assume that E[t(X)] = 7(6). Then 23", #(z;), which is an unbiased
estimator of 7(6), attains the Cramer-Rao lower-bound.
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Exponential Family
00000000

Fact for one-parameter exponential family

Let X1, -+, X, be iid from the one parameter exponential family with
pdf/pmf fx(a{0) = c(0)h(z) exp [w(0)H)].

Assume that E[t(X)] = 7(6). Then 23", #(z;), which is an unbiased
estimator of 7(6), attains the Cramer—Rao lower-bound. That is,
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Exponential Family

0@000000

%Z t(Xi)] = E[H(X)] == E[t(X,)] = 7(0)
=1

So, L% | #(x;) is an unbiased estimator of ().

''n
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Exponential Family
0@000000

So, L% | #(x;) is an unbiased estimator of ().

''n

log L(B]x) = log fx(z:|0)
=1
= Z [log c(8) + log h(x) + w(8)(x;)]
=1

Hyun Min Kang Biostatistics 602 - Lecture 13 February 26th, 2013

7/ 27



Exponential Family
[e]e] lele]e]ele)

Proof (cont'd)

+ 0+ ' (0)t(z)

dlog L(6]x) " [¢(0)
0 =2 [ c(0)
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Exponential Family
[e]e] lele]e]ele)

Proof (cont'd)

dlog L(6]x) - [c’(@)
o0
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Exponential Family
[e]e] lele]e]ele)

Proof (cont'd)

dlog L(6]x) - [c’(@)
o0

> t(;) is the best unbiased estimator of —%

3=
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Exponential Family
[e]e] lele]e]ele)

Proof (cont'd)

8logL (0]x) - [c
=1

()

135 | t(z;) is the best unbiased estimator of e OrO]

= And it attains the Cramer-Rao lower bound.
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Exponential Family
[e]e] lele]e]ele)

Proof (cont'd)

8logL (0]x) - [c
=1

135 | t(z;) is the best unbiased estimator of —%

= And it attains the Cramer-Rao lower bound.

= Because E[£;log L(0]x)] =0, 7(0) = _%'
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Exponential Family

000@0000

Cramer-Rao Theorem on Exponential Family

fx(alf) = c(6)h(a) exp [w(6) ()

If Xi,---, X, are iid samples from fx(z|@), %Z?zl t(X;) is the best
unbiased estimator for its expected value.
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Exponential Family

000@0000

Cramer-Rao Theorem on Exponential Family

fx(alf) = c(6)h(a) exp [w(6) ()

If Xi,---, X, are iid samples from fx(z|@), %Z?zl t(X;) is the best
unbiased estimator for its expected value. In other words,

E[Y(X)] = 7(9)
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Exponential Family

000@0000

Cramer-Rao Theorem on Exponential Family

fx(alf) = c(6)h(a) exp [w(6) ()

If Xi,---, X, are iid samples from fx(z|@), %Z?zl t(X;) is the best
unbiased estimator for its expected value. In other words,

E[t(X)] = 7(0)
1 7 (0))?
- > t(Xi)] = [[((9))]

i=1 n

Var
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Exponential Family

[e]e]e]e] lelele]

%logL(le) ) ;Zt(Xi)ch
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Exponential Family

[e]e]e]e] lelele]

0 B 1 & d(0)
%logL(mx) = nu/(9) 52:1 t(Xz)+c(9)u/(6)
)
"0 = ~Hwe
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Exponential Family
[e]e]e]e] lelele)

%]Og L(H’x) = nw’(ﬁ) % - t(Xz) + 0(90;510/)(6)
()
() c(0)uw ()
)
55108 L0Ix) = a(O)[W(x) —7(0)]
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Exponential Family
[e]e]e]e]e] lele)

Obtaining 1,,(6)
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Exponential Family
[e]e]e]e]e] lele)

Obtaining 1,,(6)

0 , 1
%log L(0|x) nw (6) [n .

