Biostatistics 602 - Statistical Inference Lecture 23 Interval Estimation

Hyun Min Kang

April 11th, 2013

• What is p-value?

- What is p-value?
- What is the advantage of p-value compared to hypothesis testing procedure with size α ?

- What is p-value?
- What is the advantage of p-value compared to hypothesis testing procedure with size α ?
- How can one construct a valid p-value?

- What is p-value?
- What is the advantage of p-value compared to hypothesis testing procedure with size α ?
- How can one construct a valid p-value?
- What is Fisher's exact p-value?

- What is p-value?
- What is the advantage of p-value compared to hypothesis testing procedure with size α ?
- How can one construct a valid p-value?
- What is Fisher's exact p-value?
- Is Fisher's exact p-value uniformly distributed under null hypothesis?

Conclusions from Hypothesis Testing

• Reject H_0 or accept H_0 .

Conclusions from Hypothesis Testing

- Reject H_0 or accept H_0 .
- If size of the test is (α) small, the decision to reject H_0 is convincing.

Conclusions from Hypothesis Testing

- Reject H_0 or accept H_0 .
- If size of the test is (α) small, the decision to reject H_0 is convincing.
- If α is large, the decision may not be very convincing.

Conclusions from Hypothesis Testing

- Reject H_0 or accept H_0 .
- If size of the test is (α) small, the decision to reject H_0 is convincing.
- If α is large, the decision may not be very convincing.

Definition: p-Value

A *p-value* $p(\mathbf{X})$ is a test statistic satisfying $0 \le p(\mathbf{x}) \le 1$ for every sample point \mathbf{x} . Small values of $p(\mathbf{X})$ given evidence that H_1 is true. A *p-value* is valid if, for every $\theta \in \Omega_0$ and every $0 \le \alpha \le 1$,

Conclusions from Hypothesis Testing

- Reject H_0 or accept H_0 .
- If size of the test is (α) small, the decision to reject H_0 is convincing.
- If α is large, the decision may not be very convincing.

Definition: p-Value

A *p-value* $p(\mathbf{X})$ is a test statistic satisfying $0 \le p(\mathbf{x}) \le 1$ for every sample point \mathbf{x} . Small values of $p(\mathbf{X})$ given evidence that H_1 is true. A *p-value* is valid if, for every $\theta \in \Omega_0$ and every $0 \le \alpha \le 1$,

$$\Pr(p(\mathbf{X}) \le \alpha | \theta) \le \alpha$$

Constructing a valid p-value

Theorem 8.3.27.

Let $W(\mathbf{X})$ be a test statistic such that large values of W give evidence that H_1 is true. For each sample point \mathbf{x} , define

Constructing a valid p-value

Theorem 8.3.27.

Let $W(\mathbf{X})$ be a test statistic such that large values of W give evidence that H_1 is true. For each sample point \mathbf{x} , define

$$p(\mathbf{x}) = \sup_{\theta \in \Omega_0} \Pr(W(\mathbf{X}) \ge W(\mathbf{x}) | \theta)$$

Constructing a valid p-value

Theorem 8.3.27.

Let $W(\mathbf{X})$ be a test statistic such that large values of W give evidence that H_1 is true. For each sample point \mathbf{x} , define

$$p(\mathbf{x}) = \sup_{\theta \in \Omega_0} \Pr(\mathit{W}(\mathbf{X}) \geq \mathit{W}(\mathbf{x}) | \theta)$$

Then $p(\mathbf{X})$ is a valid p-value.

Suppose $S(\mathbf{X})$ is a sufficient statistic for the model $\{f(\mathbf{x}|\theta): \theta \in \Omega_0\}$. (not necessarily including alternative hypothesis).

Suppose $S(\mathbf{X})$ is a sufficient statistic for the model $\{f(\mathbf{x}|\theta):\theta\in\Omega_0\}$. (not necessarily including alternative hypothesis). If the null hypothesis is true, the conditional distribution of \mathbf{X} given S=s does not depend on θ .

Suppose $S(\mathbf{X})$ is a sufficient statistic for the model $\{f(\mathbf{x}|\theta):\theta\in\Omega_0\}$. (not necessarily including alternative hypothesis). If the null hypothesis is true, the conditional distribution of \mathbf{X} given S=s does not depend on θ . Again, let $W(\mathbf{X})$ denote a test statistic where large value give evidence that H_1 is true. Define

$$p(\mathbf{x}) = \Pr(W(\mathbf{X}) \ge W(\mathbf{x}) | S = S(\mathbf{x}))$$

Suppose $S(\mathbf{X})$ is a sufficient statistic for the model $\{f(\mathbf{x}|\theta):\theta\in\Omega_0\}$. (not necessarily including alternative hypothesis). If the null hypothesis is true, the conditional distribution of \mathbf{X} given S=s does not depend on θ . Again, let $W(\mathbf{X})$ denote a test statistic where large value give evidence that H_1 is true. Define

$$p(\mathbf{x}) = \Pr(W(\mathbf{X}) \ge W(\mathbf{x}) | S = S(\mathbf{x}))$$

If we consider only the conditional distribution, by Theorem 8.3.27, this is a valid p-value, meaning that

$$\Pr(p(\mathbf{X}) \le \alpha | S = s) \le \alpha$$

Problem

Let X_1 and X_2 be independent observations with $X_1 \sim \operatorname{Binomial}(n_1, p_1)$, and $X_2 \sim \operatorname{Binomial}(n_2, p_2)$. Consider testing $H_0: p_1 = p_2$ versus $H_1: p_1 > p_2$. Find a valid p-value function.

