Biostatistics 602 - Statistical Inference Lecture 08 Data Reduction - Summary

Hyun Min Kang

February 5th, 2013

1 What is an exponential family distribution?

- 1 What is an exponential family distribution?
- 2 Does a Bernoulli distribution belongs to an exponential family?

- 1 What is an exponential family distribution?
- 2 Does a Bernoulli distribution belongs to an exponential family?
- 3 What is a curved exponential family?

- 1 What is an exponential family distribution?
- 2 Does a Bernoulli distribution belongs to an exponential family?
- 3 What is a curved exponential family?
- 4 What is an obvious sufficient statistic from an exponential family?

- 1 What is an exponential family distribution?
- 2 Does a Bernoulli distribution belongs to an exponential family?
- 3 What is a curved exponential family?
- 4 What is an obvious sufficient statistic from an exponential family?
- 5 When can the sufficient statistic be complete?

Visit http://www.polleverywhere.com/survey/laGysmUTS to respond online.

Theorem 6.2.25

Suppose X_1, \cdots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

is a member of an exponential family. Then the statistic $T(\mathbf{X})$

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^n t_1(X_j), \cdots, \sum_{j=1}^n t_k(X_j)\right)$$

is complete as long as the parameter space $oldsymbol{\Theta}$ contains an open set in \mathbb{R}^k

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Determine whether the following statistics are whether (1) sufficient (2) complete, and (3) minimal sufficient.

$$\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right), \mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)\right)$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\smile} \mathcal{N}(\mu, \sigma^2)$. Determine whether the following statistics are whether (1) sufficient (2) complete, and (3) minimal sufficient.

$$\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right), \mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i - \overline{X})^2/(n-1)\right)$$

How to solve it

• Decompose $f_X(x|\mu,\sigma)$ in the form of an an exponential family.

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\frown} \mathcal{N}(\mu, \sigma^2)$. Determine whether the following statistics are whether (1) sufficient (2) complete, and (3) minimal sufficient.

$$\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right), \mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)\right)$$

- Decompose $f_X(x|\mu,\sigma)$ in the form of an an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to $\mathbf{T}_1(\mathbf{X})$ and $\mathbf{T}_2(\mathbf{X})$.

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\frown} \mathcal{N}(\mu, \sigma^2)$. Determine whether the following statistics are whether (1) sufficient (2) complete, and (3) minimal sufficient.

$$\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right), \mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)\right)$$

- Decompose $f_X(x|\mu,\sigma)$ in the form of an an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to $\mathbf{T}_1(\mathbf{X})$ and $\mathbf{T}_2(\mathbf{X})$.
- Apply Theorem 6.2.25 to show that it is complete.

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\frown} \mathcal{N}(\mu, \sigma^2)$. Determine whether the following statistics are whether (1) sufficient (2) complete, and (3) minimal sufficient.

$$\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right), \mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)\right)$$

- Decompose $f_X(x|\mu,\sigma)$ in the form of an an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to $\mathbf{T}_1(\mathbf{X})$ and $\mathbf{T}_2(\mathbf{X})$.
- Apply Theorem 6.2.25 to show that it is complete.
- Apply Theorem 6.2.28 to show that it is minimal sufficient.

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\frown} \mathcal{N}(\mu, \sigma^2)$. Determine whether the following statistics are whether (1) sufficient (2) complete, and (3) minimal sufficient.

$$\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right), \mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)\right)$$

- Decompose $f_X(x|\mu,\sigma)$ in the form of an an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to $\mathbf{T}_1(\mathbf{X})$ and $\mathbf{T}_2(\mathbf{X})$.
- Apply Theorem 6.2.25 to show that it is complete.
- Apply Theorem 6.2.28 to show that it is minimal sufficient.

$$f_X(x|\mu,\sigma^2) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x - \frac{x^2}{2\sigma^2}\right)$$

$$f_X(x|\mu,\sigma^2) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x - \frac{x^2}{2\sigma^2}\right)$$

where

$$\begin{cases} h(x) = 1\\ c(\boldsymbol{\theta}) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\mu^2}{2\sigma^2}\right)\\ w_1(\boldsymbol{\theta}) = \mu/\sigma^2\\ w_2(\boldsymbol{\theta}) = -\frac{1}{2\sigma^2}\\ t_1(x) = x\\ t_2(x) = x^2 \end{cases}$$

$$f_X(x|\mu,\sigma^2) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x - \frac{x^2}{2\sigma^2}\right)$$

where

$$\begin{cases} h(x) = 1 \\ c(\boldsymbol{\theta}) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \\ w_1(\boldsymbol{\theta}) = \mu/\sigma^2 \\ w_2(\boldsymbol{\theta}) = -\frac{1}{2\sigma^2} \\ t_1(x) = x \\ t_2(x) = x^2 \end{cases}$$

