Recap Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation Summary 000 000000 00000000 0

Biostatistics 602 - Statistical Inference Lecture 21 Asymptotics of LRT Wald Test

Hyun Min Kang

April 2nd, 2013

Biostatistics 602 - Lecture 21 April 2nd, 2013 1 / 32 otics of LRT Wald Test Interval Estimation Summary

Uniformly Most Powerful Test (UMP)

Definition

Let \mathcal{C} be a class of tests between $H_0: \theta \in \Omega$ vs $H_1: \theta \in \Omega_0^c$. A test in C, with power function $\beta(\theta)$ is *uniformly most powerful (UMP) test* in class \mathcal{C} if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Omega_0^c$ and every $\beta'(\theta)$, which is a power function of another test in C.

UMP level lpha test

Hyun Min Kang

Consider $\mathcal C$ be the set of all the level α test. The UMP test in this class is called a UMP level α test.

UMP level α test has the smallest type II error probability for any $\theta \in \Omega_0^c$ in this class.

•00

Asymptotics of LRT

Wald Test

Interval Estimation

Summa

Last Lecture

- What is a Uniformly Most Powerful (UMP) Test?
- Does UMP level α test always exist for simple hypothesis testing?
- For composite hypothesis, which property makes it possible to construct a UMP level α test?
- What is a sufficient condition for an exponential family to have MLR property?
- For one-sided composite hypothesis testing, if a sufficient statistic satisfies MLR property, how can a UMP level α test be constructed?

Biostatistics 602 - Lecture 21

cap Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation 000000 00000000 000000 0000000

Neyman-Pearson Lemma

Hyun Min Kang

Theorem 8.3.12 - Neyman-Pearson Lemma

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ where the pdf or pmf corresponding the θ_i is $f(\mathbf{x}|\theta_i)$, i=0,1, using a test with rejection region R that satisfies

$$\mathbf{x} \in R$$
 if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$ (8.3.1) and $\mathbf{x} \in R^c$ if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$ (8.3.2)

For some $k \ge 0$ and $\alpha = \Pr(\mathbf{X} \in R | \theta_0)$, Then,

- (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α test
- (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with k>0, then every UMP level α test is a size α test (satisfies 8.3.2), and every UMP level α test satisfies 8.3.1 except perhaps on a set A satisfying $\Pr(\mathbf{X} \in A | \theta_0) = \Pr(\mathbf{X} \in A | \theta_1) = 0$.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 3 / 32 Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013

Recap **Karlin-Rabin** Asymptotics of LRT Wald Test Interval Estimation Summary Recap **Karlin-Rabin** Asymptotics of LRT Wald Test Interval Estimation Summary Noted to the state of the stat

Monotone Likelihood Ratio

Definition

A family of pdfs or pmfs $\{g(t|\theta):\theta\in\Omega\}$ for a univariate random variable T with real-valued parameter θ have a monotone likelihood ratio if $\frac{g(t|\theta_2)}{g(t|\theta_1)}$ is an increasing (or non-decreasing) function of t for every $\theta_2>\theta_1$ on $\{t:g(t|\theta_1)>0 \text{ or } g(t|\theta_2)>0\}.$

Note: we may define MLR using decreasing function of t. But all following theorems are stated according to the definition.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 5 / 32 Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 6 / 3

Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation Summary Recap Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation Summary

Normal Example with Known Mean

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\mu_0, \sigma^2)$ where σ^2 is unknown and μ_0 is known. Find the UMP level α test for testing $H_0: \sigma^2 \leq \sigma_0^2$ vs. $H_1: \sigma^2 > \sigma_0^2$. Let $T = \sum_{i=1}^n (X_i - \mu_0)^2$ is sufficient for σ^2 . To check whether T has MLR property, we need to find $g(t|\sigma^2)$.

$$\frac{X_i - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$

$$\left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_1^2$$

$$Y = T/\sigma^2 = \sum_{i=1}^n \left(\frac{X_i - \mu_0}{\sigma}\right)^2 \sim \chi_n^2$$

$$f_Y(y) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} y^{\frac{n}{2} - 1} e^{-\frac{y}{2}}$$

Theorem 8.1.17

Karlin-Rabin Theorem

Suppose $T(\mathbf{X})$ is a sufficient statistic for θ and the family $\{g(t|\theta):\theta\in\Omega\}$ is an MLR family. Then

- For testing $H_0: \theta \leq \theta_0$ vs $H_1: \theta > \theta_0$, the UMP level α test is given by rejecting H_0 is and only if $T > t_0$ where $\alpha = \Pr(T > t_0 | \theta_0)$.
- 2 For testing $H_0: \theta \geq \theta_0$ vs $H_1: \theta < \theta_0$, the UMP level α test is given by rejecting H_0 if and only if $T < t_0$ where $\alpha = \Pr(T < t_0 | \theta_0)$.