{ge log L(0|x)}2]
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Exponential Family
[e]e]e]e]e] lele)

Obtaining 1,,(6)

Dlog L0 = il (0) [i > (X) - T<9>]
2 n 2
B {;’elogmx)}] - In(9)E{(nu/(9))2 (}L;m)rw))]
= Var | nu/(6) {iZt(Xl)—T(Q)}]
=1
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Exponential Family
[e]e]e]e]e] lele)

Obtaining 1,,(6)

0 B , 1
%logL(ﬂx) = nuw(0) [n

K

0 2 / 2 1 & i
{891ogL(9|x)} = IL,(0)=E|(n/(6)) ;th(Xi)—T(G)
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Exponential Family
00000080

Obtaining 1,,(6)

Hyun Min Kang Biostatistics 602 - Lecture 13 February 26th, 2013 12 /27



Exponential Family
00000080

Obtaining 1,,(6)

E

(st} | = 10
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Exponential Family
00000080

Obtaining 1,,(6)

E

(st} | = 10

[nw’(@)] S
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Exponential Family
00000080

Obtaining 1,,(6)

E

(st} | = 10

7_/ 2
- (o 0
/ 2 _ 1n(0) - 1n(0)
OF = T
_ (L))’
- ()
1(6) = |m/(0)7'(6)]
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Exponential Family
0000000e

Summary

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(6).
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Exponential Family
0000000e

Summary

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(6).
= It helps to confirm an estimator is the best unbiased estimator of 7(6)
if it happens to attain the CR-bound.

Hyun Min Kang Biostatistics 602 - Lecture 13 February 26th, 2013 13 /27



Exponential Family
0000000e

Summary

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(6).
= It helps to confirm an estimator is the best unbiased estimator of 7(6)
if it happens to attain the CR-bound.
= If an unbiased estimator of 7(6) has variance greater than the
CR-bound, it does NOT mean that it is not the best unbiased
estimator.
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Exponential Family
0000000e

Summary

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(6).
= It helps to confirm an estimator is the best unbiased estimator of 7(6)
if it happens to attain the CR-bound.
= If an unbiased estimator of 7(6) has variance greater than the
CR-bound, it does NOT mean that it is not the best unbiased
estimator.

® When "regularity conditions” are not satisfied, [Tlln(?e);z is no longer a
valid lower bound.
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Exponential Family
0000000e

Summary

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(6).
= It helps to confirm an estimator is the best unbiased estimator of 7(6)
if it happens to attain the CR-bound.
= If an unbiased estimator of 7(6) has variance greater than the
CR-bound, it does NOT mean that it is not the best unbiased
estimator.

® When "regularity conditions” are not satisfied, [Tlln(?e);z is no longer a

valid lower bound.
= There may be unbiased estimators of 7(6) that have variance smaller

[r'(0))?
than INOR
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Rao-Blackwell
@®000000000000

Methods for finding best unbiased estimator

® Using Cramer-Rao bound
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Rao-Blackwell
@®000000000000

Methods for finding best unbiased estimator

® Using Cramer-Rao bound
= How do we find the best unbiased estimator?
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Rao-Blackwell
@®000000000000

Methods for finding best unbiased estimator

® Using Cramer-Rao bound
= How do we find the best unbiased estimator?

® Using Rao-Blackwell theorem
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Rao-Blackwell
@®000000000000

Methods for finding best unbiased estimator

® Using Cramer-Rao bound
= How do we find the best unbiased estimator?

® Using Rao-Blackwell theorem
= Use complete and sufficient statistic.
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Rao-Blackwell
@®000000000000

Methods for finding best unbiased estimator

® Using Cramer-Rao bound
= How do we find the best unbiased estimator?

® Using Rao-Blackwell theorem

= Use complete and sufficient statistic.
= Find a 'better’ unbiased estimator
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Rao-Blackwell
O@00000000000

Important Facts

X and Y are two random variables
= E(X) = E[E(X]Y)] (Theorem 4.4.3)
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Rao-Blackwell
O@00000000000

Important Facts

X and Y are two random variables
= E(X) = E[E(X]Y)] (Theorem 4.4.3)
= Var(X) = E[Var(X]Y)] + Var[E(X]Y)] (Theorem 4.4.7)
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Rao-Blackwell
O@00000000000

Important Facts

X and Y are two random variables
= E(X) = E[E(X]Y)] (Theorem 4.4.3)
= Var(X) = E[Var(X]Y)] + Var[E(X]Y)] (Theorem 4.4.7)

= Elg(X)|Y] = [ 9(x)f(2] Y)dz is a function of Y.
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Rao-Blackwell
O@00000000000

