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Last Lecture

= What is p-value?

= What is the advantage of p-value compared to hypothesis testing
procedure with size a?

= How can one construct a valid p-value?
= What is Fisher's exact p-value?

= |s Fisher's exact p-value uniformly distributed under null hypothesis?
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Conclusions from Hypothesis Testing

= Reject Hy or accept Hy.
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Conclusions from Hypothesis Testing

= Reject Hy or accept Hy.
= If size of the test is () small, the decision to reject Hy is convincing.

= |If « is large, the decision may not be very convincing.

Definition: p-Value

A p-value p(X) is a test statistic satisfying 0 < p(x) < 1 for every sample
point x. Small values of p(X) given evidence that H; is true. A p-value is
valid if, for every 6 € Qg and every 0 < o < 1,
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Conclusions from Hypothesis Testing
= Reject Hy or accept Hy.
= If size of the test is () small, the decision to reject Hy is convincing.

= |If « is large, the decision may not be very convincing.

Definition: p-Value

A p-value p(X) is a test statistic satisfying 0 < p(x) < 1 for every sample
point x. Small values of p(X) given evidence that H; is true. A p-value is
valid if, for every 6 € Qg and every 0 < o < 1,

Pr(p(X) < alf) < a
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Constructing a valid p-value

Theorem 8.3.27.

Let W(X) be a test statistic such that large values of W give evidence
that H; is true. For each sample point x, define
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Constructing a valid p-value

Theorem 8.3.27.

Let W(X) be a test statistic such that large values of W give evidence
that H; is true. For each sample point x, define

p(x) = sup Pr(W(X) = W(x)|0)
0€Qo
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Constructing a valid p-value

Theorem 8.3.27.

Let W(X) be a test statistic such that large values of W give evidence
that H; is true. For each sample point x, define

p(x) = sup Pr(W(X) = W(x)|0)
0€Qo

Then p(X) is a valid p-value.
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p-Values by conditioning on on sufficient statistic

Suppose S(X) is a sufficient statistic for the model {f(x|0) : 0 € Qp}.
(not necessarily including alternative hypothesis).
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true, the conditional distribution of X given § = s does not depend on 6.
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p-Values by conditioning on on sufficient statistic

Suppose S(X) is a sufficient statistic for the model {f(x|0) : 0 € Qp}.
(not necessarily including alternative hypothesis). If the null hypothesis is
true, the conditional distribution of X given § = s does not depend on 6.
Again, let W(X) denote a test statistic where large value give evidence
that H; is true. Define

p(x) = Pr(W(X) = W(x)|S= 5(x))

If we consider only the conditional distribution, by Theorem 8.3.27, this is
a valid p-value, meaning that

Pr(p(X) <alS=s) <«
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Example - Fisher's Exact Test

Problem

Let X; and X» be independent observations with X; ~ Binomial(ny, p1),
and Xy ~ Binomial(ng, p2). Consider testing Hy : p1 = pa versus
Hi : p1 > py. Find a valid p-value function.
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Let X; and X» be independent observations with X; ~ Binomial(ny, p1),
and Xy ~ Binomial(ng, p2). Consider testing Hy : p1 = pa versus
Hj : py > po. Find a valid p-value function.

Solution

| A\

Under Hy, if we let p denote the common value of p; = ps. Then the join
pmf of (X7, Xo) is

v
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Example - Fisher's Exact Test

Problem

Let X; and X» be independent observations with X; ~ Binomial(ny, p1),
and Xy ~ Binomial(ng, p2). Consider testing Hy : p1 = pa versus
Hj : py > po. Find a valid p-value function.

Solution

| \

Under Hy, if we let p denote the common value of p; = ps. Then the join

pmf of (X7, Xo) is
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Example - Fisher's Exact Test

Problem

Let X; and X» be independent observations with X; ~ Binomial(ny, p1),
and Xy ~ Binomial(ng, p2). Consider testing Hy : p1 = pa versus
Hj : py > po. Find a valid p-value function.