By Theorem 6.2.10, $\sum_{n=1}^{n} (X_n) \sum_{n=1}^{n} (X_n) = \sum_{n=1}^{n} (X_n) \sum_{n=1}^{n} (X_n) = \sum_{n=1}^{$

 $(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i)) = (\sum_{i=1}^{n} X_1, \sum_{i=1}^{n} X_i^2) = \mathbf{T}_1(\mathbf{X})$ is a sufficient statistic

Biostatistics 602 - Lecture 08 February 5th, 2013

Applying Theorem 6.2.25. and Theorem 6.2.28

$$A = \{(w_1(\boldsymbol{\theta}), w_2(\boldsymbol{\theta})) : \boldsymbol{\theta} \in \mathbb{R}^2\}$$
$$= \left\{\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2} : \mu \in \mathbb{R}, \sigma > 0\right\}$$

Applying Theorem 6.2.25. and Theorem 6.2.28

$$A = \{(w_1(\boldsymbol{\theta}), w_2(\boldsymbol{\theta})) : \boldsymbol{\theta} \in \mathbb{R}^2\}$$
$$= \left\{\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2} : \mu \in \mathbb{R}, \sigma > 0\right\}$$

Contains a open subset in \mathbb{R}^2 , so $\mathbf{T}_1(\mathbf{X})$ is also complete by Theorem 6.2.25.

Applying Theorem 6.2.25. and Theorem 6.2.28

$$A = \{(w_1(\boldsymbol{\theta}), w_2(\boldsymbol{\theta})) : \boldsymbol{\theta} \in \mathbb{R}^2\}$$
$$= \left\{\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2} : \mu \in \mathbb{R}, \sigma > 0\right\}$$

Contains a open subset in \mathbb{R}^2 , so $\mathbf{T}_1(\mathbf{X})$ is also complete by Theorem 6.2.25. By Theorem 6.2.28, $\mathbf{T}_1(\mathbf{X})$ is also minimal sufficient.

$$\mathbf{T}_{1}(\mathbf{X}) = \left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$$

$$\mathbf{T}_{2}(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^{2}\right)$$

$$\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)$$

 $\mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2\right)$

$$\left\{ \begin{array}{l} \overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = g_1(\mathbf{T}_1(\mathbf{X})) \\ s_{\mathbf{X}}^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n - 1} = \frac{\sum_{i=1}^{n} X_i^2 + \sum_{i=1}^{n} X_i^2 / n}{n - 1} = g_2(\mathbf{T}_1(\mathbf{X})) \end{array} \right.$$

$$\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)$$

 $\mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2\right)$

$$\begin{cases} \overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} = g_{1}(\mathbf{T}_{1}(\mathbf{X})) \\ s_{\mathbf{X}}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n - 1} = \frac{\sum_{i=1}^{n} X_{i}^{2} + \sum_{i=1}^{n} X_{i}^{2} / n}{n - 1} = g_{2}(\mathbf{T}_{1}(\mathbf{X})) \\ \begin{cases} \sum_{i=1}^{n} X_{i} = n\overline{X} = g_{1}^{-1}(\mathbf{T}_{2}(\mathbf{X})) \\ \sum_{i=1}^{n} X_{i}^{2} = (n - 1)s_{\mathbf{X}}^{2} - n\overline{X}^{2} = g_{2}^{-1}(\mathbf{T}_{2}(\mathbf{X})) \end{cases}$$

$$\mathbf{T}_{1}(\mathbf{X}) = \left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$$
$$\mathbf{T}_{2}(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^{2}\right)$$

$$\begin{cases} \overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} = g_{1}(\mathbf{T}_{1}(\mathbf{X})) \\ s_{\mathbf{X}}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n - 1} = \frac{\sum_{i=1}^{n} X_{i}^{2} + \sum_{i=1}^{n} X_{i}^{2} / n}{n - 1} = g_{2}(\mathbf{T}_{1}(\mathbf{X})) \\ \begin{cases} \sum_{i=1}^{n} X_{i} = n\overline{X} = g_{1}^{-1}(\mathbf{T}_{2}(\mathbf{X})) \\ \sum_{i=1}^{n} X_{i}^{2} = (n - 1)s_{\mathbf{X}}^{2} - n\overline{X}^{2} = g_{2}^{-1}(\mathbf{T}_{2}(\mathbf{X})) \end{cases}$$

Therefore, $T_2(X)$ is an one-to-one function of $T_1(X)$, and also is sufficient, complete, and minimal sufficient.