Important Facts

X and Y are two random variables
= E(X) = E[E(X]Y)] (Theorem 4.4.3)
= Var(X) = E[Var(X]Y)] + Var[E(X]Y)] (Theorem 4.4.7)

= Elg(X)|Y] = [ 9(x)f(2] Y)dz is a function of Y.
= If X and Y are independent, E[g(X)|Y] = E[g(X)].
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Rao-Blackwell
[e]e] le]elelelelelelele]e]

Seeking for a better unbiased estimator

Suppose W(X) is an unbiased estimator of 7(). That is, E[W(X)] = 7(0).
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Rao-Blackwell
[e]e] le]elelelelelelele]e]

Seeking for a better unbiased estimator

Suppose W(X) is an unbiased estimator of 7(). That is, E[W(X)] = 7(0).
Suppose T(X) is any function of X = (X1, -+, X,,). Consider
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Rao-Blackwell
[e]e] le]elelelelelelele]e]

Seeking for a better unbiased estimator

Suppose W(X) is an unbiased estimator of 7(). That is, E[W(X)] = 7(0).
Suppose T(X) is any function of X = (X1, -+, X,,). Consider

¢(T) = E(WX)|T)
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Rao-Blackwell
[e]e] le]elelelelelelele]e]

Seeking for a better unbiased estimator

Suppose W(X) is an unbiased estimator of 7(). That is, E[W(X)] = 7(0).
Suppose T(X) is any function of X = (X1, -+, X,,). Consider

o(T) = E(WX)T)
El¢(T)] = E[E(W(X)|T)] = E[W(X)] =7(0) (unbiased for 7(0))
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Rao-Blackwell
[e]e] le]elelelelelelele]e]

Seeking for a better unbiased estimator

Suppose W(X) is an unbiased estimator of 7(). That is, E[W(X)] = 7(0).
Suppose T(X) is any function of X = (X1, -+, X,,). Consider

(1) = E(W(X)[T)
El¢(T)] = E[E(W(X)|T)] = E[W(X)] =7(0) (unbiased for 7(0))
Var(¢(T)) = Var[E(W]|T)]
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Rao-Blackwell
[e]e] le]elelelelelelele]e]

Seeking for a better unbiased estimator

Suppose W(X) is an unbiased estimator of 7(). That is, E[W(X)] = 7(0).
Suppose T(X) is any function of X = (X1, -+, X,,). Consider

o(T) = E(W(X)|T)
El¢(T)] = E[E(W(X)|T)] = E[W(X)] =7(0) (unbiased for 7(0))
Var(¢(T)) = Var[E(W]T)]
= Var(W) — E[Var(W|T)]
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Rao-Blackwell
[e]e] le]elelelelelelele]e]

Seeking for a better unbiased estimator

Suppose W(X) is an unbiased estimator of 7(). That is, E[W(X)] = 7(0).
Suppose T(X) is any function of X = (X1, -+, X,,). Consider

¢(T) = E(WX)|T)

Ep(T)] = EEWX)|T)] = EW(X)]=7(0)  (unbiased for 7(0))
Var(¢(T)) = Var[E(W|T)]
= Var( W) — E[Var(W|T)]
< Var(W) (smaller variance than W)
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Rao-Blackwell
000@000000000

A better unbiased estimator?

Does this mean that ¢(7) is a better estimator than W(X)?
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Rao-Blackwell
000@000000000

A better unbiased estimator?

Does this mean that ¢(7) is a better estimator than W(X)?
@ If ¢(7) is an estimator, then ¢(7) is equal or better than W(X).
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Rao-Blackwell
000@000000000

A better unbiased estimator?

Does this mean that ¢(7) is a better estimator than W(X)?
@ If ¢(7) is an estimator, then ¢(7) is equal or better than W(X).
@ ¢(1) = E[W[T] = E[W|T. 0],

¢(T) may depend on 6, which means that ¢(7) may not be an estimator.
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Rao-Blackwell
[ee]ele] Telelelelelele]e]

Example 1

Let X1, , X, ~S N(0,1). W(X) = (X7 + X») is an unbiased
estimator of 6.

Consider conditioning it on T(X) = X].