Solution

| \

Under Hy, if we let p denote the common value of p; = ps. Then the join

pmf of (X7, Xo) is
n1 1 n—mz [ T2 T N — T
1— 121 2(1 — 2—T2
<x1>p (1-p) <$2>p (1-p)

_ (m) (n2) pzl+12(1 o p)n1+n2—z1—a72
I T2

Therefore S = X; + X5 is a sufficient statistic under Hj.

f(m, 302\19)

v
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Solution - Fisher's Exact Test (cont'd)

Given the value of S = s, it is reasonable to use X; as a test statistic and
reject Hy in favor of Hy for large values of Xj,because large values of X;
correspond to small values of Xo = s — Xj.
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Solution - Fisher's Exact Test (cont'd)

Given the value of S = s, it is reasonable to use X; as a test statistic and
reject Hy in favor of Hy for large values of Xj,because large values of X;
correspond to small values of Xo = s— X7. The conditional distribution of
X1 given S = s is a hypergeometric distribution.

Xy =mx|s) = (m(ln)l(f;f)l)

S
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Solution - Fisher's Exact Test (cont'd)

Given the value of S = s, it is reasonable to use X; as a test statistic and
reject Hy in favor of Hy for large values of Xj,because large values of X;
correspond to small values of Xo = s— X7. The conditional distribution of
X1 given S = s is a hypergeometric distribution.

Xy =mx|s) = (m(ln)l(f;f)l)

S

Thus, the p-value conditional on the sufficient statistic s = z; + o is

min(ng,s)

plr,z) = > fls)

J=z1
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Interval Estimation

A~

6(X) is usually represented as a point estimator

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 8/1



Interval Estimation

é(X) is usually represented as a point estimator

Interval Estimator
Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 8/1



Interval Estimation

é(X) is usually represented as a point estimator

Interval Estimator
Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 8/1



Interval Estimation

é(X) is usually represented as a point estimator

Interval Estimator
Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 8/1



Interval Estimation

é(X) is usually represented as a point estimator

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Three types of intervals

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 8/1



Interval Estimation

é(X) is usually represented as a point estimator

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Three types of intervals
= Two-sided interval [L(X), U(X)]

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 8/1



Interval Estimation

é(X) is usually represented as a point estimator

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Three types of intervals
= Two-sided interval [L(X), U(X)]
= One-sided (with lower-bound) interval [L(X), c0)

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 8/1



Interval Estimation

é(X) is usually represented as a point estimator

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Three types of intervals
= Two-sided interval [L(X), U(X)]
= One-sided (with lower-bound) interval [L(X), c0)
= One-sided (with upper-bound) interval (—oo, U(X)]
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Example

Let X; < (1, 1). Define
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Example

Let X; < (11, 1). Define
1. A point estimator of p : X

Pr(X=pu)=0

2. An interval estimator of y: [X — 1, X + 1]
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Example

Let X; 2% A(u,1). Define

1. A point estimator of p : X
Pr(X=pu)=0
2. An interval estimator of y: [X — 1, X + 1]

Prue[X—1,X+1]) = Pr(X—1<u<X+1)
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Example

Let X; 2% A(u,1). Define

1. A point estimator of p : X

2. An interval estimator of y: [X — 1, X + 1]

Prue[X—1,X+1]) = Pr(X—1<u<X+1)
= Pr(p—1<X<p+1)
= Pr(—vn < V(X —p) <v/n)
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Example

Let X; 2% A(u,1). Define

1. A point estimator of p : X
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>
|
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>
+
=

Pr(pe[X—-1,X+1))

as n — oo, where Z ~ N(0,1).
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Definitions

Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 10/1



Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as
Pr(0 € [L(X), UX)])

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 10/1



Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as
Pr(0 € [L(X), UX)])

In other words, the probability of a random variable in interval
[L(X), U(X)] covers the parameter 6.
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Definitions
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Definitions

Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 6, its coverage probability is
defined as

Pr(6 € [L(X), U(X)])

In other words, the probability of a random variable in interval
[L(X), U(X)] covers the parameter 6.

Definition: Confidence Coefficient

Confidence coefficient is defined as
Inf Pr(0 € [L(X), U(X)])
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Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 6, if its confidence coefficient
is 1 —«, we call it a (1 — «) confidence interval
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Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 6, if its confidence coefficient
is 1 —«, we call it a (1 — «) confidence interval

Definition: Expected Length

Given an interval estimator [L(X), U(X)] of 0, its expected length is
defined as
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Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 6, if its confidence coefficient
is 1 —«, we call it a (1 — «) confidence interval

Definition: Expected Length

Given an interval estimator [L(X), U(X)] of 0, its expected length is
defined as

E[U(X) = L(X)]
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Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 6, if its confidence coefficient
is 1 —«, we call it a (1 — «) confidence interval

Definition: Expected Length

Given an interval estimator [L(X), U(X)] of 6, its expected length is
defined as
E[U(X) = L(X)]

where X are random samples from fx(x|€). In other words, it is the
average length of the interval estimator.
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How to construct confidence interval?