Problem

Let X_1 and X_2 be independent observations with $X_1 \sim \operatorname{Binomial}(n_1, p_1)$, and $X_2 \sim \operatorname{Binomial}(n_2, p_2)$. Consider testing $H_0: p_1 = p_2$ versus $H_1: p_1 > p_2$. Find a valid p-value function.

Solution

Under H_0 , if we let p denote the common value of $p_1=p_2$. Then the join pmf of (X_1,X_2) is

Problem

Let X_1 and X_2 be independent observations with $X_1 \sim \operatorname{Binomial}(n_1, p_1)$, and $X_2 \sim \operatorname{Binomial}(n_2, p_2)$. Consider testing $H_0: p_1 = p_2$ versus $H_1: p_1 > p_2$. Find a valid p-value function.

Solution

Under H_0 , if we let p denote the common value of $p_1=p_2$. Then the join pmf of (X_1,X_2) is

$$f(x_1, x_2|p) = \binom{n_1}{x_1} p^{x_1} (1-p)^{n_1-x_1} \binom{n_2}{x_2} p^{x_2} (1-p)^{n_2-x_2}$$

Problem

Let X_1 and X_2 be independent observations with $X_1 \sim \operatorname{Binomial}(n_1, p_1)$, and $X_2 \sim \operatorname{Binomial}(n_2, p_2)$. Consider testing $H_0: p_1 = p_2$ versus $H_1: p_1 > p_2$. Find a valid p-value function.

Solution

Under H_0 , if we let p denote the common value of $p_1=p_2$. Then the join pmf of (X_1,X_2) is

$$f(x_1, x_2|p) = \binom{n_1}{x_1} p^{x_1} (1-p)^{n_1-x_1} \binom{n_2}{x_2} p^{x_2} (1-p)^{n_2-x_2}$$
$$= \binom{n_1}{x_1} \binom{n_2}{x_2} p^{x_1+x_2} (1-p)^{n_1+n_2-x_1-x_2}$$

Problem

Let X_1 and X_2 be independent observations with $X_1 \sim \operatorname{Binomial}(n_1, p_1)$, and $X_2 \sim \operatorname{Binomial}(n_2, p_2)$. Consider testing $H_0: p_1 = p_2$ versus $H_1: p_1 > p_2$. Find a valid p-value function.

Solution

Under H_0 , if we let p denote the common value of $p_1=p_2$. Then the join pmf of (X_1,X_2) is

$$f(x_1, x_2|p) = \binom{n_1}{x_1} p^{x_1} (1-p)^{n_1-x_1} \binom{n_2}{x_2} p^{x_2} (1-p)^{n_2-x_2}$$
$$= \binom{n_1}{x_1} \binom{n_2}{x_2} p^{x_1+x_2} (1-p)^{n_1+n_2-x_1-x_2}$$

Therefore $S = X_1 + X_2$ is a sufficient statistic under H_0 .

Solution - Fisher's Exact Test (cont'd)

Given the value of S=s, it is reasonable to use X_1 as a test statistic and reject H_0 in favor of H_1 for large values of X_1 , because large values of X_1 correspond to small values of $X_2=s-X_1$.

Solution - Fisher's Exact Test (cont'd)

Given the value of S=s, it is reasonable to use X_1 as a test statistic and reject H_0 in favor of H_1 for large values of X_1 , because large values of X_1 correspond to small values of $X_2=s-X_1$. The conditional distribution of X_1 given S=s is a hypergeometric distribution.

$$f(X_1 = x_1|s) = \frac{\binom{n_1}{x_1}\binom{n_2}{s-x_1}}{\binom{n_1+n_2}{s}}$$

Solution - Fisher's Exact Test (cont'd)

Given the value of S=s, it is reasonable to use X_1 as a test statistic and reject H_0 in favor of H_1 for large values of X_1 ,because large values of X_1 correspond to small values of $X_2=s-X_1$. The conditional distribution of X_1 given S=s is a hypergeometric distribution.

$$f(X_1 = x_1|s) = \frac{\binom{n_1}{x_1}\binom{n_2}{s-x_1}}{\binom{n_1+n_2}{s}}$$

Thus, the p-value conditional on the sufficient statistic $s=x_1+x_2$ is

$$p(x_1, x_2) = \sum_{j=x_1}^{\min(n_1, s)} f(j|s)$$

 $\hat{\theta}(\mathbf{X})$ is usually represented as a point estimator

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), \, U\!(\mathbf{X})]$$

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}),\, U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

• Two-sided interval $[L(\mathbf{X}),\,U(\mathbf{X})]$

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

- Two-sided interval $[L(\mathbf{X}), U(\mathbf{X})]$
- One-sided (with lower-bound) interval $[L(\mathbf{X}), \infty)$

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

- Two-sided interval $[L(\mathbf{X}), U(\mathbf{X})]$
- One-sided (with lower-bound) interval $[L(\mathbf{X}), \infty)$
- One-sided (with upper-bound) interval $(-\infty, U(\mathbf{X})]$