AT = BWITI=B|500+ X))

Hyun Min Kang
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Rao-Blackwell
[ee]ele] Telelelelelele]e]

Example 1

Let X1, , X, ~S N(0,1). W(X) = (X7 + X») is an unbiased
estimator of 6.
Consider conditioning it on T(X) = X].
1
AT = BWITI=B|500+ X))

1 1
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Rao-Blackwell
[ee]ele] Telelelelelele]e]

Example 1

Let X1, , X, ~S N(0,1). W(X) = (X7 + X») is an unbiased
estimator of 6.
Consider conditioning it on T(X) = X].

AT = BWITI=B|500+ X))

1 1

1 1
= -X —F( X
21+2(2)
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Rao-Blackwell
[ee]ele] Telelelelelele]e]

Example 1

Let X1, , X, ~S N(0,1). W(X) = (X7 + X») is an unbiased
estimator of 6.
Consider conditioning it on T(X) = X].

AT = BWITI=B|500+ X))

1 1

1 1

— X, +-EX
5 1+2 (X2)
1 1

— X, +-6
5 TG
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Rao-Blackwell
[ee]ele] Telelelelelele]e]

Example 1

Let X1, , X, ~S N(0,1). W(X) = (X7 + X») is an unbiased
estimator of 6.
Consider conditioning it on T(X) = X].

AT = BWITI=B|500+ X))

1 1

1 1

— X, +-EX
5 1+2 (X2)
1 1

— X, +-6
5 TG

= E[¢p(T)] = 36 + 360 = 6 (unbiased)
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Rao-Blackwell
[ee]ele] Telelelelelele]e]

Example 1

Let X1, , X, ~S N(0,1). W(X) = (X7 + X») is an unbiased
estimator of 6.
Consider conditioning it on T(X) = X].

AT = BWITI=B|500+ X))

1 1
= §E(X1|X1) + §E(X2|X1)

1 1

— X, +-EX
g X1t 5 B(X)
1 1

— X, +-6
5 TG

= E[¢p(T)] = 36 + 360 = 6 (unbiased)
= Var[¢(T)] = 1 < Var(3 (X1 + X)) = 5
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Rao-Blackwell
[ee]ele] Telelelelelele]e]

Example 1

Let X1, , X, ~S N(0,1). W(X) = (X7 + X») is an unbiased
estimator of 6.
Consider conditioning it on T(X) = X].

AT = BWITI=B|500+ X))

1 1

1 1
= -X —F( X
21+2(2)

1 1
— X, +-6
5 TG

= E[¢p(T)] = 36 + 360 = 6 (unbiased)
= Var[¢p(T)] = % < Var(%(Xl +X5)) = %
= But ¢(7T) is NOT an estimator.
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Rao-Blackwell
[ee]ele]e] lelelelelele]e]

Example 2

Let X1, , X, ~S (0,1). W(X) = Xj is an unbiased estimator of 6.

Consider conditioning it on X.
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Rao-Blackwell
[ee]ele]e] lelelelelele]e]

Example 2

Let X1, , X, ~S (0,1). W(X) = Xj is an unbiased estimator of 6.

Consider conditioning it on X.

(1) = E[WT] = E(X]X)
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Rao-Blackwell
[ee]ele]e] lelelelelele]e]

Example 2

Let Xy, -, X, ~S N(6,1). W(X) = X; is an unbiased estimator of 6.

Consider conditioning it on X.

o(T) = E[WT] = E(X1|X)
E(X1|X) + E(Xa|X) + - - - + E(X,|X)
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Rao-Blackwell
[ee]ele]e] lelelelelele]e]

Example 2

Let Xy, -, X, ~S N(6,1). W(X) = X; is an unbiased estimator of 6.

Consider conditioning it on X.

¢(T) = E[WT] = E(X|X)
E(X1|X) + E(Xo|X) + - - + E(X,|X)
E(Xy+ -+ X, X)
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Rao-Blackwell
[ee]ele]e] lelelelelele]e]

Example 2

Let Xy, -, X, ~S N(6,1). W(X) = X; is an unbiased estimator of 6.

Consider conditioning it on X.

o(T) = EWIT = EX|X)
E(X1|X) + E(Xa|X) + - - - + E(X,|X)

n
E(X i+ + X[ X)
— .
_ E(nX|X) _nX_ <
n n

= E[¢(T)] = 0 (unbiased)
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Rao-Blackwell
[ee]ele]e] lelelelelele]e]

Example 2

Let Xy, -, X, ~S N(6,1). W(X) = X; is an unbiased estimator of 6.