A confidence interval can be obtained by inverting the acceptance region
of a test.
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How to construct confidence interval?

A confidence interval can be obtained by inverting the acceptance region
of a test.

There is a one-to-one correspondence between tests and confidence
intervals (or confidence sets).
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Example

X; i (0, 02) where o2 is known. Consider Hy : 0 = 6y vs. Hy : 6 # 6.

As previously shown, level o LRT test reject Hy if and only if
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Example

iid.

X; =S N(0,0?) where 02 is known. Consider Hy : 6 = 0y vs. Hy : 0 # 6.
As previously shown, level o LRT test reject Hy if and only if

Xty > 2

O'/\/?l /2
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Example

ii.d.

X; =S N(0,0?) where 02 is known. Consider Hy : 6 = 0y vs. Hy : 0 # 6.
As previously shown, level o LRT test reject Hy if and only if
X — 0 .
—— | >z
O'/\/?l /2
Equivalently, we accept Hy if ’ ‘ < Za/2-
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Example

X; i (0, 02) where o2 is known. Consider Hy : 0 = 6y vs. Hy : 6 # 6.

As previously shown, level o LRT test reject Hy if and only if

X—0
a/v/n

> Za/Q

Equivalently, we accept Hj if ’%‘ < Zy /2

Accepting Hy : 6 = 6y because we believe our data "agrees with” the
hypothesis 6 = 0.
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Example

X; i (0, 02) where o2 is known. Consider Hy : 0 = 6y vs. Hy : 6 # 6.

As previously shown, level o LRT test reject Hy if and only if

X—0
a/v/n

> Za/Q

Equivalently, we accept Hj if ’%‘ < Zy /2

Accepting Hy : 6 = 6y because we believe our data "agrees with” the
hypothesis 6 = 0.

o X—6o
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Example

X; i (0, 02) where o2 is known. Consider Hy : 0 = 6y vs. Hy : 6 # 6.

As previously shown, level o LRT test reject Hy if and only if
X — 0
a/\/n

> Za/Q

Equivalently, we accept Hj if ’%‘ < Zy /2
Accepting Hy : 6 = 6y because we believe our data "agrees with” the
hypothesis 6 = 0.
_ 790 < z
/2 N /2
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g g
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n
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Example

X; i (0, 02) where o2 is known. Consider Hy : 0 = 6y vs. Hy : 6 # 6.

As previously shown, level o LRT test reject Hy if and only if
X — 0
a/\/n

> Za/Q

Equivalently, we accept Hj if ’%‘ < Zy /2

Accepting Hy : 6 = 6y because we believe our data "agrees with” the
hypothesis 6 = 0.

—Za/2 < f]% < Zay2
g — g
0o — %Za/Q < X <6+ %Za/z

Acceptance region is {x 1 0p — %Lza/Q <z<6y+ %Za/g}
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Example (cont'd)

As this is size « test, the probability of accepting Hp is 1 — a.

l—-a = Pr (00— %Zaﬂ SYS 90"’%4/2)
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Example (cont'd)

As this is size « test, the probability of accepting Hp is 1 — a.

l—-a = Pr (00— %Zaﬂ SYS 90—}—;%2&/2)

— o —
= Pr <X—\/,ﬁZa/2§00§X+ Za/2>
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Example (cont'd)

As this is size « test, the probability of accepting Hp is 1 — a.
ag — g
l1—a = Pr <00—ﬁ2’a/2§X§ 90+\/?LZQ/2>

— o — g
= Pr <X—\/ﬁZa/2§00§X—|— \/ﬁZa/2>

Since 6 is arbitrary,

l-a = Pr (X— LZQ/Q <0< X+ Uza/2>
n
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Example (cont'd)

As this is size « test, the probability of accepting Hp is 1 — a.