Example of Curved Exponential Family

Problem

 $X_1, \dots, X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\mu, \mu^2)$. Determine whether the following statistic is whether (1) sufficient (2) complete, and (3) minimal sufficient.

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)$$

Example of Curved Exponential Family

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\smile} \mathcal{N}(\mu, \mu^2)$. Determine whether the following statistic is whether (1) sufficient (2) complete, and (3) minimal sufficient.

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)$$

- Decompose $f_X(x|\mu)$ in the form of an an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to T(X)
- Apply Theorem 6.2.25 to see if it is complete.
- Apply Theorem 6.2.28 to see if it is minimal sufficient.

$$f_X(x|\mu) = \frac{1}{2\pi\mu^2} \exp\left(-\frac{1}{2}\right) \exp\left(\frac{1}{\mu}x - \frac{x^2}{2\mu^2}\right)$$

$$f_X(x|\mu) \quad = \quad \frac{1}{2\pi\mu^2} \exp\left(-\frac{1}{2}\right) \exp\left(\frac{1}{\mu}x - \frac{x^2}{2\mu^2}\right)$$

where

$$\begin{cases} h(x) = 1\\ c(\mu) = \frac{1}{2\pi\mu^2} \exp\left(-\frac{1}{2}\right)\\ w_1(\mu) = 1/\mu\\ w_2(\mu) = -\frac{1}{2\mu^2}\\ t_1(x) = x\\ t_2(x) = x^2 \end{cases}$$

$$f_X(x|\mu) = \frac{1}{2\pi\mu^2} \exp\left(-\frac{1}{2}\right) \exp\left(\frac{1}{\mu}x - \frac{x^2}{2\mu^2}\right)$$

where

$$\begin{cases} h(x) = 1\\ c(\mu) = \frac{1}{2\pi\mu^2} \exp\left(-\frac{1}{2}\right)\\ w_1(\mu) = 1/\mu\\ w_2(\mu) = -\frac{1}{2\mu^2}\\ t_1(x) = x\\ t_2(x) = x^2 \end{cases}$$

By Theorem 6.2.10,

 $(\sum_{i=1}^n t_1(X_i), \sum_{i=1}^n t_2(X_i)) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2) = \mathbf{T}(\mathbf{X})$ is a sufficient statistic for μ

$$A = \{(w_1(\mu), w_2(\mu) : \mu \in \mathbb{R}\}\$$
$$= \left\{\frac{1}{\mu^2}, -\frac{1}{2\mu^2} : \mu \in \mathbb{R}\right\}$$

$$A = \{(w_1(\mu), w_2(\mu) : \mu \in \mathbb{R}\}\$$
$$= \left\{\frac{1}{\mu^2}, -\frac{1}{2\mu^2} : \mu \in \mathbb{R}\right\}$$

A does not contains a open subset in \mathbb{R}^2 , so we cannot apply Theorem 6.2.25. We need to go back to the definition

Is
$$\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$$
 Complete?

$$E\left(\sum_{i=1}^{n} X_i\right) = n\mu$$

$$E\left(\sum_{i=1}^{n} X_{i}\right) = n\mu$$

$$E\left(\sum_{i=1}^{n} X_{i}^{2}\right) = nE\left(X_{i}^{2}\right)$$

$$E\left(\sum_{i=1}^{n} X_{i}\right) = n\mu$$

$$E\left(\sum_{i=1}^{n} X_{i}^{2}\right) = nE\left(X_{i}^{2}\right)$$

$$= n\left[E(X_{i})^{2} + Var(X_{i})\right]$$

$$E\left(\sum_{i=1}^{n} X_{i}\right) = n\mu$$

$$E\left(\sum_{i=1}^{n} X_{i}^{2}\right) = nE\left(X_{i}^{2}\right)$$

$$= n\left[E(X_{i})^{2} + \operatorname{Var}(X_{i})\right]$$

$$= n(\mu^{2} + \mu^{2}) = 2n\mu^{2}$$

Note that $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\mu^2)$.

