Biostatistics 602 - Statistical Inference Lecture 13 Rao-Blackwell Theorem

Hyun Min Kang

February 26th, 2013

Last Lecture

Recap •000

- At http://pollEv.com
- By text to 22333
 - 117261 Which family of distribution is always guaranteed to satisfy the interchangeability condition?

Last Lecture

Recap

- At http://pollEv.com
- By text to 22333
 - 117261 Which family of distribution is always guaranteed to satisfy the interchangeability condition?
 - 117322 For the rest of distributions, how can we check whether the interchangeability condition holds or not?

Last Lecture

Recap

- At http://pollEv.com
- By text to 22333
 - 117261 Which family of distribution is always guaranteed to satisfy the interchangeability condition?
 - 117322 For the rest of distributions, how can we check whether the interchangeability condition holds or not?
 - 117325 When the become the Cramer-Rao bound attainable?

Recap

- At http://pollEv.com
- By text to 22333
 - 117261 Which family of distribution is always guaranteed to satisfy the interchangeability condition?
 - 117322 For the rest of distributions, how can we check whether the interchangeability condition holds or not?
 - 117325 When the become the Cramer-Rao bound attainable?
 - HandsUp If the Cramer-Rao bound is not attainable, does it imply that the estimator cannot be UMVUE?

Recap - Using Leibnitz's Rule

Leibnitz's Rule

$$\frac{d}{d\theta} \int_{a(\theta)}^{b(\theta)} f(x|\theta) dx = f(b(\theta)|\theta) b'(\theta) - f(a(\theta)|\theta) a'(\theta) + \int_{a(\theta)}^{b(\theta)} \frac{\partial}{\partial \theta} f(x|\theta) dx$$

Applying to Uniform Distribution

$$f_X(x|\theta) = 1/\theta$$

$$\frac{d}{d\theta} \int_0^\theta h(x) \left(\frac{1}{\theta}\right) dx = \frac{h(\theta)}{\theta} \frac{d\theta}{d\theta} - h(0) f_X(0|\theta) \frac{d0}{d\theta} + \int_0^\theta \frac{\partial}{\partial \theta} h(x) \left(\frac{1}{\theta}\right) dx$$

$$\neq \int_0^\theta \frac{\partial}{\partial \theta} h(x) \left(\frac{1}{\theta}\right) dx$$

The interchangeability condition is not satisfied.

Recap - When is the Cramer-Rao Lower Bound Attainable?

It is possible that the value of Cramer-Rao bound may be strictly smaller than the variance of any unbiased estimator

Corollary 7.3.15: Attainment of Cramer-Rao Bound

Let X_1, \dots, X_n be iid with pdf/pmf $f_X(x|\theta)$, where $f_X(x|\theta)$ satisfies the assumptions of the Cramer-Rao Theorem.

Let $L(\theta|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta)$ denote the likelihood function. If $W(\mathbf{X})$ is unbiased for $\tau(\theta)$, then $W(\mathbf{X})$ attains the Cramer-Rao lower bound if and only if

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = S_n(\mathbf{x} | \theta) = a(\theta) [W(\mathbf{X}) - t(\theta)]$$

for some function $a(\theta)$.

Recap - Attainability of C-R bound for σ^2 in $\mathcal{N}(\mu, \sigma^2)$

1 If μ is known, the best unbiased estimator for σ^2 is $\sum_{i=1}^n (x_i - \mu)^2 / n$, and it attains the Cramer-Rao lower bound, i.e.

$$\operatorname{Var}\left[\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{n}\right] = \frac{2\sigma^{4}}{n}$$

2 If μ is not known, the Cramer-Rao lower-bound cannot be attained.

At this point, we do not know if $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ is the best unbiased estimator for σ^2 or not.

Fact for one-parameter exponential family

Let X_1, \dots, X_n be iid from the one parameter exponential family with pdf/pmf $f_X(x|\theta) = c(\theta)h(x)\exp\left[w(\theta)t(x)\right]$.

Fact for one-parameter exponential family

Let X_1, \dots, X_n be iid from the one parameter exponential family with pdf/pmf $f_X(x|\theta) = c(\theta)h(x) \exp [w(\theta)t(x)].$

Assume that $E[t(X)] = \tau(\theta)$. Then $\frac{1}{n} \sum_{i=1}^{n} t(x_i)$, which is an unbiased estimator of $\tau(\theta)$, attains the Cramer-Rao lower-bound.

Fact for one-parameter exponential family

Let X_1, \dots, X_n be iid from the one parameter exponential family with $pdf/pmf f_X(x|\theta) = c(\theta)h(x) \exp [w(\theta)t(x)].$

Assume that $E[t(X)] = \tau(\theta)$. Then $\frac{1}{n} \sum_{i=1}^{n} t(x_i)$, which is an unbiased estimator of $\tau(\theta)$, attains the Cramer-Rao lower-bound. That is,

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}t(X_{i})\right) = \frac{[\tau'(\theta)]^{2}}{I_{n}(\theta)}$$

$$E\left[\frac{1}{n}\sum_{i=1}^{n}t(X_{i})\right] = E[t(X_{1})] = \cdots = E[t(X_{n})] = \tau(\theta)$$

7 / 27

$$E\left[\frac{1}{n}\sum_{i=1}^{n}t(X_{i})\right] = E[t(X_{1})] = \cdots = E[t(X_{n})] = \tau(\theta)$$

So, $\frac{1}{n}\sum_{i=1}^{n}t(x_{i})$ is an unbiased estimator of $\tau(\theta)$.