Normal Example with Known Mean (cont'd)

$$f_{T}(t) = \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^{2}}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^{2}}} \left|\frac{dy}{dt}\right| dt$$

$$= \frac{1}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{t}{\sigma^{2}}\right)^{\frac{n}{2}-1} e^{-\frac{t}{2\sigma^{2}}} \frac{1}{\sigma^{2}} dt$$

$$= \frac{t^{\frac{n}{2}-1}}{\Gamma\left(\frac{n}{2}\right) 2^{n/2}} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} e^{-\frac{t}{2\sigma^{2}}} dt$$

$$= h(t) c(\sigma^{2}) \exp[w(\sigma^{2})t]$$

where $w(\sigma^2)=-\frac{1}{2\sigma^2}$ is an increasing function in σ^2 . Therefore, $T=\sum_{i=1}^n(X_i-\mu)^2$ has the MLR property.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 7 / 32 Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 8 /

Recap **Karlin-Rabin** Asymptotics of LRT Wald Test Interval Estimation Summary Recap **Karlin-Rabin** Asymptotics of LRT Wald Test Interval Estimation Summary on the control of the control

Normal Example with Known Mean (cont'd)

By Karlin-Rabin Theorem, UMP level α rejects s H_0 if and only if $T>t_0$ where t_0 is chosen such that $\alpha=\Pr(T>t_0|\sigma_0^2)$. Note that $\frac{T}{\sigma^2}\sim\chi_n^2$

$$\Pr(T > t_0 | \sigma_0^2) = \Pr\left(\frac{T}{\sigma_0^2} > \frac{t_0}{\sigma_0^2} \middle| \sigma_0^2\right)$$

$$\frac{T}{\sigma_0^2} \sim \chi_n^2$$

$$\Pr\left(\chi_n^2 > \frac{t_0}{\sigma_0^2}\right) = \alpha$$

$$\frac{t_0}{\sigma_0^2} = \chi_{n,\alpha}^2$$

$$t_0 = \sigma_0^2 \chi_{n,\alpha}^2$$

where $\chi^2_{n,\alpha}$ satisfies $\int_{\chi^2_{n,\alpha}}^{\infty} f_{\chi^2_n}(x) \, dx = \alpha.$

	rryun iviin Kang	Biostatistics of	02 - Lecture 21	April 2110, 2013 9		
		<u> </u>		·		
р	Karlin-Rabin	Asymptotics of LRT	Wald Test	Interval Estimation	Summary	
	000000	•0000000	00000	0000000		

Distribution of LRT

$$\lambda(\mathbf{x}) = \frac{\sup_{\Omega_0} L(\theta|\mathbf{x})}{\sup_{\Omega} L(\theta|\mathbf{x})}$$

LRT level α test procedure rejects H_0 if and only if $\lambda(\mathbf{x}) \leq c$. c is chosen such that

$$\sup_{\theta \in \Omega_0} \Pr(\lambda(\mathbf{x}) \le c) \le \alpha$$

Usually, it is difficult to derive the distribution of $\lambda(\mathbf{x})$ and to solve the equation of c.

Remarks

- For many problems, UMP level α test does not exist (Example 8.3.19).
- In such cases, we can restrict our search among a subset of tests, for example, all unbiased tests.

Tiyun wiii Kang		Diostatistics of	Diostatistics 002 - Lecture 21		April 2110, 2013 10 / 32			
Recap 000	Karlin-Rabin 000000	Asymptotics of LRT ○●○○○○○○	Wald Test	Interval Estimation	Summary O			

Asymptotics of LRT

Theorem 10.3.1

Consider testing $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. Suppose X_1, \dots, X_n are iid samples from $f(x|\theta)$, and $\hat{\theta}$ is the MLE of θ , and $f(x|\theta)$ satisfies certain "regularity conditions" (e.g. see misc 10.6.2), then under H_0 :

$$-2\log\lambda(\mathbf{x}) \stackrel{\mathrm{d}}{\longrightarrow} \chi_1^2$$

as $n \to \infty$.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 11 / 32 Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 12 / 32

Recap Karlin-Rabin **Asymptotics of LRT** Wald Test Interval Estimation Summary Recap Karlin-Rabin **Asymptotics of LRT** Wald Test Interval Estimation Summary

Proof

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Omega_0} L(\theta|\mathbf{x})}{\sup_{\theta \in \Omega} L(\theta|\mathbf{x})} = \frac{L(\theta_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}$$
$$-2\lambda(\mathbf{x}) = -2\log\left(\frac{L(\theta_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}\right)$$
$$= -2\log L(\theta_0|\mathbf{x}) + 2\log L(\hat{\theta}|\mathbf{x})$$
$$= -2l(\theta_0|\mathbf{x}) + 2l(\hat{\theta}|\mathbf{x})$$