(2

— o

l—a = (00 \/ﬁa/2§X§90+\/ﬁZ(x/2>
g - (o2

= PI‘<X—\/E/ a/2§00§X+ \/ﬁzoz/2>

Since 6 is arbitrary,

l—a = Pr<X—fza/2<9<X+fza/2>

Therefore, [X — %za/g,jf—k ﬁza/ﬂ is (1 — «v) confidence interval (Cl).
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Confidence intervals and level « test

Theorem 9.2.2

@ For each 0y € Q, let A(fy) be the acceptance region of a level « test
of Hy: 0 =0y vs. Hy: 60 +# 6 Define a set C(X) ={6:x € A(0)},
then the random set C(X) is a 1 — « confidence set.
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Confidence intervals and level « test

Theorem 9.2.2

@ For each 0y € Q, let A(fy) be the acceptance region of a level « test
of Hy: 0 =0y vs. Hy: 60 +# 6 Define a set C(X) ={6:x € A(0)},
then the random set C(X) is a 1 — « confidence set.

@® Conversely, if C(X) is a (1 — «) confidence set for 6, for any 6y,
define the acceptance region of a test for the hypothesis Hy : 6 = 6
by A(6p) = {x: 6y € C(x)}. Then the test has level a.
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Example

For X; 2 (6, 0?), the acceptance region A(f)) is a subset of the

sample space
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Example

For X; ~< N (6,0?), the acceptance region A(f)) is a subset of the
sample space

A(@Q)Z{X:QQ— g a/2§7(§90+ 7 }

o Vo

The confidence set C(X) is a subset of the parameter space

o - o
CX) = {0 10— ﬁzaﬂ <X<0+ ﬁza/z}
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Example

For X; ~< N (6,0?), the acceptance region A(f)) is a subset of the
sample space

o - o
A(0o) = {X : 0o — %Za/Q <X <6+ ﬁzam}

The confidence set C(X) is a subset of the parameter space

O(X) = {9;9—” <X<0+

o
\/ﬁza/Q = \/?LZQ/Z}
(o g
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Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem
9.2.2 is an interval, but quite often
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Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem
9.2.2 is an interval, but quite often

@ To obtain (1 — «) two-sided CI [L(X), U(X)], we invert the
acceptance region of a level « test for Hy : 0 =6y vs. Hy : 0 # 0q
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Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem
9.2.2 is an interval, but quite often
@ To obtain (1 — «) two-sided CI [L(X), U(X)], we invert the
acceptance region of a level « test for Hy : 0 =6y vs. Hy : 0 # 0q
@® To obtain a lower-bounded Cl [L(X), 00), then we invert the

acceptance region of a test for Hy : 0 = 0y vs. Hy : 0 > 6y, where
Q={60:0>6y}.
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Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem
9.2.2 is an interval, but quite often
@ To obtain (1 — «) two-sided CI [L(X), U(X)], we invert the
acceptance region of a level « test for Hy : 0 =6y vs. Hy : 0 # 0q
@® To obtain a lower-bounded Cl [L(X), 00), then we invert the
acceptance region of a test for Hy : 0 = 0y vs. Hy : 0 > 6y, where
Q={60:0>6y}.
©® To obtain a upper-bounded Cl (—oo, U(X)], then we invert the

acceptance region of a test for Hy : 0 = 0y vs. Hy : 60 < 0y, where
Q={60:0<6y}.

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 17 /1



Example

Problem

idd,
X; =< N (u,02) where both parameters are unknown.
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Example

Problem
e (1, o) where both parameters are unknown.
® Find 1 — « two-sided Cl for

® Find 1 — « upper bound for u
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Example - two-sided Cl - Solution

Hy:p=povs Hy : p # pp. The LRT test rejects if and only if
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Example - two-sided Cl - Solution

Hy:p=povs Hy : p # pp. The LRT test rejects if and only if
X— Ko
sx//n

> tnfl,a/Z
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Example - two-sided Cl - Solution

Hy:p=povs Hy : p # pp. The LRT test rejects if and only if

X — po
>t
Sx/\/?l n—1,a/2
The acceptance region is
T— o
A 0) = {X: < t,_ }
(10) NG n—1,a/2
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Example - two-sided Cl - Solution

Hy:p=povs Hy : p # pp. The LRT test rejects if and only if

X — po
>t
Sx/\/?l n—1,a/2
The acceptance region is
T — Ho
A =<Ix: <t
(MO) { SX/\/?l = In l,a/?}
The confidence set is
T
Clx) = : <t
( ) {:U’ SX/\/E‘ = In 1,a/2}
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Example - two-sided Cl - Solution