7 / 27

$$E\left[\frac{1}{n}\sum_{i=1}^{n}t(X_{i})\right] = E[t(X_{1})] = \cdots = E[t(X_{n})] = \tau(\theta)$$

So, $\frac{1}{n}\sum_{i=1}^{n}t(x_{i})$ is an unbiased estimator of $\tau(\theta)$.

$$\log L(\theta|\mathbf{x}) = \sum_{i=1}^{n} \log f_X(x_i|\theta)$$
$$= \sum_{i=1}^{n} [\log c(\theta) + \log h(x) + w(\theta)t(x_i)]$$

$$\frac{\partial \log L(\theta|\mathbf{x})}{\partial \theta} = \sum_{i=1}^{n} \left[\frac{c'(\theta)}{c(\theta)} + 0 + w'(\theta)t(x_i) \right]$$

$$\frac{\partial \log L(\theta|\mathbf{x})}{\partial \theta} = \sum_{i=1}^{n} \left[\frac{c'(\theta)}{c(\theta)} + 0 + w'(\theta)t(x_i) \right]$$
$$= nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(x_i) - \left\{ -\frac{c'(\theta)}{c(\theta)w'(\theta)} \right\} \right]$$

$$\frac{\partial \log L(\theta|\mathbf{x})}{\partial \theta} = \sum_{i=1}^{n} \left[\frac{c'(\theta)}{c(\theta)} + 0 + w'(\theta)t(x_i) \right]$$
$$= nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(x_i) - \left\{ -\frac{c'(\theta)}{c(\theta)w'(\theta)} \right\} \right]$$

• $\frac{1}{n}\sum_{i=1}^n t(x_i)$ is the best unbiased estimator of $-\frac{c'(\theta)}{c(\theta)w'(\theta)}$

$$\frac{\partial \log L(\theta|\mathbf{x})}{\partial \theta} = \sum_{i=1}^{n} \left[\frac{c'(\theta)}{c(\theta)} + 0 + w'(\theta)t(x_i) \right]$$
$$= nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(x_i) - \left\{ -\frac{c'(\theta)}{c(\theta)w'(\theta)} \right\} \right]$$

- $\frac{1}{n}\sum_{i=1}^n t(x_i)$ is the best unbiased estimator of $-\frac{c'(\theta)}{c(\theta)w'(\theta)}$
- And it attains the Cramer-Rao lower bound.

$$\frac{\partial \log L(\theta|\mathbf{x})}{\partial \theta} = \sum_{i=1}^{n} \left[\frac{c'(\theta)}{c(\theta)} + 0 + w'(\theta)t(x_i) \right]$$
$$= nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(x_i) - \left\{ -\frac{c'(\theta)}{c(\theta)w'(\theta)} \right\} \right]$$

- $\frac{1}{n}\sum_{i=1}^n t(x_i)$ is the best unbiased estimator of $-\frac{c'(\theta)}{c(\theta)w'(\theta)}$
- And it attains the Cramer-Rao lower bound.
- Because $E\left[\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x})\right] = 0$, $\tau(\theta) = -\frac{c'(\theta)}{c(\theta)w'(\theta)}$.

Cramer-Rao Theorem on Exponential Family

Fact

$$f_X(x|\theta) = c(\theta)h(x)\exp[w(\theta)t(x)]$$

If X_1, \dots, X_n are iid samples from $f_X(x|\theta)$, $\frac{1}{n} \sum_{i=1}^n t(X_i)$ is the best unbiased estimator for its expected value.

Cramer-Rao Theorem on Exponential Family

Fact

$$f_X(x|\theta) = c(\theta)h(x)\exp[w(\theta)t(x)]$$

If X_1, \dots, X_n are iid samples from $f_X(x|\theta)$, $\frac{1}{n} \sum_{i=1}^n t(X_i)$ is the best unbiased estimator for its expected value. In other words,

$$E[t(X)] = \tau(\theta)$$

Cramer-Rao Theorem on Exponential Family

Fact

$$f_X(x|\theta) = c(\theta)h(x)\exp[w(\theta)t(x)]$$

If X_1, \dots, X_n are iid samples from $f_X(x|\theta)$, $\frac{1}{n} \sum_{i=1}^n t(X_i)$ is the best unbiased estimator for its expected value. In other words,

$$E[t(X)] = \tau(\theta)$$

$$\operatorname{Var} \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) \right] = \frac{[\tau'(\theta)]^2}{I_n(\theta)}$$

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) + \frac{c'(\theta)}{c(\theta)w'(\theta)} \right]$$

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) + \frac{c'(\theta)}{c(\theta)w'(\theta)} \right]$$

$$\tau(\theta) = -\frac{c'(\theta)}{c(\theta)w'(\theta)}$$

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) + \frac{c'(\theta)}{c(\theta)w'(\theta)} \right]$$

$$\tau(\theta) = -\frac{c'(\theta)}{c(\theta)w'(\theta)}$$

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = a(\theta)[W(\mathbf{x}) - \tau(\theta)]$$

where
$$a(\theta) = nw'(\theta)$$
, $W(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} t(x_i)$

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right]$$

11 / 27

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right]$$

$$E\left[\left\{ \frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) \right\}^2 \right] = I_n(\theta) = E\left[(nw'(\theta))^2 \left(\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right)^2 \right]$$

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right]$$

$$E\left[\left\{ \frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) \right\}^2 \right] = I_n(\theta) = E\left[(nw'(\theta))^2 \left(\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right)^2 \right]$$

$$= \operatorname{Var}\left[nw'(\theta) \left\{ \frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right\} \right]$$

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right]$$

$$E\left[\left\{ \frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) \right\}^2 \right] = I_n(\theta) = E\left[(nw'(\theta))^2 \left(\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right)^2 \right]$$

$$= \operatorname{Var} \left[nw'(\theta) \left\{ \frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right\} \right]$$

$$= n^2 \left\{ w'(\theta) \right\}^2 \operatorname{Var} \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) \right]$$