Example

Let $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\mu, 1)$. Define

Let $X_i \stackrel{\text{i.i.d.}}{\smile} \mathcal{N}(\mu, 1)$. Define 1. A point estimator of $\mu : \overline{X}$

$$\Pr(\overline{X} = \mu) = 0$$

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$. Define

1. A point estimator of μ : \overline{X}

$$\Pr(\overline{X} = \mu) = 0$$

2. An interval estimator of μ : $[\overline{X}-1,\overline{X}+1]$

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$. Define

1. A point estimator of μ : \overline{X}

$$\Pr(\overline{X} = \mu) = 0$$

2. An interval estimator of μ : $[\overline{X}-1,\overline{X}+1]$

$$\Pr(\mu \in [\overline{X} - 1, \overline{X} + 1]) = \Pr(\overline{X} - 1 \le \mu \le \overline{X} + 1)$$

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$. Define

1. A point estimator of μ : \overline{X}

$$\Pr(\overline{X} = \mu) = 0$$

2. An interval estimator of μ : $[\overline{X}-1,\overline{X}+1]$

$$\begin{array}{lcl} \Pr(\mu \in [\overline{X}-1,\overline{X}+1]) & = & \Pr(\overline{X}-1 \leq \mu \leq \overline{X}+1) \\ & = & \Pr(\mu-1 \leq \overline{X} \leq \mu+1) \end{array}$$

9/1

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$. Define

1. A point estimator of μ : \overline{X}

$$\Pr(\overline{X} = \mu) = 0$$

2. An interval estimator of μ : $[\overline{X}-1,\overline{X}+1]$

$$\begin{split} \Pr(\mu \in [\overline{X}-1, \overline{X}+1]) &= \Pr(\overline{X}-1 \leq \mu \leq \overline{X}+1) \\ &= \Pr(\mu-1 \leq \overline{X} \leq \mu+1) \\ &= \Pr(-\sqrt{n} \leq \sqrt{n}(\overline{X}-\mu) \leq \sqrt{n}) \end{split}$$

9/1

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$. Define

1. A point estimator of μ : \overline{X}

$$\Pr(\overline{X} = \mu) = 0$$

2. An interval estimator of μ : $[\overline{X}-1,\overline{X}+1]$

$$\begin{split} \Pr(\mu \in [\overline{X} - 1, \overline{X} + 1]) &= \Pr(\overline{X} - 1 \le \mu \le \overline{X} + 1) \\ &= \Pr(\mu - 1 \le \overline{X} \le \mu + 1) \\ &= \Pr(-\sqrt{n} \le \sqrt{n}(\overline{X} - \mu) \le \sqrt{n}) \\ &= \Pr(-\sqrt{n} \le Z \le \sqrt{n}) \xrightarrow{P} 1 \end{split}$$

as $n \to \infty$, where $Z \sim \mathcal{N}(0, 1)$.

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$$

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$$

In other words, the probability of a random variable in interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the parameter θ .

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), \mathit{U}(\mathbf{X})])$$

In other words, the probability of a random variable in interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the parameter θ .

Definition: Confidence Coefficient

Confidence coefficient is defined as

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), \mathit{U}(\mathbf{X})])$$

In other words, the probability of a random variable in interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the parameter θ .

Definition: Confidence Coefficient

Confidence coefficient is defined as

$$\inf_{\theta \in \Omega} \Pr(\theta \in [L(\mathbf{X}), \, \mathit{U}(\mathbf{X})])$$

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of θ , if its confidence coefficient is $1-\alpha$, we call it a $(1-\alpha)$ confidence interval

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , if its confidence coefficient is $1-\alpha$, we call it a $(1-\alpha)$ confidence interval

Definition: Expected Length

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its *expected length* is defined as

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , if its confidence coefficient is $1-\alpha$, we call it a $(1-\alpha)$ confidence interval

Definition: Expected Length

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its *expected length* is defined as

$$E[U(\mathbf{X}) - L(\mathbf{X})]$$

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , if its confidence coefficient is $1-\alpha$, we call it a $(1-\alpha)$ confidence interval

Definition: Expected Length

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its expected length is defined as

$$E[U(\mathbf{X}) - L(\mathbf{X})]$$

where **X** are random samples from $f_{\mathbf{X}}(\mathbf{x}|\theta)$. In other words, it is the average length of the interval estimator.

How to construct confidence interval?

A confidence interval can be obtained by inverting the acceptance region of a test.

How to construct confidence interval?

A confidence interval can be obtained by inverting the acceptance region of a test.

There is a one-to-one correspondence between tests and confidence intervals (or confidence sets).

 $X_i \stackrel{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. As previously shown, level α LRT test reject H_0 if and only if

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. As previously shown, level α LRT test reject H_0 if and only if

$$\left| \frac{\overline{X} - \theta_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$$

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. As previously shown, level α LRT test reject H_0 if and only if

$$\left| \frac{\overline{X} - \theta_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$$

Equivalently, we accept H_0 if $\left| \frac{\overline{X} - \theta_0}{\sigma / \sqrt{n}} \right| \leq z_{\alpha/2}$.

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. As previously shown, level α LRT test reject H_0 if and only if

$$\left| \frac{\overline{X} - \theta_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$$

Equivalently, we accept H_0 if $\left| \frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \right| \leq z_{\alpha/2}$.

Accepting $H_0: \theta=\theta_0$ because we believe our data "agrees with" the hypothesis $\theta=\theta_0$.

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. As previously shown, level α LRT test reject H_0 if and only if

$$\left| \frac{\overline{X} - \theta_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$$

Equivalently, we accept H_0 if $\left| \frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \right| \leq z_{\alpha/2}$.

