Biostatistics 602 - Statistical Inference Lecture 16 **Evaluation of Bayes Estimator**

Hyun Min Kang

March 14th, 2013

Hyun Min Kang Biostatistics 602 - Lecture 16

March 14th, 2013

March 14th, 2013

Recap - Bayes Estimator

- θ : parameter
- $\pi(\theta)$: prior distribution
- $\mathbf{X}|\theta \sim f_{\mathbf{X}}(\mathbf{x}|\theta)$: sampling distribution
- Posterior distribution of $\theta | \mathbf{x}$

$$\pi(\theta|\mathbf{x}) = \frac{\text{Joint}}{\text{Marginal}} = \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)\pi(\theta)}{m(\mathbf{x})}$$

$$m(\mathbf{x}) = \int f(\mathbf{x}|\theta)\pi(\theta) d\theta \quad \text{(Bayes' rule)}$$

• Bayes Estimator of θ is

$$E(\theta|\mathbf{x}) = \int_{\theta \in \Omega} \theta \pi(\theta|\mathbf{x}) d\theta$$

Last Lecture

- What is a Bayes Estimator?
- Is a Bayes Estimator the best unbiased estimator?
- Compared to other estimators, what are advantages of Bayes Estimator?
- What is conjugate family?
- What are the conjugate families of Binomial, Poisson, and Normal distribution?

Biostatistics 602 - Lecture 16

Recap - Example

Hyun Min Kang

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$
- Prior guess : $\hat{p} = \frac{\alpha}{\alpha + \beta}$.
- Posterior distribution : $\pi(p|\mathbf{x}) \sim \text{Beta}(\sum x_i + \alpha, n \sum x_i + \beta)$
- Bayes estimator

$$\hat{p} = \frac{\alpha + \sum x_i}{\alpha + \beta + n} = \frac{\sum x_i}{n} \frac{n}{\alpha + \beta + n} + \frac{\alpha}{\alpha + \beta} \frac{\alpha + \beta}{\alpha + \beta + n}$$

Hyun Min Kang

Biostatistics 602 - Lecture 16

March 14th, 2013

Hyun Min Kang

Biostatistics 602 - Lecture 16

Loss Function Optimality

The mean squared error (MSE) is defined as

$$MSE(\hat{\theta}) = E[\hat{\theta} - \theta]^2$$

Let $\hat{\theta}$ is an estimator.

- If $\hat{\theta} = \theta$, it makes a correct decision and loss is 0
- If $\hat{\theta} \neq \theta$, it makes a mistake and loss is not 0.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 5

Bayes Risk Consistency Summ

Risk Function - Average Loss

$$R(\theta, \hat{\theta}) = \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{X}))|\theta]$$

If $L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2$, $R(\theta, \hat{\theta})$ is MSE.

An estimator with smaller $R(\theta, \hat{\theta})$ is preferred.

Definition: Bayes Risk

Bayes risk is defined as the average risk across all values of θ given prior $\pi(\theta)$

$$\int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) d\theta$$

The Bayes rule with respect to a prior π is the optimal estimator with respect to a Bayes risk, which is defined as the one that minimize the Bayes risk.

Loss Function

Let $L(\theta, \hat{\theta})$ be a function of θ and $\hat{\theta}$.

Squared error loss

$$L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$$

MSE = Average Loss = $E[L(\theta, \hat{\theta})]$

which is the expectation of the loss if $\hat{\theta}$ is used to estimate θ .

Absolute error loss

$$L(\hat{\theta}) = |\hat{\theta} - \theta|$$

• A loss that penalties overestimation more than underestimation

$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^2 I(\hat{\theta} < \theta) + 10(\hat{\theta} - \theta)^2 I(\hat{\theta} \ge \theta)$$

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 6 /

Recap Bayes Risk Consistency Summar

Alternative definition of Bayes Risk

$$\begin{split} \int_{\Omega} R(\theta, \hat{\theta}) \pi(\theta) \, d\theta &= \int_{\Omega} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{X}))] \pi(\theta) \, d\theta \\ &= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) \, d\mathbf{x} \right] \pi(\theta) \, d\theta \\ &= \int_{\Omega} \left[\int_{\mathcal{X}} f(\mathbf{x}|\theta) L(\theta, \hat{\theta}(\mathbf{x})) \pi(\theta) \, d\mathbf{x} \right] \, d\theta \\ &= \int_{\Omega} \left[\int_{\mathcal{X}} \pi(\theta|\mathbf{x}) m(\mathbf{x}) L(\theta, \hat{\theta}(\mathbf{x})) \, d\mathbf{x} \right] \, d\theta \\ &= \int_{\mathcal{X}} \left[\int_{\Omega} L(\theta, \hat{\theta}(X)) \pi(\theta|\mathbf{x}) \, d\theta \right] m(\mathbf{x}) \, d\mathbf{x} \end{split}$$