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) = nw'(\theta) \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right]$$

$$E\left[\left\{ \frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x}) \right\}^2 \right] = I_n(\theta) = E\left[(nw'(\theta))^2 \left(\frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right)^2 \right]$$

$$= \operatorname{Var} \left[nw'(\theta) \left\{ \frac{1}{n} \sum_{i=1}^{n} t(X_i) - \tau(\theta) \right\} \right]$$

$$= n^2 \left\{ w'(\theta) \right\}^2 \operatorname{Var} \left[\frac{1}{n} \sum_{i=1}^{n} t(X_i) \right]$$

$$= n^2 \left\{ w'(\theta) \right\}^2 \frac{[\tau'(\theta)]^2}{I_n(\theta)}$$

$$E\left[\left\{\frac{\partial}{\partial \theta} \log L(\theta|\mathbf{x})\right\}^2\right] = I_n(\theta)$$

$$E\left[\left\{\frac{\partial}{\partial \theta} \log L(\theta|\mathbf{x})\right\}^{2}\right] = I_{n}(\theta)$$
$$= n^{2} \left\{w'(\theta)\right\}^{2} \frac{[\tau'(\theta)]^{2}}{I_{n}(\theta)}$$

Exponential Family

Obtaining $I_n(\theta)$

$$E\left[\left\{\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x})\right\}^{2}\right] = I_{n}(\theta)$$

$$= n^{2} \left\{w'(\theta)\right\}^{2} \frac{[\tau'(\theta)]^{2}}{I_{n}(\theta)}$$

$$\left[nw'(\theta)\right]^{2} = \frac{I_{n}(\theta) \cdot I_{n}(\theta)}{[\tau'(\theta)]^{2}}$$

12 / 27

$$E\left[\left\{\frac{\partial}{\partial \theta} \log L(\theta|\mathbf{x})\right\}^{2}\right] = I_{n}(\theta)$$

$$= n^{2} \left\{w'(\theta)\right\}^{2} \frac{\left[\tau'(\theta)\right]^{2}}{I_{n}(\theta)}$$

$$\left[nw'(\theta)\right]^{2} = \frac{I_{n}(\theta) \cdot I_{n}(\theta)}{\left[\tau'(\theta)\right]^{2}}$$

$$= \left(\frac{I_{n}(\theta)}{\tau'(\theta)}\right)^{2}$$

$$I_{n}(\theta) = |nw'(\theta)\tau'(\theta)|$$

Summary

1 If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.

13 / 27

Summary

- **1** If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.
 - It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ if it happens to attain the CR-bound.

Summary

- 1 If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.
 - It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ if it happens to attain the CR-bound.
 - If an unbiased estimator of $\tau(\theta)$ has variance greater than the CR-bound, it does NOT mean that it is not the best unbiased estimator.

Summary

- If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.
 - It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ if it happens to attain the CR-bound.
 - If an unbiased estimator of $\tau(\theta)$ has variance greater than the CR-bound, it does NOT mean that it is not the best unbiased estimator.
- **2** When "regularity conditions" are not satisfied, $\frac{[\tau'(\theta)]^2}{I_{\sigma}(\theta)}$ is no longer a valid lower bound.

Summary

- If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.
 - It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ if it happens to attain the CR-bound.
 - If an unbiased estimator of $\tau(\theta)$ has variance greater than the CR-bound, it does NOT mean that it is not the best unbiased estimator.
- 2 When "regularity conditions" are not satisfied, $\frac{[au'(heta)]^2}{I_n(heta)}$ is no longer a valid lower bound.
 - There may be unbiased estimators of $\tau(\theta)$ that have variance smaller than $\frac{[\tau'(\theta)]^2}{I(\theta)}$.

1 Using Cramer-Rao bound

- Using Cramer-Rao bound
 - How do we find the best unbiased estimator?

- Using Cramer-Rao bound
 - How do we find the best unbiased estimator?
- Using Rao-Blackwell theorem

- Using Cramer-Rao bound
 - How do we find the best unbiased estimator?
- Using Rao-Blackwell theorem
 - Use complete and sufficient statistic.

- 1 Using Cramer-Rao bound
 - How do we find the best unbiased estimator?
- Using Rao-Blackwell theorem
 - Use complete and sufficient statistic.
 - Find a 'better' unbiased estimator

X and Y are two random variables

•
$$E(X) = E[E(X|Y)]$$
 (Theorem 4.4.3)

X and Y are two random variables

- E(X) = E[E(X|Y)] (Theorem 4.4.3)
- Var(X) = E[Var(X|Y)] + Var[E(X|Y)] (Theorem 4.4.7)

X and Y are two random variables

- E(X) = E[E(X|Y)] (Theorem 4.4.3)
- Var(X) = E[Var(X|Y)] + Var[E(X|Y)] (Theorem 4.4.7)
- $E[g(X)|Y] = \int_{x \in \mathcal{X}} g(x)f(x|Y)dx$ is a function of Y.

X and Y are two random variables

- E(X) = E[E(X|Y)] (Theorem 4.4.3)
- Var(X) = E[Var(X|Y)] + Var[E(X|Y)] (Theorem 4.4.7)
- $E[g(X)|Y] = \int_{x \in \mathcal{X}} g(x)f(x|Y)dx$ is a function of Y.
- If X and Y are independent, E[g(X)|Y] = E[g(X)].

Suppose $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$. That is, $E[W(\mathbf{X})] = \tau(\theta)$.