Consider conditioning it on X.

o(T) = EWIT = EX|X)
E(X1|X) + E(Xa|X) + - - - + E(X,|X)

n
BEX 4+ X X)
— e
_ E(nX]X):L:y
n n

= E[¢(T)] = 0 (unbiased)
« Var[p(T)] = Y& = 1 & var(W) =1

n n
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Example 2

Let Xy, -, X, ~S N(6,1). W(X) = X; is an unbiased estimator of 6.

Consider conditioning it on X.

o(T) = EWIT = EX|X)
E(X1|X) + E(Xa|X) + - - - + E(X,|X)

n
BEX 4+ X X)
— e
_ E(nX]X):L:y
n n

= E[¢(T)] = 0 (unbiased)
o Varp(T)] = Y2 — 1 & var(W) =1
= ¢(T) is an estimator.
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Rao-Blackwell Theorem

Theorem 7.3.17

Let W(X) be any unbiased estimator of 7(6), and T be a sufficient
statistic for 6.
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Rao-Blackwell Theorem

Theorem 7.3.17

Let W(X) be any unbiased estimator of 7(6), and T be a sufficient
statistic for 6.

Define ¢(T) = E[W|T]. Then the followings hold.
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Rao-Blackwell Theorem

Theorem 7.3.17

Let W(X) be any unbiased estimator of 7(6), and T be a sufficient
statistic for 6.
Define ¢(T) = E[W|T]. Then the followings hold.

0 El¢(T)|0] = 7(9)
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Rao-Blackwell Theorem

Theorem 7.3.17

Let W(X) be any unbiased estimator of 7(6), and T be a sufficient
statistic for 6.

Define ¢(T) = E[W|T]. Then the followings hold.
0 El¢(T)|0] = 7(9)
@ Var[¢(T)|0] < Var(W|0) for all 6.
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Rao-Blackwell Theorem

Theorem 7.3.17

Let W(X) be any unbiased estimator of 7(6), and T be a sufficient
statistic for 6.

Define ¢(T) = E[W|T]. Then the followings hold.
0 El¢(T)|0] = 7(9)
@ Var[¢(T)|0] < Var(W|0) for all 6.
That is, ¢(T) is a uniformly better unbiased estimator of 7(0).
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Proof of Rao-Blackwell Theorem

© E[o(T)] = E[E(W|T)] = E(W) = 7(6) (unbiased)
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Proof of Rao-Blackwell Theorem

© E[o(T)] = E[E(W|T)] = E(W) = 7(6) (unbiased)

@ Var[p(T)] = Var[E(W|T)] = Var(W) — E[Var(W]|T)] < Var(W)
(better than W).
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Proof of Rao-Blackwell Theorem

© E[o(T)] = E[E(W|T)] = E(W) = 7(6) (unbiased)

@ Var[p(T)] = Var[E(W|T)] = Var(W) — E[Var(W]|T)] < Var(W)
(better than W).

© Need to show ¢(T) is indeed an estimator.

Hyun Min Kang Biostatistics 602 - Lecture 13 February 26th, 2013

21 /27



Rao-Blackwell
0000000 e00000

Proof of Rao-Blackwell Theorem

© E[o(T)] = E[E(W|T)] = E(W) = 7(6) (unbiased)

@ Var[p(T)] = Var[E(W|T)] = Var(W) — E[Var(W]|T)] < Var(W)
(better than W).

© Need to show ¢(T) is indeed an estimator.

o(T) = B(WIT) = EW(X)|T]
= [ W

Biostatistics 602 - Lecture 13 February 26th, 2013
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Proof of Rao-Blackwell Theorem

© E[o(T)] = E[E(W|T)] = E(W) = 7(6) (unbiased)

@ Var[p(T)] = Var[E(W|T)] = Var(W) — E[Var(W]|T)] < Var(W)
(better than W).

© Need to show ¢(T) is indeed an estimator.