$$E\left(\sum_{i=1}^{n} X_{i}\right) = n\mu$$

$$E\left(\sum_{i=1}^{n} X_{i}^{2}\right) = nE\left(X_{i}^{2}\right)$$

$$= n\left[E(X_{i})^{2} + \operatorname{Var}(X_{i})\right]$$

$$= n(\mu^{2} + \mu^{2}) = 2n\mu^{2}$$

Note that $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\mu^2)$.

$$E\left[\left(\sum_{i=1}^{n} X_i\right)^2\right] = \left[E\left(\sum_{i=1}^{n} X_i\right)\right]^2 + \operatorname{Var}\left(\sum_{i=1}^{n} X_i\right)$$

ロト 4回 ト 4 重 ト 4 重 ト 9 9 9 9

$$E\left(\sum_{i=1}^{n} X_{i}\right) = n\mu$$

$$E\left(\sum_{i=1}^{n} X_{i}^{2}\right) = nE\left(X_{i}^{2}\right)$$

$$= n\left[E(X_{i})^{2} + \operatorname{Var}(X_{i})\right]$$

$$= n(\mu^{2} + \mu^{2}) = 2n\mu^{2}$$

Note that $\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\mu^2)$.

$$E\left[\left(\sum_{i=1}^{n} X_i\right)^2\right] = \left[E\left(\sum_{i=1}^{n} X_i\right)\right]^2 + \operatorname{Var}\left(\sum_{i=1}^{n} X_i\right)$$
$$= (n\mu)^2 + n\mu^2 = n(n+1)\mu^2$$

Hyun Min Kang

Is
$$\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$$
 Complete? (cont'd)

Define

$$g(\mathbf{T}(\mathbf{X})) = g\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$$
$$= \frac{\sum_{i=1}^{n} X_{i}^{2}}{2n} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n+1)}$$

Is $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ Complete? (cont'd)

Define

$$g(\mathbf{T}(\mathbf{X})) = g\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$$

$$= \frac{\sum_{i=1}^{n} X_{i}^{2}}{2n} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n+1)}$$

$$E[g(\mathbf{T})|\mu] = \frac{E\left(\sum_{i=1}^{n} X_{i}^{2}\right)}{2n} - \frac{E\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n+1)}$$

$$= \frac{2n\mu^{2}}{2n} - \frac{n(n+1)\mu^{2}}{n(n+1)} = 0$$

for all $\mu \in \mathbb{R}$.

Is $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ Complete? (cont'd)

Define

$$g(\mathbf{T}(\mathbf{X})) = g\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$$

$$= \frac{\sum_{i=1}^{n} X_{i}^{2}}{2n} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n+1)}$$

$$E[g(\mathbf{T})|\mu] = \frac{E\left(\sum_{i=1}^{n} X_{i}^{2}\right)}{2n} - \frac{E\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n+1)}$$

$$= \frac{2n\mu^{2}}{2n} - \frac{n(n+1)\mu^{2}}{n(n+1)} = 0$$

for all $\mu \in \mathbb{R}$. Because there exist $g(\mathbf{T})$ such that $E[\mathbf{T}|\mu] = 0$ and $\Pr(g(\mathbf{T}) = 0) < 1$, $\mathbf{T}(\mathbf{X})$ is NOT complete.

→ロト → □ ト → 三 ト → 三 ・ り Q (*)

Is $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ Minimal Sufficient?

$$\frac{f_X(\mathbf{x}|\mu)}{f_X(\mathbf{y}|\mu)} = \exp\left[\frac{\sum_{i=1}^n y_i^2 - \sum_{i=1}^n x_i^2}{2\mu^2} + \frac{\sum_{i=1}^n x_i - \sum_{i=1}^n y_i}{\mu}\right]$$

Is $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ Minimal Sufficient?

$$\frac{f_X(\mathbf{x}|\mu)}{f_X(\mathbf{y}|\mu)} = \exp\left[\frac{\sum_{i=1}^n y_i^2 - \sum_{i=1}^n x_i^2}{2\mu^2} + \frac{\sum_{i=1}^n x_i - \sum_{i=1}^n y_i}{\mu}\right]$$

The ratio above is a constant to μ if and only if

$$\begin{cases} \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2 \\ \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \end{cases}$$