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 7 / 28

Hyun Min Kang Biostatistics 602 - Lecture 16

 Recap
 Bayes Risk
 Consistency
 Summary

 000
 0000●00000
 000000000000
 0

Posterior Expected Loss

Posterior expected loss is defined as

$$\int_{\Omega} \pi(\theta|\mathbf{x}) L(\theta, \hat{\theta}(\mathbf{x})) d\theta$$

An alternative definition of Bayes rule estimator is the estimator that minimizes the posterior expected loss.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 9 / 26

Consistency

Sumi

Summary

Bayes Risk

Biostatistics 602 - Lecture 16

CII 14tii, 2015 10

• e.g.
$$(\hat{\theta} - \theta)^2$$
, $|\hat{\theta} - \theta|$

Risk function $R(\theta, \hat{\theta})$ is average of $L(\theta, \hat{\theta})$ across all $x \in \mathcal{X}$

• For squared error loss, risk function is the same to MSE.

Bayes risk Average risk across all θ , based on the prior of θ .

• Alternatively, average posterior error loss across all $x \in \mathcal{X}$.

Bayes estimator $\hat{\theta} = E[\theta | \mathbf{x}]$. Based on squared error loss,

- Minimize Bayes risk
- Minimize Posterior Expected Loss

Bayes Estimator based on squared error loss

$$\begin{array}{rcl} L(\hat{\theta},\theta) & = & (\hat{\theta}-\theta)^2 \\ \text{Posterior expected loss} & = & \int_{\Omega} (\theta-\hat{\theta})^2 \pi(\theta|\mathbf{x}) \, d\theta \\ & = & \mathrm{E}[(\theta-\hat{\theta})^2|\mathbf{X}=\mathbf{x}] \end{array}$$

So, the goal is to minimize $E[(\theta - \hat{\theta})^2 | \mathbf{X} = \mathbf{x}]$

$$\begin{split} \mathrm{E}\left[(\theta - \hat{\theta})^{2} | \mathbf{X} = \mathbf{x}\right] &= \mathrm{E}\left[(\theta - \mathrm{E}(\theta|\mathbf{x}) + \mathrm{E}(\theta|\mathbf{x}) - \hat{\theta})^{2} | \mathbf{X} = \mathbf{x}\right] \\ &= \mathrm{E}\left[(\theta - \mathrm{E}(\theta|\mathbf{x}))^{2} | \mathbf{X} = \mathbf{x}\right] + \mathrm{E}\left[(\mathrm{E}(\theta|\mathbf{x}) - \hat{\theta})^{2} | \mathbf{X} = \mathbf{x}\right] \\ &= \mathrm{E}\left[(\theta - \mathrm{E}(\theta|\mathbf{x}))^{2} | \mathbf{X} = \mathbf{x}\right] + \left[\mathrm{E}(\theta|\mathbf{x}) - \hat{\theta}\right]^{2} \end{split}$$

which is minimized when $\hat{\theta} = E(\theta|\mathbf{x})$.

Bayes Estimator based on absolute error loss

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$\begin{split} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] &= \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) \, d\theta \\ &= \mathrm{E}[|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x}] \\ &= \int_{-\infty}^{\hat{\theta}} -(\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) \, d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) \, d\theta \end{split}$$

 $rac{\partial}{\partial \hat{ heta}} \mathrm{E}[L(heta, \hat{ heta}(\mathbf{x}))] = 0$, and $\hat{ heta}$ is posterior median.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 11 / 28 Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 12 / 28

Two Bayes Rules

Consider a point estimation problem for real-valued parameter θ .

For squared error loss, the posterior expected loss is

$$\int_{\Omega} (\theta - \hat{\theta})^2 \pi(\theta | \mathbf{x}) d\theta = \mathrm{E}[(\theta - \hat{\theta})^2 | \mathbf{X} = \mathbf{x}]$$

This expected value is minimized by $\hat{\theta} = E(\theta|\mathbf{x})$. So the Bayes rule estimator is the mean of the posterior distribution.

For absolute error loss, the posterior expected loss is $E(|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x})$. As shown previously, this is minimized by choosing $\hat{\theta}$ as the median of $\pi(\theta|\mathbf{x})$.