(1) = E(WT)= EW(X)|T]

= W(x)f(x| T) dx
xeX

Because T'is a sufficient statistic, f(x|T) does not depend on 6.
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Proof of Rao-Blackwell Theorem

© E[o(T)] = E[E(W|T)] = E(W) = 7(6) (unbiased)

@ Var[p(T)] = Var[E(W|T)] = Var(W) — E[Var(W]|T)] < Var(W)
(better than W).

© Need to show ¢(T) is indeed an estimator.

(1) = E(WT)= EW(X)|T]

= W(x)f(x| T) dx
xeX

Because T'is a sufficient statistic, f(x|T) does not depend on 6. Therefore,
(1) = [cx W(x)f(x| T)dx does not depend on 6,
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Proof of Rao-Blackwell Theorem

© E[o(T)] = E[E(W|T)] = E(W) = 7(6) (unbiased)

@ Var[p(T)] = Var[E(W|T)] = Var(W) — E[Var(W]|T)] < Var(W)
(better than W).

© Need to show ¢(T) is indeed an estimator.

(1) = E(WT)= EW(X)|T]

= W(x)f(x| T) dx
xeX

Because T'is a sufficient statistic, f(x|T) does not depend on 6. Therefore,
(1) = [cx W(X)f(x| T)dx does not depend on 6, and ¢(T) is indeed an
estimator of 6.
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Uniqueness of UMVUE

Theorem 7.3.19
If Wis a best unbiased estimator of 7(6), then W is unique.
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Uniqueness of UMVUE

Theorem 7.3.19
If Wis a best unbiased estimator of 7(6), then W is unique.

Proof

Suppose W; and Ws are two best unbiased estimators of 7(6). Consider
estimator W3 = (W1 + Wa).

Hyun Min Kang Biostatistics 602 - Lecture 13 February 26th, 2013 22 /27



Rao-Blackwell
0000000080000

Uniqueness of UMVUE

Theorem 7.3.19
If Wis a best unbiased estimator of 7(6), then W is unique.

Proof

Suppose W; and Ws are two best unbiased estimators of 7(6). Consider
estimator W3 = (W1 + Wa).

1 1 1

(0) + =7(6) = 7(0)
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Uniqueness of UMVUE

Theorem 7.3.19
If Wis a best unbiased estimator of 7(6), then W is unique.

Proof

Suppose W; and Ws are two best unbiased estimators of 7(6). Consider
estimator W3 = (W1 + Wa).

1 1 1

(0) + =7(6) = 7(0)

1 1
Var(W3) = Var (2 Wy + 5 Wg)
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Uniqueness of UMVUE

Theorem 7.3.19
If Wis a best unbiased estimator of 7(6), then W is unique.

Proof

Suppose W; and Ws are two best unbiased estimators of 7(6). Consider
estimator W3 = (W1 + Wa).

E(Ws) = E (; Wi + ;Wg) _ %T(e) + %T(e) —(0)
Var(W3) = Var (; Wy + ;Wg)

1 1 1
= ZV&LI‘( Wl) + Zval“( Wz) + §COV( Wi, Wz)
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Uniqueness of UMVUE

Theorem 7.3.19
If Wis a best unbiased estimator of 7(6), then W is unique.

Proof

Suppose W; and Ws are two best unbiased estimators of 7(6). Consider
estimator W3 = (W1 + Wa).

1 1 1 1
E = E(= - — 2(9) =
() = B(3W+ 3 = 370+ 10) = 70)
1 1
Var(W3) = Var (2 Wy + 5 Wg)

1 1 1

= ZV&LI‘( Wh) + Zval“( Ws) + §COV( Wi, W)
1 1 1

< Var(Wy) + 4 Var(Wa) + 5\/var( W1 ) Var(Ws)
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Uniqueness of UMVUE

Theorem 7.3.19
If Wis a best unbiased estimator of 7(6), then W is unique.

Proof

Suppose W; and Ws are two best unbiased estimators of 7(6). Consider
estimator W3 = (W1 + Wa).

E(Ws) = E (; Wi + ;Wg) _ %T(e) + %T(e) —(0)

1 1
Var(W3) = Var (2 Wy + 5 Wg)

1 1 1
= ZV&LI‘( Wl) + Zval“( Wz) + §COV( Wi, Wz)

1 1 1
< Var(Wy) + 4 Var(Wa) + 5\/var( W1 ) Var(Ws)
= Var(W;) = Var(Ws)
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Uniqueness of UMVUE

Theorem 7.3.19
If Wis a best unbiased estimator of 7(6), then W is unique.