13 / 24

$$\frac{f_X(\mathbf{x}|\mu)}{f_X(\mathbf{y}|\mu)} = \exp\left[\frac{\sum_{i=1}^n y_i^2 - \sum_{i=1}^n x_i^2}{2\mu^2} + \frac{\sum_{i=1}^n x_i - \sum_{i=1}^n y_i}{\mu}\right]$$

The ratio above is a constant to μ if and only if

$$\begin{cases} \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2 \\ \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \end{cases}$$

which is equivalent to $\mathbf{T}(\mathbf{x}) = \mathbf{T}(\mathbf{y})$. Therefore, $\mathbf{T}(\mathbf{X})$ is a minimal sufficient statistic.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Exponential Family

00000000000

• Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

Sufficient Statistic

Contains all info about θ

Review •000000000

Summary of Sufficiency Principle

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

Sufficient Statistic

Contains all info about θ

Definition $f_{\mathbf{X}}(\mathbf{x}|T(\mathbf{X}))$ does not depend on θ

Review •000000000

Summary of Sufficiency Principle

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

Sufficient Statistic

Contains all info about θ

Definition $f_{\mathbf{X}}(\mathbf{x}|T(\mathbf{X}))$ does not depend on θ

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

Sufficient Statistic

Contains all info about θ

Definition $f_{\mathbf{X}}(\mathbf{x}|T(\mathbf{X}))$ does not depend on θ

Theorem 6.2.2 $f_{\mathbf{X}}(\mathbf{x}|\theta)/q_T(T(\mathbf{X})|\theta)$ does not depend on θ

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

Sufficient Statistic

Contains all info about θ

Definition $f_{\mathbf{X}}(\mathbf{x}|T(\mathbf{X}))$ does not depend on θ

Theorem 6.2.2 $f_{\mathbf{X}}(\mathbf{x}|\theta)/q_T(T(\mathbf{X})|\theta)$ does not depend on θ

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

Sufficient Statistic

Contains all info about θ

Definition $f_{\mathbf{X}}(\mathbf{x}|T(\mathbf{X}))$ does not depend on θ

Theorem 6.2.2 $f_{\mathbf{X}}(\mathbf{x}|\theta)/q_T(T(\mathbf{X})|\theta)$ does not depend on θ

Factorization Theorem $f_{\mathbf{X}}(\mathbf{x}|\theta) = h(\mathbf{x})g(T(\mathbf{X})|\theta)$

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

Sufficient Statistic

Contains all info about θ

Definition $f_{\mathbf{X}}(\mathbf{x}|T(\mathbf{X}))$ does not depend on θ

Theorem 6.2.2 $f_{\mathbf{X}}(\mathbf{x}|\theta)/q_T(T(\mathbf{X})|\theta)$ does not depend on θ

Factorization Theorem $f_{\mathbf{X}}(\mathbf{x}|\theta) = h(\mathbf{x})g(T(\mathbf{X})|\theta)$

- Model : $\mathcal{P} = \{f_X(x|\theta), \theta \in \Omega\}$
- Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$.

Sufficient Statistic

Contains all info about θ

Definition $f_{\mathbf{X}}(\mathbf{x}|T(\mathbf{X}))$ does not depend on θ

Theorem 6.2.2 $f_{\mathbf{X}}(\mathbf{x}|\theta)/q_T(T(\mathbf{X})|\theta)$ does not depend on θ

Factorization Theorem $f_{\mathbf{X}}(\mathbf{x}|\theta) = h(\mathbf{x})g(T(\mathbf{X})|\theta)$

Exponential Family $(\sum_{i=1}^n t_1(X_i), \cdots, \sum_{i=1}^n t_k(X_i))$ is sufficient

Minimal Sufficient Statistic

Sufficient statistic that achieves the maximum data reduction

Minimal Sufficient Statistic

Sufficient statistic that achieves the maximum data reduction

Minimal Sufficient Statistic

Minimal Sufficient Statistic

Minimal Sufficient Statistic

Sufficient statistic that achieves the maximum data reduction

Definition T is sufficient and it is a function of all other sufficient statistics.

Theorem 6.2.13 $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of $\theta \iff T(\mathbf{x}) = T(\mathbf{y})$

Minimal Sufficient Statistic

Sufficient statistic that achieves the maximum data reduction

Definition T is sufficient and it is a function of all other sufficient statistics.

Theorem 6.2.13 $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of $\theta \iff T(\mathbf{x}) = T(\mathbf{y})$

Exponential Family (Theorem 6.2.28)

Minimal Sufficient Statistic

Sufficient statistic that achieves the maximum data reduction

Definition T is sufficient and it is a function of all other sufficient statistics.