Seeking for a better unbiased estimator

Suppose $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$. That is, $E[W(\mathbf{X})] = \tau(\theta)$. Suppose $T(\mathbf{X})$ is any function of $\mathbf{X} = (X_1, \dots, X_n)$. Consider

Seeking for a better unbiased estimator

Suppose $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$. That is, $E[W(\mathbf{X})] = \tau(\theta)$. Suppose $T(\mathbf{X})$ is any function of $\mathbf{X} = (X_1, \dots, X_n)$. Consider

$$\phi(T) = E(W(\mathbf{X})|T)$$

Suppose $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$. That is, $E[W(\mathbf{X})] = \tau(\theta)$. Suppose $T(\mathbf{X})$ is any function of $\mathbf{X} = (X_1, \dots, X_n)$. Consider

$$\phi(T) = E(W(\mathbf{X})|T)$$

$$E[\phi(T)] = E[E(W(\mathbf{X})|T)] = E[W(\mathbf{X})] = \tau(\theta)$$
 (unbiased for $\tau(\theta)$)

Suppose $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$. That is, $E[W(\mathbf{X})] = \tau(\theta)$. Suppose $T(\mathbf{X})$ is any function of $\mathbf{X} = (X_1, \dots, X_n)$. Consider

$$\phi(T) = E(W(\mathbf{X})|T)$$

$$E[\phi(T)] = E[E(W(\mathbf{X})|T)] = E[W(\mathbf{X})] = \tau(\theta) \quad \text{(unbiased for } \tau(\theta))$$

$$Var(\phi(T)) = Var[E(W|T)]$$

Seeking for a better unbiased estimator

Suppose $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$. That is, $E[W(\mathbf{X})] = \tau(\theta)$. Suppose $T(\mathbf{X})$ is any function of $\mathbf{X} = (X_1, \dots, X_n)$. Consider

$$\phi(T) = E(W(\mathbf{X})|T)$$

$$E[\phi(T)] = E[E(W(\mathbf{X})|T)] = E[W(\mathbf{X})] = \tau(\theta) \quad \text{(unbiased for } \tau(\theta))$$

$$Var(\phi(T)) = Var[E(W|T)]$$

$$= Var(W) - E[Var(W|T)]$$

Suppose $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$. That is, $E[W(\mathbf{X})] = \tau(\theta)$. Suppose $T(\mathbf{X})$ is any function of $\mathbf{X} = (X_1, \dots, X_n)$. Consider

$$\phi(T) = E(W(\mathbf{X})|T)$$

$$E[\phi(T)] = E[E(W(\mathbf{X})|T)] = E[W(\mathbf{X})] = \tau(\theta) \quad \text{(unbiased for } \tau(\theta))$$

$$Var(\phi(T)) = Var[E(W|T)]$$

$$= Var(W) - E[Var(W|T)]$$

$$< Var(W) \quad \text{(smaller variance than } W)$$

A better unbiased estimator?

Does this mean that $\phi(T)$ is a better estimator than $W(\mathbf{X})$?

A better unbiased estimator?

Does this mean that $\phi(T)$ is a better estimator than $W(\mathbf{X})$?

1 If $\phi(T)$ is an estimator, then $\phi(T)$ is equal or better than $W(\mathbf{X})$.

A better unbiased estimator?

Does this mean that $\phi(T)$ is a better estimator than $W(\mathbf{X})$?

1 If $\phi(T)$ is an estimator, then $\phi(T)$ is equal or better than $W(\mathbf{X})$.

Rao-Blackwell

2 $\phi(T) = E[W|T] = E[W|T, \theta].$

 $\phi(T)$ may depend on θ , which means that $\phi(T)$ may not be an estimator.

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = \frac{1}{2}(X_1 + X_2)$ is an unbiased estimator of θ .

Consider conditioning it on $T(\mathbf{X}) = X_1$.

$$\phi(T) = E[W|T] = E\left[\frac{1}{2}(X_1 + X_2)|X_1\right]$$

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = \frac{1}{2}(X_1 + X_2)$ is an unbiased estimator of θ .

Consider conditioning it on $T(\mathbf{X}) = X_1$.

$$\phi(T) = E[W|T] = E\left[\frac{1}{2}(X_1 + X_2)|X_1\right]$$
$$= \frac{1}{2}E(X_1|X_1) + \frac{1}{2}E(X_2|X_1)$$

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = \frac{1}{2}(X_1 + X_2)$ is an unbiased estimator of θ .

Consider conditioning it on $T(\mathbf{X}) = X_1$.

$$\phi(T) = E[W|T] = E\left[\frac{1}{2}(X_1 + X_2)|X_1\right]$$
$$= \frac{1}{2}E(X_1|X_1) + \frac{1}{2}E(X_2|X_1)$$
$$= \frac{1}{2}X_1 + \frac{1}{2}E(X_2)$$

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = \frac{1}{2}(X_1 + X_2)$ is an unbiased estimator of θ .

Rao-Blackwell 000000000000

Consider conditioning it on $T(\mathbf{X}) = X_1$.

$$\phi(T) = E[W|T] = E\left[\frac{1}{2}(X_1 + X_2)|X_1\right]$$

$$= \frac{1}{2}E(X_1|X_1) + \frac{1}{2}E(X_2|X_1)$$

$$= \frac{1}{2}X_1 + \frac{1}{2}E(X_2)$$

$$= \frac{1}{2}X_1 + \frac{1}{2}\theta$$

18 / 27

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = \frac{1}{2}(X_1 + X_2)$ is an unbiased estimator of θ .

Consider conditioning it on $T(\mathbf{X}) = X_1$.

$$\phi(T) = E[W|T] = E\left[\frac{1}{2}(X_1 + X_2)|X_1\right]$$

$$= \frac{1}{2}E(X_1|X_1) + \frac{1}{2}E(X_2|X_1)$$

$$= \frac{1}{2}X_1 + \frac{1}{2}E(X_2)$$

$$= \frac{1}{2}X_1 + \frac{1}{2}\theta$$

• $E[\phi(T)] = \frac{1}{2}\theta + \frac{1}{2}\theta = \theta$ (unbiased)

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = \frac{1}{2}(X_1 + X_2)$ is an unbiased estimator of θ .