Accepting $H_0: \theta = \theta_0$ because we believe our data "agrees with" the hypothesis $\theta = \theta_0$.

$$-z_{\alpha/2} \le \frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \le z_{\alpha/2}$$

 $X_i \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. As previously shown, level α LRT test reject H_0 if and only if

$$\left| \frac{\overline{X} - \theta_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$$

Equivalently, we accept H_0 if $\left| \frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \right| \leq z_{\alpha/2}$.

Accepting $H_0: \theta=\theta_0$ because we believe our data "agrees with" the hypothesis $\theta=\theta_0$.

$$-z_{\alpha/2} \leq \frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \leq z_{\alpha/2}$$

$$\theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \leq \overline{X} \leq \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}$$

 $X_i \stackrel{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Consider $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$. As previously shown, level α LRT test reject H_0 if and only if

$$\left| \frac{\overline{X} - \theta_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$$

Equivalently, we accept H_0 if $\left| \frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \right| \leq z_{\alpha/2}$.

Accepting $H_0: \theta=\theta_0$ because we believe our data "agrees with" the hypothesis $\theta=\theta_0$.

$$-z_{\alpha/2} \le \frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \le z_{\alpha/2}$$

$$\theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}$$

Acceptance region is $\left\{\mathbf{x}: \theta_0 - \frac{\sigma}{\sqrt{n}}z_{\alpha/2} \leq \overline{x} \leq \theta_0 + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right\}$

As this is size α test, the probability of accepting H_0 is $1 - \alpha$.

$$1 - \alpha = \Pr\left(\theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

As this is size α test, the probability of accepting H_0 is $1 - \alpha$.

$$1 - \alpha = \Pr\left(\theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$
$$= \Pr\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \theta_0 \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

As this is size α test, the probability of accepting H_0 is $1-\alpha$.

$$1 - \alpha = \Pr\left(\theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$
$$= \Pr\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \theta_0 \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

Since θ_0 is arbitrary,

$$1 - \alpha = \Pr\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \theta \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

As this is size α test, the probability of accepting H_0 is $1-\alpha$.

$$1 - \alpha = \Pr\left(\theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$
$$= \Pr\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \theta_0 \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

Since θ_0 is arbitrary,

$$1 - \alpha = \Pr\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \theta \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

Therefore, $[X - \frac{\sigma}{\sqrt{n}}z_{\alpha/2}, X + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}]$ is $(1 - \alpha)$ confidence interval (CI).

Confidence intervals and level α test

Theorem 9.2.2

① For each $\theta_0 \in \Omega$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ Define a set $C(\mathbf{X}) = \{\theta: \mathbf{x} \in A(\theta)\}$, then the random set $C(\mathbf{X})$ is a $1 - \alpha$ confidence set.

Confidence intervals and level α test

Theorem 9.2.2

- **1** For each $\theta_0 \in \Omega$, let $A(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ Define a set $C(\mathbf{X}) = \{\theta: \mathbf{x} \in A(\theta)\}$, then the random set $C(\mathbf{X})$ is a 1α confidence set.
- **2** Conversely, if $C(\mathbf{X})$ is a $(1-\alpha)$ confidence set for θ , for any θ_0 , define the acceptance region of a test for the hypothesis $H_0: \theta = \theta_0$ by $A(\theta_0) = \{\mathbf{x}: \theta_0 \in C(\mathbf{x})\}$. Then the test has level α .

15 / 1

For $X_i \stackrel{\text{i.i.d.}}{\smile} \mathcal{N}(\theta, \sigma^2)$, the acceptance region $A(\theta_0)$ is a subset of the sample space

$$A(\theta_0) = \left\{ \mathbf{x} : \theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right\}$$

For $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$, the acceptance region $A(\theta_0)$ is a subset of the sample space

$$A(\theta_0) = \left\{ \mathbf{x} : \theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right\}$$

The confidence set $C(\mathbf{X})$ is a subset of the parameter space

$$C(\mathbf{X}) = \left\{ \theta : \theta - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right\}$$

16 / 1

For $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$, the acceptance region $A(\theta_0)$ is a subset of the sample space

$$A(\theta_0) = \left\{ \mathbf{x} : \theta_0 - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right\}$$

The confidence set $C(\mathbf{X})$ is a subset of the parameter space

$$C(\mathbf{X}) = \left\{ \theta : \theta - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \overline{X} \le \theta + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right\}$$
$$= \left\{ \theta : \overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \theta \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right\}$$

Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

1 To obtain $(1-\alpha)$ two-sided CI $[L(\mathbf{X}),\,U(\mathbf{X})]$, we invert the acceptance region of a level α test for $H_0:\theta=\theta_0$ vs. $H_1:\theta\neq\theta_0$

Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

- **1** To obtain $(1-\alpha)$ two-sided CI $[L(\mathbf{X}),\,U(\mathbf{X})]$, we invert the acceptance region of a level α test for $H_0:\theta=\theta_0$ vs. $H_1:\theta\neq\theta_0$
- 2 To obtain a lower-bounded CI $[L(\mathbf{X}), \infty)$, then we invert the acceptance region of a test for $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$, where $\Omega = \{\theta: \theta \geq \theta_0\}$.

Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

- **1** To obtain (1α) two-sided CI $[L(\mathbf{X}), U(\mathbf{X})]$, we invert the acceptance region of a level α test for $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$
- ② To obtain a lower-bounded CI $[L(\mathbf{X}), \infty)$, then we invert the acceptance region of a test for $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$, where $\Omega = \{\theta: \theta \geq \theta_0\}$.
- **3** To obtain a upper-bounded CI $(-\infty, U(\mathbf{X})]$, then we invert the acceptance region of a test for $H_0: \theta = \theta_0$ vs. $H_1: \theta < \theta_0$, where $\Omega = \{\theta: \theta \leq \theta_0\}$.

Example

Problem

 $X_i \overset{\text{i.i.d.}}{\longleftarrow} \mathcal{N}(\mu, \sigma^2)$ where both parameters are unknown.

Example

Problem

 $X_i \overset{\text{i.i.d.}}{ \sim} \mathcal{N}(\mu, \sigma^2)$ where both parameters are unknown.

- **1** Find $1-\alpha$ two-sided CI for μ
- **2** Find 1α upper bound for μ

 $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$. The LRT test rejects if and only if

 $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$. The LRT test rejects if and only if

$$\left| \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \right| > t_{n-1,\alpha/2}$$

 $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$. The LRT test rejects if and only if

$$\left| \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \right| > t_{n-1,\alpha/2}$$

The acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \left| \frac{\overline{x} - \mu_0}{s_{\mathbf{x}} / \sqrt{n}} \right| \le t_{n-1,\alpha/2} \right\}$$

 $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$. The LRT test rejects if and only if

$$\left| \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \right| > t_{n-1,\alpha/2}$$

The acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \left| \frac{\overline{x} - \mu_0}{s_{\mathbf{x}} / \sqrt{n}} \right| \le t_{n-1,\alpha/2} \right\}$$

The confidence set is

$$C(\mathbf{x}) = \left\{ \mu : \left| \frac{\overline{x} - \mu}{s_{\mathbf{x}} / \sqrt{n}} \right| \le t_{n-1,\alpha/2} \right\}$$

 $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$. The LRT test rejects if and only if

$$\left| \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \right| > t_{n-1,\alpha/2}$$

The acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \left| \frac{\overline{x} - \mu_0}{s_{\mathbf{x}} / \sqrt{n}} \right| \le t_{n-1,\alpha/2} \right\}$$

The confidence set is

$$C(\mathbf{x}) = \left\{ \mu : \left| \frac{\overline{x} - \mu}{s_{\mathbf{x}} / \sqrt{n}} \right| \le t_{n-1,\alpha/2} \right\}$$
$$= \left\{ \mu : -t_{n-1,\alpha/2} \le \frac{\overline{x} - \mu}{s_{\mathbf{x}} / \sqrt{n}} \le t_{n-1,\alpha/2} \right\}$$

 $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$. The LRT test rejects if and only if

$$\left| \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \right| > t_{n-1,\alpha/2}$$

The acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \left| \frac{\overline{x} - \mu_0}{s_{\mathbf{x}} / \sqrt{n}} \right| \le t_{n-1,\alpha/2} \right\}$$

The confidence set is

$$C(\mathbf{x}) = \left\{ \mu : \left| \frac{\overline{x} - \mu}{s_{\mathbf{x}} / \sqrt{n}} \right| \le t_{n-1,\alpha/2} \right\}$$

$$= \left\{ \mu : -t_{n-1,\alpha/2} \le \frac{\overline{x} - \mu}{s_{\mathbf{x}} / \sqrt{n}} \le t_{n-1,\alpha/2} \right\}$$

$$= \left\{ \mu : \overline{x} - \frac{s_{\mathbf{x}}}{\sqrt{n}} t_{n-1,\alpha/2} \le \mu \le \overline{x} + \frac{s_{\mathbf{x}}}{\sqrt{n}} t_{n-1,\alpha/2} \right\}$$

The CI is $(-\infty, U(\mathbf{X})]$. We need to invert a testing procedure for $H_0: \mu = \mu_0$ vs $H_1: \mu < \mu_0$.

The CI is $(-\infty, U(\mathbf{X})]$. We need to invert a testing procedure for $H_0: \mu = \mu_0$ vs $H_1: \mu < \mu_0$.

$$\Omega_0 = \{(\mu, \sigma^2) : \mu = \mu_0, \sigma^2 > 0\}$$

The CI is $(-\infty, U(\mathbf{X})]$. We need to invert a testing procedure for $H_0: \mu = \mu_0$ vs $H_1: \mu < \mu_0$.

$$Ω_0 = {(μ, σ^2) : μ = μ_0, σ^2 > 0}$$

$$Ω = {(μ, σ^2) : μ ≤ μ_0, σ^2 > 0}$$

The CI is $(-\infty, U(\mathbf{X})]$. We need to invert a testing procedure for $H_0: \mu = \mu_0$ vs $H_1: \mu < \mu_0$.

$$Ω_0 = {(μ, σ^2) : μ = μ_0, σ^2 > 0}$$

$$Ω = {(μ, σ^2) : μ ≤ μ_0, σ^2 > 0}$$

LRT statistic is

$$\lambda(\mathbf{x}) = \frac{L(\hat{\mu}_0, \hat{\sigma}_0^2 | \mathbf{x})}{L(\hat{\mu}, \hat{\sigma}^2 | \mathbf{x})}$$