Hy:p=povs Hy : p # pp. The LRT test rejects if and only if

X — po
> b
Sx/\/?l n—1,a/2
The acceptance region is
T — Ho
A =<Ix: <t,
(MO) { SX/\/?l = In l,a/?}
The confidence set is
T
Clx) = : <t
( ) {:U’ SX/\/E‘ n 1,a/2}

T—
= {:u’: _tnfl,a/Q < Sx/\/ﬁ < tnl,a/Z}
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Example - two-sided Cl - Solution

Hy:p=povs Hy : p # pp. The LRT test rejects if and only if

X — po
> b
Sx/\/?l n—1,a/2
The acceptance region is
T— o
A =<Ix: <t,
(MO) { SX/\/?l = In 1,04/2}
The confidence set is
T
Clx) = : <t
( ) {:u’ Sx/\/ﬁ n 1,a/2}

T—
= {:u’: _tnfl,a/Q < Sx/\/ﬁ < tnl,a/Z}

_ S -, S
= {,u T — \/Xﬁtn_la/g <pu<zT+ \/xﬁtn—l,a/Z}
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Example - upper-bounded Cl - Solution

The Clis (—oo, U(X)]. We need to invert a testing procedure for
Ho:p=po vs Hy = p < po.
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Example - upper-bounded Cl - Solution

The Clis (—oo, U(X)]. We need to invert a testing procedure for
Ho:p=po vs Hy = p < po.

Q = {(n,0%):p=po,0” >0}
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Example - upper-bounded Cl - Solution

The Clis (—oo, U(X)]. We need to invert a testing procedure for
Ho:p=po vs Hy = p < po.

Q = {(n,0%):p=po,0” >0}
Q = {(1,0%): 1< po,0° >0}
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Example - upper-bounded Cl - Solution

The Clis (—oo, U(X)]. We need to invert a testing procedure for
Ho:p=po vs Hy = p < po.

Q = {(n,0%):p=po,0” >0}
Q = {(1,0%): 1< po,0° >0}
LRT statistic is
L(fio, 63|x)
Ax) = 2o %)
™) = T, 62
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Example - upper-bounded Cl - Solution

The Clis (—oo, U(X)]. We need to invert a testing procedure for
Ho:p=po vs Hy = p < po.

Q = {(n,0%):p=po,0” >0}
Q = {(1,0%): 1< po,0° >0}

LRT statistic is

L(fu, 62|x
0 = TS

where (fig, 52) is the MLE restricted to Qg, and(fi, 52) is the MLE
restricted to 2, and
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Example - upper-bounded Cl - Solution

The Clis (—oo, U(X)]. We need to invert a testing procedure for
Ho:p=po vs Hy = p < po.

Qo = {(g,0°): p=po,0®>0}
Q = {(1,0%): 1< po,0° >0}
LRT statistic is

L(fu, 62|x
0 = TS

where (fig, 52) is the MLE restricted to Qg, and(fi, 52) is the MLE
n o 2
restricted to €2, and Within Qq, fio = po, and 6(2) — iz (Ximpo)”

n
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Example - upper bounded Cl - Solution (cont'd)

Within €2, the MLE is
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Example - upper bounded Cl - Solution (cont'd)

Within €2, the MLE is
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Example - upper bounded Cl - Solution (cont'd)

Within €2, the MLE is

ﬂ — 7( 6'2 ZZL:1(5L(1—7()2 if 7( S Lo
)2 —
/l = Lo 52 21 (Xi—po) if X > Lo
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Example - upper bounded Cl - Solution (cont'd)

Within €2, the MLE is

_ n 2 —
=X 5—2:M if X < o
n N2 _
/l = Lo 5’2 — Zz‘:l(nz HO) if X> Lo
1 if X > o
" 2?21()(17*”0)2
Y S ) B e il
L\ somry XS o
2mwo2 P 2&(2)
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Example - upper bounded Cl - Solution (cont'd)

Within €2, the MLE is

i=X &2=ml(+i_7)2 if X < po
n )2 _
/l = Lo 5’2 — Zi:l(nz Ho) if X> Lo

1 if X > 1o
n n L 2
1 exp _22:1({(1,2 ©o) -
2102 20‘0 _ le< ILLO
L) T, (Xi—%? =
z) &P T 26

2mo
1 if X > o
= n;13)2( 3 e
Eramcy B
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Example - upper bounded Cl - Solution (cont'd)

For 0 < ¢ < 1, LRT test rejects Hy if X < p19 and
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Example - upper bounded Cl - Solution (cont'd)