Rao-Blackwell 000000000000

Consider conditioning it on $T(\mathbf{X}) = X_1$.

$$\phi(T) = E[W|T] = E\left[\frac{1}{2}(X_1 + X_2)|X_1\right]$$

$$= \frac{1}{2}E(X_1|X_1) + \frac{1}{2}E(X_2|X_1)$$

$$= \frac{1}{2}X_1 + \frac{1}{2}E(X_2)$$

$$= \frac{1}{2}X_1 + \frac{1}{2}\theta$$

- $E[\phi(T)] = \frac{1}{2}\theta + \frac{1}{2}\theta = \theta$ (unbiased)
- $Var[\phi(T)] = \frac{1}{4} < Var(\frac{1}{2}(X_1 + X_2)) = \frac{1}{2}$

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = \frac{1}{2}(X_1 + X_2)$ is an unbiased estimator of θ .

Rao-Blackwell 000000000000

Consider conditioning it on $T(\mathbf{X}) = X_1$.

$$\phi(T) = E[W|T] = E\left[\frac{1}{2}(X_1 + X_2)|X_1\right]$$

$$= \frac{1}{2}E(X_1|X_1) + \frac{1}{2}E(X_2|X_1)$$

$$= \frac{1}{2}X_1 + \frac{1}{2}E(X_2)$$

$$= \frac{1}{2}X_1 + \frac{1}{2}\theta$$

- $E[\phi(T)] = \frac{1}{2}\theta + \frac{1}{2}\theta = \theta$ (unbiased)
- $Var[\phi(T)] = \frac{1}{4} < Var(\frac{1}{2}(X_1 + X_2)) = \frac{1}{2}$
- But φ(T) is NOT an estimator.

Let $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = X_1$ is an unbiased estimator of θ . Consider conditioning it on \overline{X} .

Let $X_1,\cdots,X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta,1)$. $W(\mathbf{X})=X_1$ is an unbiased estimator of θ . Consider conditioning it on \overline{X} .

$$\phi(T) = E[W|T] = E(X_1|\overline{X})$$

Let $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = X_1$ is an unbiased estimator of θ . Consider conditioning it on \overline{X} .

$$\phi(T) = E[W|T] = E(X_1|\overline{X})$$

$$= \frac{E(X_1|\overline{X}) + E(X_2|\overline{X}) + \dots + E(X_n|\overline{X})}{n}$$

Let $X_1,\cdots,X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta,1)$. $W(\mathbf{X})=X_1$ is an unbiased estimator of θ . Consider conditioning it on \overline{X} .

$$\phi(T) = E[W|T] = E(X_1|\overline{X})$$

$$= \frac{E(X_1|\overline{X}) + E(X_2|\overline{X}) + \dots + E(X_n|\overline{X})}{n}$$

$$= \frac{E(X_1 + \dots + X_n|\overline{X})}{n}$$

Let $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = X_1$ is an unbiased estimator of θ . Consider conditioning it on \overline{X} .

$$\phi(T) = E[W|T] = E(X_1|\overline{X})$$

$$= \frac{E(X_1|\overline{X}) + E(X_2|\overline{X}) + \dots + E(X_n|\overline{X})}{n}$$

$$= \frac{E(X_1 + \dots + X_n|\overline{X})}{n}$$

$$= \frac{E(n\overline{X}|\overline{X})}{n} = \frac{n\overline{X}}{n} = \overline{X}$$

• $E[\phi(T)] = \theta$ (unbiased)

Let $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = X_1$ is an unbiased estimator of θ . Consider conditioning it on \overline{X} .

$$\phi(T) = E[W|T] = E(X_1|\overline{X})$$

$$= \frac{E(X_1|\overline{X}) + E(X_2|\overline{X}) + \dots + E(X_n|\overline{X})}{n}$$

$$= \frac{E(X_1 + \dots + X_n|\overline{X})}{n}$$

$$= \frac{E(n\overline{X}|\overline{X})}{n} = \frac{n\overline{X}}{n} = \overline{X}$$

- $E[\phi(T)] = \theta$ (unbiased)
- $Var[\phi(T)] = \frac{Var(X)}{n} = \frac{1}{n} < Var(W) = 1$

Let $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, 1)$. $W(\mathbf{X}) = X_1$ is an unbiased estimator of θ . Consider conditioning it on \overline{X} .

$$\phi(T) = E[W|T] = E(X_1|\overline{X})$$

$$= \frac{E(X_1|\overline{X}) + E(X_2|\overline{X}) + \dots + E(X_n|\overline{X})}{n}$$

$$= \frac{E(X_1 + \dots + X_n|\overline{X})}{n}$$

$$= \frac{E(n\overline{X}|\overline{X})}{n} = \frac{n\overline{X}}{n} = \overline{X}$$

- $E[\phi(T)] = \theta$ (unbiased)
- $Var[\phi(T)] = \frac{Var(X)}{n} = \frac{1}{n} < Var(W) = 1$
- $\phi(T)$ is an estimator.

Theorem 7.3.17

Let $W(\mathbf{X})$ be any unbiased estimator of $\tau(\theta)$, and T be a sufficient statistic for θ .

Rao-Blackwell

Rao-Blackwell Theorem

Theorem 7.3.17

Let $W(\mathbf{X})$ be any unbiased estimator of $\tau(\theta)$, and T be a sufficient statistic for θ .

Define $\phi(T) = E[W|T]$. Then the followings hold.

Theorem 7.3.17

Let $W(\mathbf{X})$ be any unbiased estimator of $\tau(\theta)$, and T be a sufficient statistic for θ .