The CI is $(-\infty, U(\mathbf{X})]$. We need to invert a testing procedure for $H_0: \mu = \mu_0$ vs $H_1: \mu < \mu_0$.

$$Ω_0 = {(μ, σ^2) : μ = μ_0, σ^2 > 0}$$

$$Ω = {(μ, σ^2) : μ ≤ μ_0, σ^2 > 0}$$

LRT statistic is

$$\lambda(\mathbf{x}) = \frac{L(\hat{\mu}_0, \hat{\sigma}_0^2 | \mathbf{x})}{L(\hat{\mu}, \hat{\sigma}^2 | \mathbf{x})}$$

where $(\hat{\mu}_0, \hat{\sigma}_0^2)$ is the MLE restricted to Ω_0 , and $(\hat{\mu}, \hat{\sigma}^2)$ is the MLE restricted to Ω , and

The CI is $(-\infty, U(\mathbf{X})]$. We need to invert a testing procedure for $H_0: \mu = \mu_0$ vs $H_1: \mu < \mu_0$.

$$Ω_0 = {(μ, σ^2) : μ = μ_0, σ^2 > 0}$$

$$Ω = {(μ, σ^2) : μ ≤ μ_0, σ^2 > 0}$$

LRT statistic is

$$\lambda(\mathbf{x}) = \frac{L(\hat{\mu}_0, \hat{\sigma}_0^2 | \mathbf{x})}{L(\hat{\mu}, \hat{\sigma}^2 | \mathbf{x})}$$

where $(\hat{\mu}_0,\hat{\sigma}_0^2)$ is the MLE restricted to Ω_0 , and $(\hat{\mu},\hat{\sigma}^2)$ is the MLE restricted to Ω , and Within Ω_0 , $\hat{\mu}_0=\mu_0$, and $\hat{\sigma}_0^2=\frac{\sum_{i=1}^n(X_i-\mu_0)^2}{n}$

20 / 1

$$\begin{cases} \hat{\mu} = \overline{X} & \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n} & \text{if } \overline{X} \le \mu_0 \end{cases}$$

$$\begin{cases} \hat{\mu} = \overline{X} & \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n} & \text{if } \overline{X} \le \mu_0 \\ \hat{\mu} = \mu_0 & \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{n} & \text{if } \overline{X} > \mu_0 \end{cases}$$

$$\begin{cases} \hat{\mu} = \overline{X} & \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n} & \text{if } \overline{X} \le \mu_0 \\ \hat{\mu} = \mu_0 & \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{n} & \text{if } \overline{X} > \mu_0 \end{cases}$$

$$\lambda(\mathbf{x}) = \begin{cases} 1 & \text{if } \overline{X} > \mu_0 \\ \frac{\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (X_i - \mu_0)^2}{2\sigma_0^2}\right\}}{\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{2\sigma_0^2}\right\}} & \text{if } \overline{X} \leq \mu_0 \end{cases}$$

$$\left\{ \begin{array}{ll} \hat{\mu} = \overline{X} & \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n} & \text{if } \overline{X} \leq \mu_0 \\ \hat{\mu} = \mu_0 & \hat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{n} & \text{if } \overline{X} > \mu_0 \end{array} \right.$$

$$\begin{split} \lambda(\mathbf{x}) &= \begin{cases} 1 & \text{if } \overline{X} > \mu_0 \\ \frac{\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (X_i - \mu_0)^2}{2\hat{\sigma}_0^2}\right\}}{\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{2\hat{\sigma}_0^2}\right\}} & \text{if } \overline{X} \leq \mu_0 \\ &= \begin{cases} 1 & \text{if } \overline{X} > \mu_0 \\ \left(\frac{n-1}{n}s_{\mathbf{X}}^2 + (\overline{X} - \mu_0)^2\right)^{\frac{n}{2}} & \text{if } \overline{X} \leq \mu_0 \end{cases} \end{split}$$

$$\left(\frac{\frac{n-1}{n}s_{\mathbf{X}}^2}{\frac{n-1}{n}s_{\mathbf{X}}^2 + (\overline{X} - \mu_0)^2}\right)^{\frac{n}{2}} < c$$

$$\left(\frac{\frac{n-1}{n}s_{\mathbf{X}}^{2}}{\frac{n-1}{n}s_{\mathbf{X}}^{2} + (\overline{X} - \mu_{0})^{2}}\right)^{\frac{n}{2}} < c$$

$$\left(\frac{\frac{n-1}{n}}{\frac{n-1}{n} + \frac{(\overline{X} - \mu_{0})^{2}}{s_{\mathbf{x}}^{2}}}\right)^{\frac{n}{2}} < c$$

$$\left(\frac{\frac{n-1}{n}s_{\mathbf{X}}^{2}}{\frac{n-1}{n}s_{\mathbf{X}}^{2} + (\overline{X} - \mu_{0})^{2}}\right)^{\frac{n}{2}} < c$$

$$\left(\frac{\frac{n-1}{n}}{\frac{n-1}{n} + \frac{(\overline{X} - \mu_{0})^{2}}{s_{\mathbf{X}}^{2}}}\right)^{\frac{n}{2}} < c$$

$$\frac{(\overline{X} - \mu_{0})^{2}}{s_{\mathbf{X}}^{2}} > c^{*}$$

$$\left(\frac{\frac{n-1}{n}s_{\mathbf{X}}^{2}}{\frac{n-1}{n}s_{\mathbf{X}}^{2} + (\overline{X} - \mu_{0})^{2}}\right)^{\frac{n}{2}} < c$$

