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Recap - Bayes Estimator

= 0 : parameter

(@) : prior distribution
X|0 ~ fx(x|€) : sampling distribution

Posterior distribution of #|x

~_Joint  fx(x]|0)7(0)
m(lx) = Marginal ~ m(x)
m(x) = /f(x\@)w(@)d@ (Bayes’ rule)

Bayes Estimator of @ is

E0x) = /.9€Q97T(0|X)d9
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Last Lecture

= What is a Bayes Estimator?
» |s a Bayes Estimator the best unbiased estimator?

= Compared to other estimators, what are advantages of Bayes
Estimator?

= What is conjugate family?

= What are the conjugate families of Binomial, Poisson, and Normal
distribution?
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Recap - Example

= Xp,, X, g Bernoulli(p)
 7(p) ~ Beta(a, §)

= Prior guess : p = QLHB
= Posterior distribution : m(p|x) ~ Beta(>_ x; +a,n— > z;+ 3)

= Bayes estimator

a+d T DT n L@ a+f
a+B+n n a+pB+n a+Ba+p+n

D=
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Loss Function Optimality

The mean squared error (MSE) is defined as

MSE(f) = E[f —6]?

Let 6 is an estimator.
- 1fO = 0, it makes a correct decision and loss is 0

- Ifh = 6, it makes a mistake and loss is not 0.
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Risk Function - Average Loss

R(0,0) = E[L®,06(X))|6]

If L(0,0) = (0 — 0)?, R(0,0) is MSE.
An estimator with smaller R(6,0) is preferred.

Definition :

Bayes Risk

Bayes risk is defined as the average risk across all values of 6 given prior
m(0)

/ R(6,0)w(0)do
Q

The Bayes rule with respect to a prior 7 is the optimal estimator with
respect to a Bayes risk, which is defined as the one that minimize the
Bayes risk.
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Loss Function

Let L(0,0) be a function of # and .
= Squared error loss
(0~ 0)°

MSE = Average Loss = E[L(6,0)]

which is the expectation of the loss if 0 is used to estimate 6.

= Absolute error loss

L) = 16—0

= A loss that penalties overestimation more than underestimation

L(6,0) = (6—0)216 < 6)+10(0 —0)%1(6 > 0)
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Alternative definition of Bayes Risk

/ R(O,0)n(0)d0 — / E[L(0, 6(X))]x(6)db
Q Q

-,

_ /Q /X f(x|9)L(9,é(x))7r(0)dx] d

= il

_ /X { /Q L(@,é(X))w(ﬂx)d&} m(x) dx

_ / f(x|9)L(9,9A(x))dx} (0)db
LJ X

/X W(Q\x)m(x)L(Q,é(x))dx] o
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Posterior Expected Loss

Posterior expected loss is defined as

/ T(0)x)L(6,0(x))do
Q

An alternative definition of Bayes rule estimator is the estimator that
minimizes the posterior expected loss.
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Summary so far

Loss function L(6,6)
= eg (-0 |00
Risk function R(6,0) is average of L(0,0) across all z € X
= For squared error loss, risk function is the same to MSE.

Bayes risk Average risk across all 6, based on the prior of 6.

= Alternatively, average posterior error loss across all
re X.

Bayes estimator 6 = E[f|x]. Based on squared error loss,

= Minimize Bayes risk
= Minimize Posterior Expected Loss
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Bayes Estimator based on squared error loss

L(0,0) = (6—6)?
/ (0 — 6)2r(0]%)d0
Q

— E[(6-0)’X=x]

Posterior expected loss =

So, the goal is to minimize E[(0 — §)2|X = x]

E [(9 02X = x} ~- E [(9 — E(0]x) + E(0]x) — 6)2|X = x]

— E[(0—E@X)2X=x] +E [(E(e\x)

= B[(0-BOp)X = x] + [E@k) ] ’

which is minimized when 0 = E(0|x).

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th,
Bayes Risk

0000000e00

Bayes Estimator based on absolute error loss

Suppose that L(6,6) = |0 — ]. The posterior expected loss is

BLO.60)] = [ 18— 00ln(olx)
— E[0— X =x]
/9
%E[L(G,é(x))] =0, and @ is posterior median.
Biostatistics 602 - Lecture 16
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Two Bayes Rules
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Example

Consider a point estimation problem for real-valued parameter 6.

For squared error loss, the posterior expected loss is

I

This expected value is minimized by § = E(6|x). So the Bayes rule
estimator is the mean of the posterior distribution.

— 02 (0|x)d9 = E[(6—0)%X =x]

For absolute error loss, the posterior expected loss is E(|0 — 6||X = x). As
shown previously, this is minimized by choosing 6 as the median of 7(6|x).

Hyun Min Kang
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W, = Wy(Xq,- -

, Xn) = Wp(X) be a sequence of estimators for

7(0). We say W, is consistent for estimating 7(0) if W, Py 7(6) under

Py for every 6 € Q.