Proof

Suppose W; and Ws are two best unbiased estimators of 7(6). Consider
estimator W3 = (W1 + Wa).

E(Ws) = E (; Wi + ;Wg) _ %T(e) + %T(e) —(0)

1 1
Var(W3) = Var (2 Wy + 5 Wg)

1 1 1
= ZV&LI‘( Wl) + Zval“( Wz) + §COV( Wi, Wz)

1 1 1
< Var(Wy) + 4 Var(Wa) + 5\/var( W1 ) Var(Ws)
= Var(W;) = Var(Ws)
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Proof of Theorem 7.3.19 (cont'd)

Var(Ws3) < Var(W;) = Var(Ws).
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Proof of Theorem 7.3.19 (cont'd)

Var(Ws3) < Var(W;) = Var(Ws).

If strict inequality holds, W3 is better than W; and Wa, which is
contradictory to the assumption.

Hyun Min Kang

Biostatistics 602 - Lecture 13

February 26th, 2013



Rao-Blackwell
0000000008000

Proof of Theorem 7.3.19 (cont'd)

Var(Ws3) < Var(W;) = Var(Ws).

If strict inequality holds, W3 is better than W; and Wa, which is
contradictory to the assumption.

Therefore, the equality must hold, requiring

fCov( Wy, Wa) = \/Var W1) Var( Ws)
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Proof of Theorem 7.3.19 (cont'd)

Var(Ws3) < Var(W;) = Var(Ws).

If strict inequality holds, W3 is better than W; and Wa, which is
contradictory to the assumption.

Therefore, the equality must hold, requiring

fCov( Wy, Wa) = \/Var W1) Var( Ws)

By Cauchy-Schwarz inequality, this is true if and only if Wy = aW; + b
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Proof of Theorem 7.3.19 (cont'd)

Var(Ws3) < Var(W;) = Var(Ws).

If strict inequality holds, W3 is better than W; and Wa, which is
contradictory to the assumption.

Therefore, the equality must hold, requiring

fCov(Wl, Wa) = \/Var W1) Var( Ws)
By Cauchy-Schwarz inequality, this is true if and only if Wy = aW; + b
Cov(Wy, Wa) = Cov(Wi,aWi + b) = aVar( W)
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Proof of Theorem 7.3.19 (cont'd)

Var(Ws3) < Var(W;) = Var(Ws).

If strict inequality holds, W3 is better than W; and Wa, which is
contradictory to the assumption.

Therefore, the equality must hold, requiring

fCov(Wl, Wa) = \/Var W1) Var( Ws)
By Cauchy-Schwarz inequality, this is true if and only if Wy = aW; + b

Cov(Wy, Wa) = Cov(Wi,aWi + b) = aVar( W)
Var(Wi)Var(Ws) = Var( W)
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Proof of Theorem 7.3.19 (cont'd)

Var(Ws3) < Var(W;) = Var(Ws).

If strict inequality holds, W3 is better than W; and Wa, which is
contradictory to the assumption.

Therefore, the equality must hold, requiring

fCov(Wl, Wa) = \/Var W1) Var( Ws)
By Cauchy-Schwarz inequality, this is true if and only if Wy = aW; + b

Cov(Wy, Wa) = Cov(Wy,aW; + b) = aVar(W;)
= Var(W;)Var(Ws) = Var(WW;)
E(Wy) = ar(8)+b
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Proof of Theorem 7.3.19 (cont'd)

Var(Ws3) < Var(W;) = Var(Ws).

If strict inequality holds, W3 is better than W; and Wa, which is
contradictory to the assumption.

Therefore, the equality must hold, requiring

fCov(Wl, Wa) = \/Var W1) Var( Ws)
By Cauchy-Schwarz inequality, this is true if and only if Wy = aW; + b
Cov(Wy, Wa) = Cov(Wi,aWi + b) = aVar( W)
= Var(W;)Var(Ws) = Var(WW;)
E(Wy) = ar(8)+b
= 7(0)

a=1,b=0 must hold, and Wy = W;. Therefore, the best unbiased
estimator is unique.
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Unbiased estimator of zero

Definition
If U(X) satisfies E(U) = 0. Then we call U an unbiased estimator of 0.