$$\left(\frac{\frac{n-1}{n}}{\frac{n-1}{n} + \frac{(\overline{X} - \mu_{0})^{2}}{s_{\mathbf{X}}^{2}}}\right)^{\frac{n}{2}} < c$$

$$\frac{(\overline{X} - \mu_{0})^{2}}{s_{\mathbf{X}}^{2}} > c^{*}$$

$$\frac{\mu_{0} - \overline{X}}{s_{\mathbf{X}}/\sqrt{n}} > c^{**}$$

$$\alpha = \Pr(\text{reject } H_0 | \mu_0)$$

$$\alpha = \Pr(\text{reject } H_0 | \mu_0)$$

$$= \Pr\left(\frac{\mu_0 - \overline{X}}{s_{\mathbf{X}} / \sqrt{n}} > c^{**}\right)$$

$$\alpha = \Pr(\text{reject } H_0 | \mu_0)$$

$$= \Pr\left(\frac{\mu_0 - \overline{X}}{s_{\mathbf{X}}/\sqrt{n}} > c^{**}\right)$$

$$= \Pr\left(\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} < -c^{**}\right)$$

$$\alpha = \Pr(\text{reject } H_0 | \mu_0)$$

$$= \Pr\left(\frac{\mu_0 - \overline{X}}{s_{\mathbf{X}} / \sqrt{n}} > c^{**}\right)$$

$$= \Pr\left(\frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} < -c^{**}\right)$$

$$= \Pr(T_{n-1} < -c^{**})$$

$$\alpha = \Pr(\text{reject } H_0 | \mu_0)$$

$$= \Pr\left(\frac{\mu_0 - \overline{X}}{s_{\mathbf{X}}/\sqrt{n}} > c^{**}\right)$$

$$= \Pr\left(\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} < -c^{**}\right)$$

$$= \Pr(T_{n-1} < -c^{**})$$

$$1 - \alpha = \Pr(T_{n-1} > -c^{**})$$

$$\alpha = \operatorname{Pr}(\operatorname{reject} H_0 | \mu_0)$$

$$= \operatorname{Pr}\left(\frac{\mu_0 - \overline{X}}{s_{\mathbf{X}}/\sqrt{n}} > c^{**}\right)$$

$$= \operatorname{Pr}\left(\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} < -c^{**}\right)$$

$$= \operatorname{Pr}(T_{n-1} < -c^{**})$$

$$1 - \alpha = \operatorname{Pr}(T_{n-1} > -c^{**})$$

$$c^{**} = -t_{n-1,1-\alpha} = t_{n-1,\alpha}$$

 c^{**} is chosen to satisfy

$$\alpha = \operatorname{Pr}(\operatorname{reject} H_0 | \mu_0)$$

$$= \operatorname{Pr}\left(\frac{\mu_0 - \overline{X}}{s_{\mathbf{X}}/\sqrt{n}} > c^{**}\right)$$

$$= \operatorname{Pr}\left(\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} < -c^{**}\right)$$

$$= \operatorname{Pr}(T_{n-1} < -c^{**})$$

$$1 - \alpha = \operatorname{Pr}(T_{n-1} > -c^{**})$$

$$c^{**} = -t_{n-1,1-\alpha} = t_{n-1,\alpha}$$

Therefore, LRT level α test reject H_0 if

 c^{**} is chosen to satisfy

$$\alpha = \operatorname{Pr}(\operatorname{reject} H_0|\mu_0)$$

$$= \operatorname{Pr}\left(\frac{\mu_0 - \overline{X}}{s_{\mathbf{X}}/\sqrt{n}} > c^{**}\right)$$

$$= \operatorname{Pr}\left(\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} < -c^{**}\right)$$

$$= \operatorname{Pr}(T_{n-1} < -c^{**})$$

$$1 - \alpha = \operatorname{Pr}(T_{n-1} > -c^{**})$$

$$c^{**} = -t_{n-1,1-\alpha} = t_{n-1,\alpha}$$

Therefore, LRT level α test reject H_0 if

$$\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} \quad < \quad -t_{n-1,\alpha}$$

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \ge -t_{n-1,\alpha} \right\}$$

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \ge -t_{n-1,\alpha} \right\}$$

Inverting the above to get CI

$$C(\mathbf{X}) = \{\mu : \mathbf{X} \in A(\mu)\}$$

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \ge -t_{n-1,\alpha} \right\}$$

Inverting the above to get CI

$$\begin{array}{lcl} C(\mathbf{X}) & = & \{\mu : \mathbf{X} \in A(\mu)\} \\ & = & \left\{\mu : \frac{\overline{X} - \mu}{s_{\mathbf{X}}/\sqrt{n}} \ge -t_{n-1,\alpha}\right\} \end{array}$$

Example - upper bounded CI - Solution (cont'd)

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \ge -t_{n-1,\alpha} \right\}$$

Inverting the above to get CI

$$\begin{split} C(\mathbf{X}) &= & \{\mu: \mathbf{X} \in A(\mu)\} \\ &= & \left\{\mu: \frac{\overline{X} - \mu}{s_{\mathbf{X}}/\sqrt{n}} \geq -t_{n-1,\alpha}\right\} \\ &= & \left\{\mu: \overline{X} - \mu \geq -\frac{s_{\mathbf{X}}}{\sqrt{n}} t_{n-1,\alpha}\right\} \end{split}$$