W, —> 7(0) (converges in probability to 7(6)) means that, given any

e > 0.

lim Pr(|W, —7(0)|>¢€¢) = 0

n—o0

lim Pr(|W,—7(6) <¢) = 1

When |W,, — 7(0)| < € can also be represented that W, is close to 7(9).
Consistency implies that the probability of W,, close to 7(f) approaches to

1 as n goes to 0.

- Xp,, X, B Bernoulli(p).
= m(p) ~ Beta(a, 5)

is the posterior mean

is the posterior median

D=

= The posterior distribution follows Beta(}_ z;+ a,n— > z;+ ).

= Bayes estimator that minimizes posterior expected squared error loss

Yt a
a+pB+n

= Bayes estimator that minimizes posterior expected absolute error loss

/9 T(a+ 8+ n)
o I

Sz a)l(n— > z;+ B)

1
pri—l—a—l(l . p)n—zxﬁ-ﬁ—ldp — 5
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Tools for proving consistency

= Use definition (complicated)

= Chebychev's Inequality

Pr(|W,—71(0)| >¢) =

Pr((W, —7(6))* > %)
E[W, — 7(0)]?
2
MSE(W,)  Bias*(W,) + Var(W,,)

2 €2

€

Need to show that both Bias(W,,) and Var(W,,) converges to zero
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Theorem for consistency

Theorem 10.1.3

If W, is a sequence of estimators of 7(0) satisfying
= lim,_ - Bias(W,) = 0.
= lim,,_ <o Var(W,) =0.

for all 6, then W, is consistent for 7(6)
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Consistent sequence of estimators

Theorem 10.1.5

Let W, is a consistent sequence of estimators of 7(#). Let a,, b, be
sequences of constants satisfying

(1] hmn—>oo ap, =1

Then U, = a, W, + b, is also a consistent sequence of estimators of 7(6).

y

Continuous Map Theorem

If W, is consistent for # and g is a continuous function, then g( W,,) is
consistent for g(6).

Consistency
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Weak Law of Large Numbers

Let Xi,---, X, be iid random variables with E(X) = p and
Var(X) = 02 < co. Then X,, converges in probability to .
ie. X, Py W

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 19 / 28

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013

Consistency
00000@0000000

Problem

Xi, -+, X, are iid samples from a distribution with mean p and variance
0? < c0.

@ Show that X, is consistent for 1.
® Show that 2 3" | (X; — X)? is consistent for 2.
© Show that - >" (X; — X)? is consistent for 2.
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Example - Solution Solution - consistency for o

S(X; — X)2 (X2 4+ X - 2X:X)

- n
Proof: X, is consistent for p S X2 40X — 2X " | X,
By law of large numbers, X,, is consistent for s. - n
» Bias(X,) =E(X,) —p=pu—pu=0. _ ZX?_)—E
n

— . X .
+ Vel = Ve ( ) o ”2 Yy Var(X) = o%/n. By law of large numbers,

= limy, o Var(X) = limy, so0 2 7 = 0.

1
NX2 T BXE = 42 4 o
By Theorem 10.1.3. X is consistent for . n

Note that X" is a function of X. Define g(x) = 22, which is a continuous
function. Then X~ = g(X) is consistent for u?. Therefore,

Z(Xi—yn)z _ ZX? _X2 Py (M2+02)—M2202
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Solution - consistency for o2 (cont'd) Example - Exponential Family

From the preious slide, > (X; — X,,)?/n is consistent for o2,
Define &2 = L2 3°(X; — X,,)%, and (S5)% = 1 3°(X; — X,)2 Problem

n Suppose X1, , X, = Exponential(3).

§2 = (= Xa)? = (832

n—1 n—1 @ Propose a consistent estimator of the median.

, . Propose a consistent estimator of Pr(X < ¢) where ¢ is constant.
Because (5%)? was shown to be consistent for o previously, and ® P (X<

Gy = nTn1 — 1 as n — oo, by Theorem 10.1.5, S%L is also consistent for 2.
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Consistent estimator for the median

Consistency
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Consistent estimator of Pr(X < ¢)

First, we need to express the median in terms of the parameter j3.

o B 2

1

_ —z/ﬁ’m - -

‘ 0 2

1

1 e ™B — =

¢ 2
median = m = Flog2

By law of large numbers, X,, is consistent for EX = /3.
Applying continuous mapping Theorem to g(z) = zlog2, g(X) = X, log?2
is consistent for g(3) = Blog2 (median).
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Consistent estimator of Pr(X < ¢) - Alternative Method

Define Y; = I(X; < ¢). Then Y; g Bernoulli(p) where p = Pr(X < ¢).

=1

1 & 1 &
Y = E;Yi:7—121()(2-gc)

is consistent for p by Law of Large Numbers.
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Pr(X<¢ = /le_"”/ﬂd:p
o B

= 1—¢ /P

As X is consistent for 3, 1 — e~/# is continuous function of .
By continuous mapping Theorem, g(X) = 1 — e~ %% is consistent for
Pr(X<c¢)=1-e 8 = g(p)
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Summary

= Bayes Risk Functions

= Consistency
= Law of Large Numbers

Next Lecture

= Central Limit Theorem

= Slutsky Theorem
= Delta Method
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