Define $\phi(T) = E[W|T]$. Then the followings hold.

$$\bullet E[\phi(T)|\theta] = \tau(\theta)$$

Theorem 7.3.17

Let $W(\mathbf{X})$ be any unbiased estimator of $\tau(\theta)$, and T be a sufficient statistic for θ .

Rao-Blackwell 0000000000000

Define $\phi(T) = E[W|T]$. Then the followings hold.

- $\bullet E[\phi(T)|\theta] = \tau(\theta)$
- 2 $Var[\phi(T)|\theta] \le Var(W|\theta)$ for all θ .

Theorem 7.3.17

Let $W(\mathbf{X})$ be any unbiased estimator of $\tau(\theta)$, and T be a sufficient statistic for θ .

Define $\phi(T) = E[W|T]$. Then the followings hold.

- 2 $Var[\phi(T)|\theta] < Var(W|\theta)$ for all θ .

That is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

$$\bullet \ E[\phi(\mathit{T})] = E[E(\mathit{W}|\mathit{T})] = E(\mathit{W}) = \tau(\theta) \ \text{(unbiased)}$$

- $2 \operatorname{Var}[\phi(T)] = \operatorname{Var}[E(W|T)] = \operatorname{Var}(W) E[\operatorname{Var}(W|T)] \le \operatorname{Var}(W)$ (better than W).

- **1** $E[\phi(T)] = E[E(W|T)] = E(W) = \tau(\theta)$ (unbiased)
- ② $Var[\phi(T)] = Var[E(W|T)] = Var(W) E[Var(W|T)] \le Var(W)$ (better than W).
- **3** Need to show $\phi(T)$ is indeed an estimator.

- ② $Var[\phi(T)] = Var[E(W|T)] = Var(W) E[Var(W|T)] \le Var(W)$ (better than W).
- **3** Need to show $\phi(T)$ is indeed an estimator.

$$\phi(T) = E(W|T) = E[W(\mathbf{X})|T]$$
$$= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f(\mathbf{x}|T) d\mathbf{x}$$

- **1** $E[\phi(T)] = E[E(W|T)] = E(W) = \tau(\theta)$ (unbiased)
- ② $Var[\phi(T)] = Var[E(W|T)] = Var(W) E[Var(W|T)] \le Var(W)$ (better than W).
- **3** Need to show $\phi(T)$ is indeed an estimator.

$$\phi(T) = E(W|T) = E[W(\mathbf{X})|T]$$
$$= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f(\mathbf{x}|T) d\mathbf{x}$$

Because T is a sufficient statistic, $f(\mathbf{x}|T)$ does not depend on θ .

- **1** $E[\phi(T)] = E[E(W|T)] = E(W) = \tau(\theta)$ (unbiased)
- ② $Var[\phi(T)] = Var[E(W|T)] = Var(W) E[Var(W|T)] \le Var(W)$ (better than W).
- **3** Need to show $\phi(T)$ is indeed an estimator.

$$\phi(T) = E(W|T) = E[W(\mathbf{X})|T]$$
$$= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f(\mathbf{x}|T) d\mathbf{x}$$

Because T is a sufficient statistic, $f(\mathbf{x}|T)$ does not depend on θ . Therefore, $\phi(T) = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f(\mathbf{x}|T) d\mathbf{x}$ does not depend on θ ,

- **1** $E[\phi(T)] = E[E(W|T)] = E(W) = \tau(\theta)$ (unbiased)
- ② $Var[\phi(T)] = Var[E(W|T)] = Var(W) E[Var(W|T)] \le Var(W)$ (better than W).
- **3** Need to show $\phi(T)$ is indeed an estimator.

$$\phi(T) = E(W|T) = E[W(\mathbf{X})|T]$$
$$= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f(\mathbf{x}|T) d\mathbf{x}$$

Because T is a sufficient statistic, $f(\mathbf{x}|T)$ does not depend on θ . Therefore, $\phi(T) = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f(\mathbf{x}|T) d\mathbf{x}$ does not depend on θ , and $\phi(T)$ is indeed an estimator of θ .

Theorem 7.3.19

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Theorem 7.3.19

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Proof

Suppose W_1 and W_2 are two best unbiased estimators of $\tau(\theta)$. Consider estimator $W_3 = \frac{1}{2}(W_1 + W_2)$.

Rao-Blackwell 000000000000

Theorem 7.3.19

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Proof

Suppose W_1 and W_2 are two best unbiased estimators of $\tau(\theta)$. Consider estimator $W_3 = \frac{1}{2}(W_1 + W_2)$.

$$E(W_3) = E\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right) = \frac{1}{2}\tau(\theta) + \frac{1}{2}\tau(\theta) = \tau(\theta)$$

Theorem 7.3.19

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Proof

Suppose W_1 and W_2 are two best unbiased estimators of $\tau(\theta)$. Consider estimator $W_3 = \frac{1}{2}(W_1 + W_2)$.

Rao-Blackwell 000000000000

$$E(W_3) = E\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right) = \frac{1}{2}\tau(\theta) + \frac{1}{2}\tau(\theta) = \tau(\theta)$$

$$\operatorname{Var}(W_3) = \operatorname{Var}\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right)$$

Theorem 7.3.19

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Proof

Suppose W_1 and W_2 are two best unbiased estimators of $\tau(\theta)$. Consider estimator $W_3 = \frac{1}{2}(W_1 + W_2)$.