Theorem 6.2.13 $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of $\theta \iff T(\mathbf{x}) = T(\mathbf{y})$

Exponential Family (Theorem 6.2.28) Complete and sufficient statistic is minimal sufficient

Complete Statistic

This family have to contain "many" distributions in order to be complete. The restriction $E[g(T)|\theta]=0, \ \forall \theta \in \Omega$ is strong enough to rule out all non-zero functions

Complete Statistic

This family have to contain "many" distributions in order to be complete. The restriction $E[g(T)|\theta]=0, \ \forall \theta \in \Omega$ is strong enough to rule out all non-zero functions

Complete Statistic

This family have to contain "many" distributions in order to be complete. The restriction $E[g(T)|\theta]=0,\ \forall \theta\in\Omega$ is strong enough to rule out all non-zero functions

Definition $E[g(T)|\theta] = 0$ implies $Pr(g(T) = 0|\theta) = 1$.

Complete Statistic

This family have to contain "many" distributions in order to be complete. The restriction $E[g(T)|\theta]=0,\ \forall \theta\in\Omega$ is strong enough to rule out all non-zero functions

Definition $E[g(T)|\theta] = 0$ implies $Pr(g(T) = 0|\theta) = 1$.

Complete Statistic

This family have to contain "many" distributions in order to be complete. The restriction $E[g(T)|\theta]=0, \ \forall \theta \in \Omega$ is strong enough to rule out all non-zero functions

Definition $E[g(T)|\theta] = 0$ implies $Pr(g(T) = 0|\theta) = 1$.

Exponential Family The parameter space Ω is an open subset of \mathbb{R}^k .

Example

Problem

The random variable X takes the values 0, 1, 2, according to one of the following distributions:

	$\Pr(X=0)$	$\Pr(X=1)$	$\Pr(X=2)$	
Distribution 1	p	3p	1 - 4p	0
Distribution 2	p	p^2	$1 - p - p^2$	0

In each case, determine whether the family of distribution of \boldsymbol{X} is complete.

$$f_X(x|p) = p^{I(x=0)}(3p)^{I(x=1)}(1-4p)^{I(x=2)}$$

$$\begin{array}{rcl} f_X(x|p) & = & p^{I(x=0)}(3p)^{I(x=1)}(1-4p)^{I(x=2)} \\ E[g(X)|p] & = & \sum_{x \in \{0,1,2\}} g(x) f_X(x|p) \end{array}$$

$$f_X(x|p) = p^{I(x=0)} (3p)^{I(x=1)} (1-4p)^{I(x=2)}$$

$$E[g(X)|p] = \sum_{x \in \{0,1,2\}} g(x) f_X(x|p)$$

$$= g(0) \cdot p + g(1) \cdot (3p) + g(2) \cdot (1-4p)$$

$$f_X(x|p) = p^{I(x=0)}(3p)^{I(x=1)}(1-4p)^{I(x=2)}$$

$$E[g(X)|p] = \sum_{x \in \{0,1,2\}} g(x)f_X(x|p)$$

$$= g(0) \cdot p + g(1) \cdot (3p) + g(2) \cdot (1-4p)$$

$$= p[g(0) + 3g(1) - 4g(2)] + g(2) = 0$$

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$f_X(x|p) = p^{I(x=0)}(3p)^{I(x=1)}(1-4p)^{I(x=2)}$$

$$E[g(X)|p] = \sum_{x \in \{0,1,2\}} g(x)f_X(x|p)$$

$$= g(0) \cdot p + g(1) \cdot (3p) + g(2) \cdot (1-4p)$$

$$= p[g(0) + 3g(1) - 4g(2)] + g(2) = 0$$

Therefore, g(2)=0, g(0)+3g(1)=0 must hold, and it is possible that g is a nonzero function that makes $\Pr[g(X)=0]<1$.

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$f_X(x|p) = p^{I(x=0)}(3p)^{I(x=1)}(1-4p)^{I(x=2)}$$

$$E[g(X)|p] = \sum_{x \in \{0,1,2\}} g(x)f_X(x|p)$$

$$= g(0) \cdot p + g(1) \cdot (3p) + g(2) \cdot (1-4p)$$

$$= p[g(0) + 3g(1) - 4g(2)] + g(2) = 0$$

Therefore, g(2)=0, g(0)+3g(1)=0 must hold, and it is possible that g is a nonzero function that makes $\Pr[g(X)=0]<1$. For example, g(0)=1,g(1)=-3,g(2)=0.