For 0 < ¢ < 1, LRT test rejects Hy if X < p19 and

n—1 .2 3
n X < c
2L sx + (X — po)?
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Example - upper bounded Cl - Solution (cont'd)

For 0 < ¢ < 1, LRT test rejects Hy if X < p19 and
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Example - upper bounded Cl - Solution (cont'd)

For 0 < ¢ < 1, LRT test rejects Hy if X < p19 and

n—1
n
— < ¢
n=1 , (X—po)?
ot
X — 2
( 2H0) S o
5x
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Example - upper bounded Cl - Solution (cont'd)

For 0 < ¢ < 1, LRT test rejects Hy if X < p19 and

n—1
n < ¢
—1 . (X—po)?
nT + 330
X — 2
( 2H0) S o
5x
Ho — X > O
sx//n
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Example - upper bounded Cl - Solution (cont'd)

¢** is chosen to satisfy

a = Pr(reject Hy|uo)
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Example - upper bounded Cl - Solution (cont'd)

¢** is chosen to satisfy

a = Pr(reject Hy|uo)

Mo_y **>
= Pr >c
<sx/\/ﬁ
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Example - upper bounded Cl - Solution (cont'd)

¢** is chosen to satisfy

a = Pr(reject Hy|uo)
Mo_y **>
= Pr > c
<$x/\/7l

X — po )
= Pr < —=c**
<8x/\/ﬁ
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Example - upper bounded Cl - Solution (cont'd)

¢** is chosen to satisfy

a = Pr(reject Hy|uo)
Mo_y **>
= Pr > c
<$x/\/7l

X — po )

= Pr < —c**
<8x/\/ﬁ

= Pr(Th-1 <—c")
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Example - upper bounded Cl - Solution (cont'd)

¢** is chosen to satisfy

a = Pr(reject Hy|uo)
Mo_y **>
= Pr > c
<$x/\/7l

X — po )

= Pr < —c**
<8x/\/ﬁ

= Pr(Th-1 <—c")

l—a = Pr(Th—1 >—-c")
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Example - upper bounded Cl - Solution (cont'd)

¢** is chosen to satisfy

a = Pr(reject Hy|uo)
Ho — X **>
= Pr >c
<$x/\/7l
X — o )
= Pr < —c*
<8x/\/ﬁ
= Pr(Th-1 <—c")
l—a = Pr(Th—1 >—-c")

sk
c = _tn—l,l—a = tn—l,oc
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Example - upper bounded Cl - Solution (cont'd)

¢** is chosen to satisfy

a = Pr(reject Hy|uo)
Ho — X **>
= Pr >c
<$x/\/7l
X — o )
= Pr < —c*
<8x/\/ﬁ
= Pr(Th-1 <—c")
l—a = Pr(Th—1 >—-c")

sk
c = _tn—l,l—a = tn—l,oc

Therefore, LRT level « test reject Hy if
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Example - upper bounded Cl - Solution (cont'd)

¢** is chosen to satisfy

l—a =

ok
C =

Pr(reject Hy|uo)
Ho — X **>
Pr > c
<$x/\/7l
X — po )
Pr < =
<8x/\/ﬁ
Pr(Tp—1 < —c™)
Pr(Ty—1 > —c™)

_tn—l,l—a = tn—l,oc

Therefore, LRT level « test reject Hy if

X — o

sx/v/n

< _tn—l,a
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Example - upper bounded Cl - Solution (cont'd)

Acceptance region is

X —
A(,U,o) = {X : Ho > _tnl,a}

sx/vn
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Example - upper bounded Cl - Solution (cont'd)

Acceptance region is

“W*:{ iAﬁ-t”m}

Inverting the above to get Cl
OX) = {u:Xe A}
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Example - upper bounded Cl - Solution (cont'd)

Acceptance region is

X —
A(NO) = {X : il > _tnl,a}

Inverting the above to get Cl
OX) = {u:Xe A}
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Example - upper bounded Cl - Solution (cont'd)

Acceptance region is

Inverting the above to get Cl
CX) = {w:Xe A}

= -L_“>—t
- H'Sx/\/ﬁ_ n—1,a

= {,U X = > _\/ﬁtn—l,a}

—

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 24 /1



Example - upper bounded Cl - Solution (cont'd)

Acceptance region is

Inverting the above to get Cl
OX) = {u:Xe A}
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Example - upper bounded Cl - Solution (cont'd)