Rao-Blackwell 0000000000000

$$E(W_3) = E\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right) = \frac{1}{2}\tau(\theta) + \frac{1}{2}\tau(\theta) = \tau(\theta)$$

$$Var(W_3) = Var\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right)$$

$$= \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2) + \frac{1}{2}Cov(W_1, W_2)$$

Theorem 7.3.19

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Proof

Suppose W_1 and W_2 are two best unbiased estimators of $\tau(\theta)$. Consider estimator $W_3 = \frac{1}{2}(W_1 + W_2)$.

$$E(W_3) = E\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right) = \frac{1}{2}\tau(\theta) + \frac{1}{2}\tau(\theta) = \tau(\theta)$$

$$Var(W_3) = Var\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right)$$

$$= \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2) + \frac{1}{2}Cov(W_1, W_2)$$

$$\leq \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2) + \frac{1}{2}\sqrt{Var(W_1)Var(W_2)}$$

Theorem 7.3.19

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Proof

Suppose W_1 and W_2 are two best unbiased estimators of $\tau(\theta)$. Consider estimator $W_3 = \frac{1}{2}(W_1 + W_2)$.

$$E(W_3) = E\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right) = \frac{1}{2}\tau(\theta) + \frac{1}{2}\tau(\theta) = \tau(\theta)$$

$$Var(W_3) = Var\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right)$$

$$= \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2) + \frac{1}{2}Cov(W_1, W_2)$$

$$\leq \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2) + \frac{1}{2}\sqrt{Var(W_1)Var(W_2)}$$

$$= Var(W_1) = Var(W_2)$$

Hyun Min Kang

Theorem 7.3.19

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Proof

Suppose W_1 and W_2 are two best unbiased estimators of $\tau(\theta)$. Consider estimator $W_3 = \frac{1}{2}(W_1 + W_2)$.

$$E(W_3) = E\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right) = \frac{1}{2}\tau(\theta) + \frac{1}{2}\tau(\theta) = \tau(\theta)$$

$$Var(W_3) = Var\left(\frac{1}{2}W_1 + \frac{1}{2}W_2\right)$$

$$= \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2) + \frac{1}{2}Cov(W_1, W_2)$$

$$\leq \frac{1}{4}Var(W_1) + \frac{1}{4}Var(W_2) + \frac{1}{2}\sqrt{Var(W_1)Var(W_2)}$$

$$= Var(W_1) = Var(W_2)$$

Hyun Min Kang

$$\operatorname{Var}(W_3) \leq \operatorname{Var}(W_1) = \operatorname{Var}(W_2).$$

 $\operatorname{Var}(W_3) \leq \operatorname{Var}(W_1) = \operatorname{Var}(W_2)$. If strict inequality holds, W_3 is better than W_1 and W_2 , which is contradictory to the assumption.

$$\operatorname{Var}(W_3) \leq \operatorname{Var}(W_1) = \operatorname{Var}(W_2).$$

If strict inequality holds, W_3 is better than W_1 and W_2 , which is contradictory to the assumption.

Therefore, the equality must hold, requiring

$$\frac{1}{2}\operatorname{Cov}(W_1, W_2) = \frac{1}{2}\sqrt{\operatorname{Var}(W_1)\operatorname{Var}(W_2)}$$

Rao-Blackwell 00000000000000

 $\operatorname{Var}(W_3) < \operatorname{Var}(W_1) = \operatorname{Var}(W_2).$

If strict inequality holds, W_3 is better than W_1 and W_2 , which is contradictory to the assumption.

Therefore, the equality must hold, requiring

$$\frac{1}{2}\operatorname{Cov}(W_1, W_2) = \frac{1}{2}\sqrt{\operatorname{Var}(W_1)\operatorname{Var}(W_2)}$$

Rao-Blackwell 00000000000000

 $\operatorname{Var}(W_3) < \operatorname{Var}(W_1) = \operatorname{Var}(W_2).$

If strict inequality holds, W_3 is better than W_1 and W_2 , which is contradictory to the assumption.

Therefore, the equality must hold, requiring

$$\frac{1}{2}\operatorname{Cov}(W_1, W_2) = \frac{1}{2}\sqrt{\operatorname{Var}(W_1)\operatorname{Var}(W_2)}$$

Rao-Blackwell 00000000000000

$$Cov(W_1, W_2) = Cov(W_1, aW_1 + b) = aVar(W_1)$$

$$\operatorname{Var}(W_3) \leq \operatorname{Var}(W_1) = \operatorname{Var}(W_2).$$

If strict inequality holds, W_3 is better than W_1 and W_2 , which is contradictory to the assumption.

Therefore, the equality must hold, requiring

$$\frac{1}{2}\operatorname{Cov}(W_1, W_2) = \frac{1}{2}\sqrt{\operatorname{Var}(W_1)\operatorname{Var}(W_2)}$$

Rao-Blackwell 00000000000000

$$Cov(W_1, W_2) = Cov(W_1, aW_1 + b) = aVar(W_1)$$
$$= Var(W_1)Var(W_2) = Var(W_1)$$

 $\operatorname{Var}(W_3) < \operatorname{Var}(W_1) = \operatorname{Var}(W_2).$

If strict inequality holds, W_3 is better than W_1 and W_2 , which is contradictory to the assumption.

Therefore, the equality must hold, requiring

$$\frac{1}{2}\operatorname{Cov}(W_1, W_2) = \frac{1}{2}\sqrt{\operatorname{Var}(W_1)\operatorname{Var}(W_2)}$$

Rao-Blackwell 00000000000000

$$Cov(W_1, W_2) = Cov(W_1, aW_1 + b) = aVar(W_1)$$
$$= Var(W_1)Var(W_2) = Var(W_1)$$
$$E(W_2) = a\tau(\theta) + b$$

$$\operatorname{Var}(W_3) \leq \operatorname{Var}(W_1) = \operatorname{Var}(W_2).$$

If strict inequality holds, W_3 is better than W_1 and W_2 , which is contradictory to the assumption.