◆□▶◆□▶◆壹▶◆壹▶ 壹 からで

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$f_X(x|p) = p^{I(x=0)}(3p)^{I(x=1)}(1-4p)^{I(x=2)}$$

$$E[g(X)|p] = \sum_{x \in \{0,1,2\}} g(x)f_X(x|p)$$

$$= g(0) \cdot p + g(1) \cdot (3p) + g(2) \cdot (1-4p)$$

$$= p[g(0) + 3g(1) - 4g(2)] + g(2) = 0$$

Therefore, g(2)=0, g(0)+3g(1)=0 must hold, and it is possible that g is a nonzero function that makes $\Pr[g(X)=0]<1$. For example, g(0)=1,g(1)=-3,g(2)=0. Therefore the family of distribution of X is not complete.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽٩

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$f_X(x|p) = p^{I(x=0)}(p^2)^{I(x=1)}(1-p-p^2)^{I(x=2)}$$

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$\begin{array}{rcl} f_X(x|p) & = & p^{I(x=0)}(p^2)^{I(x=1)}(1-p-p^2)^{I(x=2)} \\ E[g(X)|p] & = & \sum_{x \in \{0,1,2\}} g(x) f_X(x|p) \end{array}$$

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$f_X(x|p) = p^{I(x=0)}(p^2)^{I(x=1)}(1-p-p^2)^{I(x=2)}$$

$$E[g(X)|p] = \sum_{x \in \{0,1,2\}} g(x)f_X(x|p)$$

$$= g(0) \cdot p + g(1) \cdot p^2 + g(2) \cdot (1-p-p^2)$$

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

$$\begin{split} f_X(x|p) &= p^{I(x=0)}(p^2)^{I(x=1)}(1-p-p^2)^{I(x=2)} \\ E[g(X)|p] &= \sum_{x \in \{0,1,2\}} g(x) f_X(x|p) \\ &= g(0) \cdot p + g(1) \cdot p^2 + g(2) \cdot (1-p-p^2) \\ &= p^2[g(1) - g(2)] + p[g(0) - g(2)] + g(2) = 0 \end{split}$$

g(0)=g(1)=g(2)=0 must hold in order to E[g(X)|p]=0 for all p. Therefore the family of distribution of X is complete.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ りへ○

Another Example

Problem

Let X_1, \dots, X_n be iid samples from

$$f_X(x|\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$$

where x>0. Show that $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ and $T=\frac{n}{\sum_{i=1}^n \frac{1}{X}-\frac{1}{X}}$ are sufficient and complete.

$$f_X(x|\boldsymbol{\theta}) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$$

$$f_X(x|\boldsymbol{\theta}) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$$
$$= \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda x^2}{2\mu^2 x} + \frac{2\lambda\mu x}{2\mu^2 x} - \frac{\lambda\mu^2}{2\mu^2 x}\right]$$

$$f_X(x|\boldsymbol{\theta}) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$$

$$= \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda x^2}{2\mu^2 x} + \frac{2\lambda\mu x}{2\mu^2 x} - \frac{\lambda\mu^2}{2\mu^2 x}\right]$$

$$= \left(\frac{1}{2\pi x^3}\right)^{1/2} \lambda^{1/2} \exp\left[-\frac{\lambda}{2\mu^2} x + \frac{\lambda}{\mu} - \frac{\lambda}{2} \cdot \frac{1}{x}\right]$$

$$f_X(x|\theta) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right] \\ = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda x^2}{2\mu^2 x} + \frac{2\lambda\mu x}{2\mu^2 x} - \frac{\lambda\mu^2}{2\mu^2 x}\right] \\ = \left(\frac{1}{2\pi x^3}\right)^{1/2} \lambda^{1/2} \exp\left[-\frac{\lambda}{2\mu^2} x + \frac{\lambda}{\mu} - \frac{\lambda}{2} \cdot \frac{1}{x}\right] \\ = \left(\frac{1}{2\pi x^3}\right)^{1/2} \lambda^{1/2} e^{\lambda/\mu} \exp\left[-\frac{\lambda}{2\mu^2} x - \frac{\lambda}{2} \cdot \frac{1}{x}\right]$$