Acceptance region is

Inverting the above to get Cl
OX) = {u:Xe A}
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Example - lower bounded CI - solution

LRT level « test reject Hy if and only if

X — o
Sx/\/ﬁ

> tn—l,a
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Example - lower bounded CI - solution

LRT level « test reject Hy if and only if

X — o
Sx/\/ﬁ

> tn—l,a

Acceptance region is

Alp) = {x: 2700 < 11}
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Example - lower bounded CI - solution

LRT level « test reject Hy if and only if
X — o
Sx/\/ﬁ

> tn—l,a
Acceptance region is

Apo) = { ii;ﬁ = n—la}

Confidence interval is

ax) = {urXEA(u)}Z{u:
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Example - lower bounded CI - solution

LRT level « test reject Hy if and only if
X — o
Sx/\/ﬁ

> tn—l,a
Acceptance region is

Apo) = { ii;ﬁ = n—la}

Confidence interval is

) = {usxea) = {u: 2l <t

J— SX
= > X — th1.a
{M B=Z NG 1, }
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Example - lower bounded CI - solution

LRT level « test reject Hy if and only if
X — o
Sx/\/ﬁ

> tn—l,a
Acceptance region is

Apo) = { ii;ﬁ = n—la}

Confidence interval is

) = {usxea) = {u: 2l <t

— S
- {:u’ > X— \/Xﬁtn—l,a}
- [ )
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Example

Problem

Xy, -+, X, are iid samples from a distribution with mean p and finite
variance 2. Construct asymptotic (1 — ) two-sided interval for

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 26 /1



Xy, -+, X, are iid samples from a distribution with mean p and finite
variance 2. Construct asymptotic (1 — ) two-sided interval for

Solution

Let X be a method of moment estimator for .
By law of large number, X is consistent for y, and by central limit theorem,

2
)_(NAN(/L,%>
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Example (cont'd)

Consider testing Hy : o = po vs. Hy : g # po. The Wald statistic
X — po
Iy = ——
n Sn

for a consistent estimator of o/+/n.
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Example (cont'd)

Consider testing Hy : o = po vs. Hy : g # po. The Wald statistic
X — po
Iy = ——
n Sn

for a consistent estimator of o/y/n. From previous lectures, we know that

1
n—1

Z(Xi—j()Q —P> O'2

=1
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Example (cont'd)

Consider testing Hy : o = po vs. Hy : g # po. The Wald statistic

g _ X—ho
n Sn
for a consistent estimator of o/y/n. From previous lectures, we know that
! i(X - X)? N
n—14 1 !
1=

\/z;;l(Xi—X)? oo
(n="Dpm Vi
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Example (cont'd)

Consider testing Hy : o = po vs. Hy : g # po. The Wald statistic

X —
7, = Ho
Sn
for a consistent estimator of o/y/n. From previous lectures, we know that
! i(X - X)? N
n—14 1 !
1=

Y (Xi-X)? p o
(n—1n Vi
The Wald level o test

(X — po)v/n

Z?:l(xi_y)z

n—1

2o )2
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Example (cont'd)

The acceptance region is

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 28 /1



Example (cont'd)

The acceptance region is

T — n
A(po) = x: a< Znu?x).f)z < Zaj2
=1\

n—1
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Example (cont'd)

The acceptance region is

(T — po)v/n
A = X: | —————=| < 2z,
(1o) ST oo | /2
(1—a)Clis
ax) = {n:xeA@}
(T — p)v/n
D o2
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Example (cont'd)

The acceptance region is

(T — po)v/n
A = (x| —=|< 2,
(ko) { ST oo | /2
n—1
(1—a)Clis

Cx) = {p:xe A}

(T — p)v/n
N DA
{“ T /2

2 (2i—)? — ? (z;—7)?
|:$— ﬁ ZZ:;L(,l ) Za/27 x+ﬁ Zzi;(,l ) za/2:|
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Summary

= [nterval Estimation

= Confidence Interval
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= [nterval Estimation

= Confidence Interval

Next Lectures

= Reviews and Example Problems (every lecture)
= E-M algorithm
= Non-informative priors

= Bayesian Tests

Hyun Min Kang Biostatistics 602 - Lecture 23 April 11th, 2013 29 /1



	Recap
	Recap

	Interval Estimation
	Interval Estimation

	Confidence Interval
	Confidence Interval

	Summary
	Summary