Expanding $l(\theta|\mathbf{x})$ around $\hat{\theta}$,

Proof (cont'd)

$$l(\theta|\mathbf{x}) = l(\hat{\theta}|\mathbf{x}) + l'(\hat{\theta}|\mathbf{x})(\theta - \hat{\theta}) + l''(\hat{\theta}|\mathbf{x})\frac{(\theta - \theta)^2}{2} + \cdots$$

$$l'(\hat{\theta}|\mathbf{x}) = 0 \quad \text{(assuming regularity condition)}$$

$$l(\theta_0|\mathbf{x}) \approx l(\hat{\theta}|\mathbf{x}) + l''(\hat{\theta}|\mathbf{x})\frac{(\theta_0 - \hat{\theta})^2}{2}$$

$$-2\log\lambda(\mathbf{x}) = -2l(\theta_0|\mathbf{x}) + 2l(\hat{\theta}|\mathbf{x})$$

$$\approx -(\theta_0 - \hat{\theta})^2 l''(\hat{\theta}|\mathbf{x})$$

Biostatistics 602 - Lecture 21

April 2nd, 2013

14 / 32

 Hyun Min Kang
 Biostatistics 602 - Lecture 21
 April 2nd, 2013
 13 / 32
 Hyun Min Kang

 Karlin-Rabin
 Asymptotics of LRT
 Wald Test
 Interval Estimation
 Summary
 Recap
 Karlin-Rabin

 000000
 00000
 00000
 000000
 000000
 000000
 000000

Proof (cont'd)

Because $\hat{\theta}$ is MLE, under H_0 ,

$$\begin{array}{ccc} \hat{\theta} & \sim & \mathcal{A}\mathcal{N}\left(\theta_0, \frac{1}{I_n(\theta_0)}\right) \\ (\hat{\theta} - \theta_0)\sqrt{I_n(\theta_0)} & \stackrel{\mathrm{d}}{\longrightarrow} & \mathcal{N}(0, 1) \\ (\hat{\theta} - \theta_0)^2 I_n(\theta_0) & \stackrel{\mathrm{d}}{\longrightarrow} & \chi_1^2 \end{array}$$

Therefore,

$$-2\log \lambda(\mathbf{x}) \approx -(\theta_0 - \hat{\theta})^2 l''(\hat{\theta}|\mathbf{x})$$

$$= (\hat{\theta} - \theta_0)^2 I_n(\theta_0) \frac{-\frac{1}{n} l''(\hat{\theta}|\mathbf{x})}{\frac{1}{n} I_n(\theta_0)}$$

Recap Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation

Proof (cont'd)

$$-\frac{1}{n}l''(\hat{\theta}|\mathbf{x}) = -\frac{1}{n}\sum_{i=1}^{n}\frac{\partial^{2}}{\partial\theta^{2}}f(x_{i}|\theta)\Big|_{\theta=\hat{\theta}}$$

$$\xrightarrow{P} -E\left(\frac{\partial^{2}}{\partial\theta^{2}}f(x|\theta)\right)\Big|_{\theta=\theta_{0}} = I(\theta_{0})$$

$$\frac{-\frac{1}{n}l''(\hat{\theta}|\mathbf{x})}{\frac{1}{n}I_{n}(\theta_{0})} = \frac{-\frac{1}{n}l''(\hat{\theta}|\mathbf{x})}{I(\theta_{0})} \xrightarrow{P} 1$$

By Slutsky's Theorem, under \mathcal{H}_0

$$-(\hat{\theta} - \theta_0)^2 l''(\hat{\theta}|\mathbf{X}) \stackrel{\mathrm{d}}{\longrightarrow} \chi_1^2$$
$$-2\log \lambda(\mathbf{X}) \stackrel{\mathrm{d}}{\longrightarrow} \chi_1^2$$

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 15 / 32 Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 16 / 32

ecap Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation Summary Recap Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation Summary

Example

 $X_i \stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$. Consider testing $H_0: \lambda = \lambda_0$ vs $H_1: \lambda \neq \lambda_0$. Using LRT,

$$\lambda(\mathbf{x}) = \frac{L(\lambda_0|\mathbf{x})}{\sup_{\lambda} L(\lambda|\mathbf{x})}$$

MLE of λ is $\hat{\lambda} = \overline{X} = \frac{1}{n} \sum X_i$.