Hyun Min Kang Biostatistics 602 - Lecture 13 February 26th, 2013 24 /27



Rao-Blackwell
0000000000800

Unbiased estimator of zero

Definition
If U(X) satisfies E(U) = 0. Then we call U an unbiased estimator of 0.

Theorem 7.3.20

If E[W(X)] = 7(0). W is the best unbiased estimator of 7(8) if an only if
W is uncorrelated with all unbiased estimator of 0.
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Proof of Theorem 7.3.20

Let W be an unbiased estimator of 7(6). Let V= W+ Uand U € U,
which is the class of unbiased estimators of 0.
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Proof of Theorem 7.3.20

Let W be an unbiased estimator of 7(6). Let V= W+ Uand U € U,
which is the class of unbiased estimators of 0.

By construction, V'is an unbiased estimator of 7(#).
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Proof of Theorem 7.3.20

Let W be an unbiased estimator of 7(6). Let V= W+ Uand Uc U
which is the class of unbiased estimators of 0.

By construction, V'is an unbiased estimator of 7(#). Consider

V = {V,=W+alU}

where a is a constant.
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Proof of Theorem 7.3.20

Let W be an unbiased estimator of 7(6). Let V= W+ Uand U € U,
which is the class of unbiased estimators of 0.
By construction, V'is an unbiased estimator of 7(#). Consider

V = {V,= W+ alU}

where a is a constant.

E(V,) = E(W+aU) = EW)+ aB(U)
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Proof of Theorem 7.3.20

Let W be an unbiased estimator of 7(6). Let V= W+ Uand U € U,
which is the class of unbiased estimators of 0.

By construction, V'is an unbiased estimator of 7(#). Consider
V = {V,=W+alU}

where a is a constant.

E(V,) = E(W+ aU) = E(W)+ aE(D)
= 7(0)4+a-0=17(0)
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Proof of Theorem 7.3.20

Let W be an unbiased estimator of 7(6). Let V= W+ Uand U € U,
which is the class of unbiased estimators of 0.

By construction, V'is an unbiased estimator of 7(#). Consider
V = {V,=W+alU}

where a is a constant.

E(V,) = E(W+ aU) = E(W)+ aE(D)
7(0) +a-0=7(0)
Var(V,) = Var(W+ al)
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Proof of Theorem 7.3.20

Let W be an unbiased estimator of 7(6). Let V= W+ Uand U € U,
which is the class of unbiased estimators of 0.

By construction, V'is an unbiased estimator of 7(#). Consider

V = {V,=W+alU}

where a is a constant.

E(V,) = E(W+ aU) = E(W)+ aE(D)
7(0) +a-0=7(0)
Var(V,) = Var(W+ al)

= a*Var(U) 4 2aCov(W, U) 4 Var( W)
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Proof of Theorem 7.3.20 (cont'd)

The variance is minimized when

—2Cov(W,U) _ Cov(W, 1)
2Var(U) Var (D)
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Proof of Theorem 7.3.20 (cont'd)

The variance is minimized when

—2Cov(W,U) _ Cov(W, 1)
2Var(U) Var (D)

The best unbiased estimator in this class is

~ Cov(W, U)

W Var (D)
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Proof of Theorem 7.3.20 (cont'd)

The variance is minimized when
—2Cov(W,U) _ Cov(W, 1)
2Var(U)  Var(D)
The best unbiased estimator in this class is
~ Cov(W, U)
Var (D)

W is the best unbiased estimator in this class if and only if
Cov(W, U) = 0.

w
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Proof of Theorem 7.3.20 (cont'd)

The variance is minimized when

—2Cov(W,U) _ Cov(W, 1)
2Var(U) Var (D)

The best unbiased estimator in this class is

~ Cov(W, U)
Var (D)
W is the best unbiased estimator in this class if and only if

Cov(W, U) = 0. Therefore for W is the best among all unbiased
estimators of 7(6) if and only if Cov(W, U) = 0 for every U € U.

w
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Summary

= Cramer-Rao Theorem with single parameter exponential family.

= Rao-Blackwell Theorem
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Summary

Summary

= Cramer-Rao Theorem with single parameter exponential family.

= Rao-Blackwell Theorem

v

Next Lecture

= More Rao-Blackwell Theorem

A
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