$$f_X(x|\boldsymbol{\theta}) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right] \\ = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda x^2}{2\mu^2 x} + \frac{2\lambda\mu x}{2\mu^2 x} - \frac{\lambda\mu^2}{2\mu^2 x}\right] \\ = \left(\frac{1}{2\pi x^3}\right)^{1/2} \lambda^{1/2} \exp\left[-\frac{\lambda}{2\mu^2} x + \frac{\lambda}{\mu} - \frac{\lambda}{2} \cdot \frac{1}{x}\right] \\ = \left(\frac{1}{2\pi x^3}\right)^{1/2} \lambda^{1/2} e^{\lambda/\mu} \exp\left[-\frac{\lambda}{2\mu^2} x - \frac{\lambda}{2} \cdot \frac{1}{x}\right] \\ = h(x) c(\boldsymbol{\theta}) \exp\left[w_1(\boldsymbol{\theta}) t_1(x) + w_2(\boldsymbol{\theta}) t_2(x)\right]$$

where

$$h(x) = \frac{1}{2\pi x^3}$$

where

$$h(x) = \frac{1}{2\pi x^3}$$

$$c(\boldsymbol{\theta}) = \lambda^{1/2} e^{\lambda/\mu}$$

where

$$h(x) = \frac{1}{2\pi x^3}$$

$$c(\boldsymbol{\theta}) = \lambda^{1/2} e^{\lambda/\mu}$$

$$v_1(\boldsymbol{\theta}) = -\frac{\lambda}{2\mu^2}$$

where

$$h(x) = \frac{1}{2\pi x^3}$$

$$c(\boldsymbol{\theta}) = \lambda^{1/2} e^{\lambda/\mu}$$

$$v_1(\boldsymbol{\theta}) = -\frac{\lambda}{2\mu^2}$$

$$t_1(x) = x$$

where

$$h(x) = \frac{1}{2\pi x^3}$$

$$c(\boldsymbol{\theta}) = \lambda^{1/2} e^{\lambda/2}$$

$$w_1(\boldsymbol{\theta}) = -\frac{\lambda}{2\mu^2}$$

$$t_1(x) = x$$

$$w_2(\boldsymbol{\theta}) = -\frac{\lambda}{2}$$

where

$$h(x) = \frac{1}{2\pi x^3}$$

$$c(\theta) = \lambda^{1/2} e^{\lambda/2}$$

$$w_1(\theta) = -\frac{\lambda}{2\mu^2}$$

$$t_1(x) = x$$

$$w_2(\theta) = -\frac{\lambda}{2}$$

$$t_2(x) = \frac{1}{x}$$

where

$$h(x) = \frac{1}{2\pi x^3}$$

$$c(\theta) = \lambda^{1/2} e^{\lambda/2}$$

$$w_1(\theta) = -\frac{\lambda}{2\mu^2}$$

$$t_1(x) = x$$

$$w_2(\theta) = -\frac{\lambda}{2}$$

$$t_2(x) = \frac{1}{x}$$

Therefore $\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X})) = (\sum_{i=1}^n X_i, \sum_{i=1}^n 1/X_i)$ is a complete sufficient statistic because $\theta = (\lambda, \mu)$ contains an open set in \mathbb{R}^2 .

> February 5th, 2013

Now, we need to show that $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $T = \frac{n}{\sum_{i=1}^n \frac{1}{X} - \frac{1}{X}}$ are one-to-one function of $\mathbf{T}(\mathbf{X})$.

Now, we need to show that $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $T = \frac{n}{\sum_{i=1}^n \frac{1}{X} - \frac{1}{X}}$ are one-to-one function of $\mathbf{T}(\mathbf{X})$.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} T_1(\mathbf{X})$$

$$T = \frac{n}{\sum_{i=1}^{n} \frac{1}{X} - \frac{1}{\overline{X}}} = \frac{n}{T_2(\mathbf{X}) - \frac{n}{T_1(\mathbf{X})}}$$

$$T_1(\mathbf{X}) = n\overline{X}$$

$$T_2(\mathbf{X}) = \frac{n}{T} + \frac{1}{\overline{X}}$$

Therefore, (\overline{X}, T) are one-to-one function of $(T_1(\mathbf{X}), T_2(\mathbf{X}))$ and are also a sufficient complete statistic.

Summary

Today

- More Examples of Exponential Family
- Review of Chapter 6

Summary

Today

- More Examples of Exponential Family
- Review of Chapter 6

Next Lecture

- Likelihood Function
- Point Estimation