Example

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$.
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$
- The posterior distribution follows Beta($\sum x_i + \alpha, n \sum x_i + \beta$).
- Bayes estimator that minimizes posterior expected squared error loss is the posterior mean

$$\hat{p} = \frac{\sum x_i + \alpha}{\alpha + \beta + n}$$

 Bayes estimator that minimizes posterior expected absolute error loss is the posterior median

$$\int_0^{\hat{\theta}} \frac{\Gamma(\alpha+\beta+n)}{\Gamma(\sum x_i + \alpha)\Gamma(n-\sum x_i + \beta)} p^{\sum x_i + \alpha - 1} (1-p)^{n-\sum x_i + \beta - 1} dp = \frac{1}{2}$$

Hyun Min Kang

Hyun Min Kang

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Definition - Consistency

Let $W_n = W_n(X_1, \dots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \stackrel{P}{\longrightarrow} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

 $W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \ge \epsilon) = 0$$

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 1$$

When $|W_n - \tau(\theta)| < \epsilon$ can also be represented that W_n is close to $\tau(\theta)$. Consistency implies that the probability of W_n close to $\tau(\theta)$ approaches to 1 as n goes to ∞ .

Tools for proving consistency

- Use definition (complicated)
- Chebychev's Inequality

$$\Pr(|W_n - \tau(\theta)| \ge \epsilon) = \Pr((W_n - \tau(\theta))^2 \ge \epsilon^2)$$

$$\le \frac{\mathrm{E}[W_n - \tau(\theta)]^2}{\epsilon^2}$$

$$= \frac{\mathrm{MSE}(W_n)}{\epsilon^2} = \frac{\mathrm{Bias}^2(W_n) + \mathrm{Var}(W_n)}{\epsilon^2}$$

Need to show that both $Bias(W_n)$ and $Var(W_n)$ converges to zero

Biostatistics 602 - Lecture 16

Hyun Min Kang

Biostatistics 602 - Lecture 16

ecap Bayes Risk Consistency Summary Recap Bayes Risk Consistency Summary

Theorem for consistency

Weak Law of Large Numbers

Theorem 10.1.3

If W_n is a sequence of estimators of $\tau(\theta)$ satisfying

- $\lim_{n\to\infty} \operatorname{Bias}(W_n) = 0.$
- $\lim_{n\to\infty} \operatorname{Var}(W_n) = 0.$

for all θ , then W_n is consistent for $\tau(\theta)$

Theorem 5.5.2

Let X_1, \cdots, X_n be iid random variables with $\mathrm{E}(X) = \mu$ and $\mathrm{Var}(X) = \sigma^2 < \infty$. Then \overline{X}_n converges in probability to μ . i.e. $\overline{X}_n \stackrel{\mathrm{P}}{\longrightarrow} \mu$.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 17 / 28

Bayes Risk Consistency Summary

Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n , b_n be sequences of constants satisfying

- $1 \lim_{n\to\infty} a_n = 1$

Then $U_n = a_n W_n + b_n$ is also a consistent sequence of estimators of $\tau(\theta)$.

Continuous Map Theorem

If W_n is consistent for θ and g is a continuous function, then $g(W_n)$ is consistent for $g(\theta)$.

Example

Hyun Min Kang

Problem

 X_1, \cdots, X_n are iid samples from a distribution with mean μ and variance $\sigma^2 < \infty$.

Biostatistics 602 - Lecture 16

March 14th, 2013

- **1** Show that \overline{X}_n is consistent for μ .
- 2 Show that $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2$ is consistent for σ^2 .
- 3 Show that $\frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X})^2$ is consistent for σ^2 .

Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 19 / 28 Hyun Min Kang Biostatistics 602 - Lecture 16 March 14th, 2013 20 / 2

Recap

Bayes Risk

Consistency

ummary

Bayes Risk

Consistency

Summary

Example - Solution

Proof: \overline{X}_n is consistent for μ

By law of large numbers, \overline{X}_n is consistent for μ .

- Bias $(\overline{X}_n) = E(\overline{X}_n) \mu = \mu \mu = 0.$
- $\operatorname{Var}(\overline{X}_n) = \operatorname{Var}\left(\frac{\sum_{i=1}^n X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \sigma^2/n.$
- $\lim_{n\to\infty} \operatorname{Var}(\overline{X}) = \lim_{n\to\infty} \frac{\sigma^2}{n} = 0.$

By Theorem 10.1.3. \overline{X} is consistent for μ .