$$\lambda(\mathbf{x}) = \frac{\prod_{i=1}^{n} \frac{e^{-\lambda_0} \lambda_0^{x_i}}{x_i!}}{\prod_{i=1}^{n} \frac{e^{-\overline{x}} \overline{x} x_i}{x_i!}}$$

$$= \frac{e^{-n\lambda_0} \lambda_0^{\sum x_i}}{e^{-n\overline{x}} \overline{x}^{\sum x_i}}$$

$$= e^{-n(\lambda_0 - \overline{x})} \left(\frac{\lambda_0}{\overline{x}}\right)^{\sum x_i}$$

 Hyun Min Kang
 Biostatistics 602 - Lecture 21
 April 2nd, 2013
 17 / 3

 Karlin-Rabin
 Asymptotics of LRT
 Wald Test
 Interval Estimation
 Summar

Example (cont'd)

Therefore, asymptotic size α test is

$$\Pr(\lambda(\mathbf{X}) \le c | \lambda_0) = \alpha$$

$$\Pr(-2 \log \lambda(\mathbf{X}) \le c^* | \lambda_0) = \alpha$$

$$\Pr(\chi_1^2 \ge c^*) \approx \alpha$$

$$c^* = \chi_{1,\alpha}^2$$

rejects H_0 if and only if $-2\log\lambda(\mathbf{x})\geq\chi_{1,lpha}^2$

Example (cont'd)

LRT is to reject H_0 when $\lambda(\mathbf{x}) \leq c$

$$\alpha = \Pr(\lambda(\mathbf{X}) \le c | \lambda_0)$$

$$-2 \log \lambda(\mathbf{X}) = -2 \left[-n(\lambda_0 - \overline{X}) + \sum X_i (\log \lambda_0 - \log \overline{X}) \right]$$

$$= 2n \left(\lambda_0 - \overline{X} - \overline{X} \log \left(\frac{\lambda_0}{\overline{X}} \right) \right) \xrightarrow{d} \chi_1^2$$

under H_0 , (by Theorem 10.3.1).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 18 / 32

Recap Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation Summary 000 000000 0000000 0000000 0

Wald Test

Wald test relates point estimator of θ to hypothesis testing about θ .

Definition

Syppose W_n is an estimator of θ and $W_n \sim \mathcal{AN}(\theta, \sigma_W^2)$. Then Wald test statistic is defined as

$$Z_n = \frac{W_n - \theta_0}{S_n}$$

where θ_0 is the value of θ under H_0 and S_n is a consistent estimator of σ_W

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 19 / 32 Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 20 / 32

Recap Karlin-Rabin Asymptotics of LRT Wald Test Interval Estimation Summary

Examples of Wald Test

Two-sided Wald Test

 $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$, then Wald asymptotic level α test is to reject H_0 if and only if

$$|Z_n| > z_{\alpha/2}$$

One-sided Wald Test

 $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$, then Wald asymptotic level α test is to reject H_0 if and only if

$$Z_n > z_{\alpha}$$

Remarks

- Different estimators of θ leads to different testing procedures.
- One choice of W_n is MLE and we may choose $S_n=\frac{1}{I_n(W_n)}$ or $\frac{1}{I_n(\hat{\theta})}$ (observed information number) when $\sigma_W^2=\frac{1}{I_n(\theta)}$.

	Hyun Min Kang	Biostatistics 6	02 - Lecture 21	April 2nd, 2	013 21 / 32		Hyun Min Kang	Biostatistics 60	02 - Lecture 21	April 2nd, 2	013 22 / 32
Reca 000		Asymptotics of LRT	Wald Test 000●0	Interval Estimation 0000000		Recap 000	Karlin-Rabin 000000	Asymptotics of LRT	Wald Test 0000●	Interval Estimation 0000000	Summary O

Example of Wald Test

Suppose $X_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$, and consider testing $H_0: p = p_0 \text{ vs } H_1: p \neq p_0$. MLE of $p \in \overline{X}$, which follows

$$\overline{X} \sim \mathcal{AN}\left(p, \frac{p(1-p)}{n}\right)$$

by the Central Limit Theorem. The Wald test statistic is

$$Z_n = \frac{\overline{X} - p_0}{S_n}$$

where S_n is a consistent estimator of $\sqrt{\frac{p(1-p)}{n}}$, whose MLE is

$$S_n = \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}$$

by the invariance property of MLE.

Example of Wald Test (cont'd)

Therefore, S_n is consistent for $\sqrt{\frac{p(1-p)}{n}}$. The Wald statistic is

$$Z_n = \frac{\overline{X} - p_0}{\sqrt{\overline{X}(1 - \overline{X})/n}}$$

An asymptotic level α Wald test rejects H_0 if and only if

$$\left| \frac{\overline{X} - p_0}{\sqrt{\overline{X}(1 - \overline{X})/n}} \right| > z_{\alpha/2}$$

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 23 / 32 Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 24 / 32