Therefore, the equality must hold, requiring

$$\frac{1}{2}\operatorname{Cov}(W_1, W_2) = \frac{1}{2}\sqrt{\operatorname{Var}(W_1)\operatorname{Var}(W_2)}$$

By Cauchy-Schwarz inequality, this is true if and only if $W_2 = aW_1 + b$

$$Cov(W_1, W_2) = Cov(W_1, aW_1 + b) = aVar(W_1)$$

$$= Var(W_1)Var(W_2) = Var(W_1)$$

$$E(W_2) = a\tau(\theta) + b$$

$$= \tau(\theta)$$

a=1, b=0 must hold, and $W_2=W_1$. Therefore, the best unbiased estimator is unique.

Unbiased estimator of zero

Definition

If $U(\mathbf{X})$ satisfies E(U) = 0. Then we call U an unbiased estimator of 0.

Unbiased estimator of zero

Definition

If $U(\mathbf{X})$ satisfies E(U) = 0. Then we call U an unbiased estimator of 0.

Theorem 7.3.20

If $E[W(\mathbf{X})] = \tau(\theta)$. W is the best unbiased estimator of $\tau(\theta)$ if an only if W is uncorrelated with all unbiased estimator of 0.

Let W be an unbiased estimator of $\tau(\theta)$. Let V = W + U and $U \in \mathcal{U}$, which is the class of unbiased estimators of 0.

By construction, V is an unbiased estimator of $\tau(\theta)$.

Proof of Theorem 7.3.20

Let W be an unbiased estimator of $\tau(\theta)$. Let V = W + U and $U \in \mathcal{U}$, which is the class of unbiased estimators of 0.

Rao-Blackwell 0000000000000

Let W be an unbiased estimator of $\tau(\theta)$. Let V = W + U and $U \in \mathcal{U}$, which is the class of unbiased estimators of 0.

Rao-Blackwell 00000000000000

By construction, V is an unbiased estimator of $\tau(\theta)$. Consider

$$\mathcal{V} = \{ V_a = W + aU \}$$

Let W be an unbiased estimator of $\tau(\theta)$. Let V = W + U and $U \in \mathcal{U}$, which is the class of unbiased estimators of 0.

By construction, V is an unbiased estimator of $\tau(\theta)$. Consider

$$\mathcal{V} = \{ V_a = W + aU \}$$

$$E(V_a) = E(W + aU) = E(W) + aE(U)$$

Let W be an unbiased estimator of $\tau(\theta)$. Let V = W + U and $U \in \mathcal{U}$, which is the class of unbiased estimators of 0.

By construction, V is an unbiased estimator of $\tau(\theta)$. Consider

$$\mathcal{V} = \{ V_a = W + aU \}$$

$$E(V_a) = E(W + aU) = E(W) + aE(U)$$
$$= \tau(\theta) + a \cdot 0 = \tau(\theta)$$

Let W be an unbiased estimator of $\tau(\theta)$. Let V = W + U and $U \in \mathcal{U}$, which is the class of unbiased estimators of 0.

By construction, V is an unbiased estimator of $\tau(\theta)$. Consider

$$\mathcal{V} = \{ V_a = W + aU \}$$

Rao-Blackwell 00000000000000

$$E(V_a) = E(W + aU) = E(W) + aE(U)$$
$$= \tau(\theta) + a \cdot 0 = \tau(\theta)$$
$$Var(V_a) = Var(W + aU)$$

Let W be an unbiased estimator of $\tau(\theta)$. Let V = W + U and $U \in \mathcal{U}$, which is the class of unbiased estimators of 0.

By construction, V is an unbiased estimator of $\tau(\theta)$. Consider

$$\mathcal{V} = \{ V_a = W + aU \}$$

$$E(V_a) = E(W + aU) = E(W) + aE(U)$$

$$= \tau(\theta) + a \cdot 0 = \tau(\theta)$$

$$Var(V_a) = Var(W + aU)$$

$$= a^2 Var(U) + 2aCov(W, U) + Var(W)$$

The variance is minimized when

$$a = \frac{-2\operatorname{Cov}(W, U)}{2\operatorname{Var}(U)} = -\frac{\operatorname{Cov}(W, U)}{\operatorname{Var}(U)}$$

Rao-Blackwell 0000000000000

The variance is minimized when

$$a = \frac{-2\operatorname{Cov}(W, U)}{2\operatorname{Var}(U)} = -\frac{\operatorname{Cov}(W, U)}{\operatorname{Var}(U)}$$

Rao-Blackwell 0000000000000

The best unbiased estimator in this class is

$$W - \frac{\operatorname{Cov}(W, U)}{\operatorname{Var}(U)} U$$

The variance is minimized when

$$a = \frac{-2\operatorname{Cov}(W, U)}{2\operatorname{Var}(U)} = -\frac{\operatorname{Cov}(W, U)}{\operatorname{Var}(U)}$$

Rao-Blackwell 0000000000000

The best unbiased estimator in this class is

$$W - \frac{\operatorname{Cov}(W, U)}{\operatorname{Var}(U)} U$$

W is the best unbiased estimator in this class if and only if Cov(W, U) = 0.

The variance is minimized when

$$a = \frac{-2\operatorname{Cov}(W, U)}{2\operatorname{Var}(U)} = -\frac{\operatorname{Cov}(W, U)}{\operatorname{Var}(U)}$$

Rao-Blackwell

The best unbiased estimator in this class is

$$W - \frac{\operatorname{Cov}(W, U)}{\operatorname{Var}(U)} U$$

W is the best unbiased estimator in this class if and only if Cov(W, U) = 0. Therefore for W is the best among all unbiased estimators of $\tau(\theta)$ if and only if Cov(W, U) = 0 for every $U \in \mathcal{U}$.

Summary

Today

- Cramer-Rao Theorem with single parameter exponential family.
- Rao-Blackwell Theorem

Summary

Today

- Cramer-Rao Theorem with single parameter exponential family.
- Rao-Blackwell Theorem

Next Lecture

More Rao-Blackwell Theorem