Hyun Min Kang

Biostatistics 602 - Lecture 16

March 14th 2013

, 21

ummary

Bayes Risk

Consistency

Summar

Solution - consistency for σ^2 (cont'd)

From the preious slide, $\sum (X_i - \overline{X}_n)^2/n$ is consistent for σ^2 . Define $S_n^2 = \frac{1}{n-1} \sum (X_i - \overline{X}_n)^2$, and $(S_n^*)^2 = \frac{1}{n} \sum (X_i - \overline{X}_n)^2$.

$$S_n^2 = \frac{1}{n-1} \sum (X_i - \overline{X}_n)^2 = (S_n^*)^2 \cdot \frac{n}{n-1}$$

Because $(S_n^*)^2$ was shown to be consistent for σ^2 previously, and $a_n = \frac{n}{n-1} \to 1$ as $n \to \infty$, by Theorem 10.1.5, S_n^2 is also consistent for σ^2 .

Solution - consistency for σ^2

$$\frac{\sum (X_i - \overline{X})^2}{n} = \frac{\sum (X_i^2 + \overline{X}^2 - 2X_i \overline{X})}{n}$$

$$= \frac{\sum X_i^2 + n\overline{X}^2 - 2\overline{X}\sum_{i=1}^n X_i}{n}$$

$$= \frac{\sum X_i^2}{n} - \overline{X}^2$$

By law of large numbers,

$$\frac{1}{n} \sum X_i^2 \xrightarrow{P} EX^2 = \mu^2 + \sigma^2$$

Note that \overline{X}^2 is a function of \overline{X} . Define $g(x)=x^2$, which is a continuous function. Then $\overline{X}^2=g(\overline{X})$ is consistent for μ^2 . Therefore,

$$\frac{\sum (X_i - \overline{X}_n)^2}{n} = \frac{\sum X_i^2}{n} - \overline{X}^2 \xrightarrow{P} (\mu^2 + \sigma^2) - \mu^2 = \sigma^2$$

Hyun Min Kang

Biostatistics 602 - Lecture

Summar

Example - Exponential Family

Problem

Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$.

- 1 Propose a consistent estimator of the median.
- **2** Propose a consistent estimator of $Pr(X \le c)$ where c is constant.

Hyun Min Kang

Biostatistics 602 - Lecture 16

March 14th, 2013

23 / 28

Hyun Min Kang

Biostatistics 602 - Lecture 16

Recap

Bayes Risk

Consistency

ummary

Bayes Risk

Consistent estimator of $Pr(X \le c)$

Consistency

Summary

Consistent estimator for the median

First, we need to express the median in terms of the parameter β .

$$\int_0^m \frac{1}{\beta} e^{-x/\beta} dx = \frac{1}{2}$$

$$-e^{-x/\beta} \Big|_0^m = \frac{1}{2}$$

$$1 - e^{-m/\beta} = \frac{1}{2}$$

$$\text{median} = m = \beta \log 2$$

By law of large numbers, \overline{X}_n is consistent for $\mathrm{E} X = \beta$. Applying continuous mapping Theorem to $g(x) = x \log 2$, $g(\overline{X}) = \overline{X}_n \log 2$ is consistent for $g(\beta) = \beta \log 2$ (median).

$$Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$
$$= 1 - e^{-c/\beta}$$

As \overline{X} is consistent for β , $1-e^{-c/\beta}$ is continuous function of β . By continuous mapping Theorem, $g(\overline{X})=1-e^{-c/\overline{X}}$ is consistent for $\Pr(X\leq c)=1-e^{-c/\beta}=g(\beta)$

Hyun Min Kang

Biostatistics 602 - Lecture 16

March 14th, 2013

25

Biostatistics 602 - Lecture 16

March 14th, 2013

26 / 28

Bayes | Bayes | OOOOO

Consistency 00000000000 Summa

Bayes Risk

Consistency

Summary

Consistent estimator of $Pr(X \leq c)$ - Alternative Method

Define $Y_i = I(X_i \le c)$. Then $Y_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \le c)$.

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le c)$$

is consistent for p by Law of Large Numbers.

Summary

Today

- Bayes Risk Functions
- Consistency

Hyun Min Kang

Law of Large Numbers

Next Lecture

- Central Limit Theorem
- Slutsky Theorem
- Delta Method

Hyun Min Kang

Biostatistics 602 - Lecture 16

March 14th, 2013

27 / 28

Hyun Min Kang

Biostatistics 602 - Lecture 16