Example - upper bounded CI - Solution (cont'd)

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \ge -t_{n-1,\alpha} \right\}$$

Inverting the above to get CI

$$C(\mathbf{X}) = \{\mu : \mathbf{X} \in A(\mu)\}$$

$$= \left\{\mu : \frac{\overline{X} - \mu}{s_{\mathbf{X}}/\sqrt{n}} \ge -t_{n-1,\alpha}\right\}$$

$$= \left\{\mu : \overline{X} - \mu \ge -\frac{s_{\mathbf{X}}}{\sqrt{n}}t_{n-1,\alpha}\right\}$$

$$= \left\{\mu : \mu \le \overline{X} + \frac{s_{\mathbf{X}}}{\sqrt{n}}t_{n-1,\alpha}\right\}$$

Example - upper bounded CI - Solution (cont'd)

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \ge -t_{n-1,\alpha} \right\}$$

Inverting the above to get CI

$$C(\mathbf{X}) = \{\mu : \mathbf{X} \in A(\mu)\}$$

$$= \left\{\mu : \frac{\overline{X} - \mu}{s_{\mathbf{X}}/\sqrt{n}} \ge -t_{n-1,\alpha}\right\}$$

$$= \left\{\mu : \overline{X} - \mu \ge -\frac{s_{\mathbf{X}}}{\sqrt{n}} t_{n-1,\alpha}\right\}$$

$$= \left\{\mu : \mu \le \overline{X} + \frac{s_{\mathbf{X}}}{\sqrt{n}} t_{n-1,\alpha}\right\}$$

$$= \left(-\infty, \overline{X} + \frac{s_{\mathbf{X}}}{\sqrt{n}} t_{n-1,\alpha}\right]$$

LRT level α test reject H_0 if and only if

$$\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} > t_{n-1,\alpha}$$

LRT level α test reject H_0 if and only if

$$\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} > t_{n-1,\alpha}$$

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \le t_{n-1,\alpha} \right\}$$

LRT level α test reject H_0 if and only if

$$\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} > t_{n-1,\alpha}$$

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \le t_{n-1,\alpha} \right\}$$

Confidence interval is

$$C(\mathbf{X}) = \{\mu : \mathbf{X} \in A(\mu)\} = \left\{\mu : \frac{\mathbf{X} - \mu}{s_{\mathbf{X}}/\sqrt{n}} \le t_{n-1,\alpha}\right\}$$

LRT level α test reject H_0 if and only if

$$\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} > t_{n-1,\alpha}$$

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \le t_{n-1,\alpha} \right\}$$

Confidence interval is

$$C(\mathbf{X}) = \{\mu : \mathbf{X} \in A(\mu)\} = \left\{\mu : \frac{\mathbf{X} - \mu}{s_{\mathbf{X}}/\sqrt{n}} \le t_{n-1,\alpha}\right\}$$
$$= \left\{\mu : \mu \ge \overline{X} - \frac{s_{\mathbf{X}}}{\sqrt{n}}t_{n-1,\alpha}\right\}$$

LRT level α test reject H_0 if and only if

$$\frac{\overline{X} - \mu_0}{s_{\mathbf{X}}/\sqrt{n}} > t_{n-1,\alpha}$$

Acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \frac{\overline{X} - \mu_0}{s_{\mathbf{X}} / \sqrt{n}} \le t_{n-1,\alpha} \right\}$$

Confidence interval is

$$C(\mathbf{X}) = \{\mu : \mathbf{X} \in A(\mu)\} = \left\{\mu : \frac{\mathbf{X} - \mu}{s_{\mathbf{X}}/\sqrt{n}} \le t_{n-1,\alpha}\right\}$$
$$= \left\{\mu : \mu \ge \overline{X} - \frac{s_{\mathbf{X}}}{\sqrt{n}} t_{n-1,\alpha}\right\}$$
$$= \left[\overline{X} - \frac{s_{\mathbf{X}}}{\sqrt{n}} t_{n-1,\alpha}, \infty\right)$$

Example

Problem

 X_1,\cdots,X_n are iid samples from a distribution with mean μ and finite variance σ^2 . Construct asymptotic $(1-\alpha)$ two-sided interval for μ

Example

Problem

 X_1,\cdots,X_n are iid samples from a distribution with mean μ and finite variance σ^2 . Construct asymptotic $(1-\alpha)$ two-sided interval for μ

Solution

Let \overline{X} be a method of moment estimator for μ .

By law of large number, \overline{X} is consistent for μ , and by central limit theorem,

$$\overline{X} \sim \mathcal{AN}\left(\mu, \frac{\sigma^2}{n}\right)$$

Consider testing $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$. The Wald statistic

$$Z_n = \frac{\overline{X} - \mu_0}{S_n}$$

for a consistent estimator of σ/\sqrt{n} .

Consider testing $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$. The Wald statistic

$$Z_n = \frac{\overline{X} - \mu_0}{S_n}$$

for a consistent estimator of σ/\sqrt{n} . From previous lectures, we know that

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \xrightarrow{P} \sigma^2$$

Consider testing $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$. The Wald statistic

$$Z_n = \frac{\overline{X} - \mu_0}{S_n}$$

for a consistent estimator of σ/\sqrt{n} . From previous lectures, we know that

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \xrightarrow{P} \sigma^2$$

$$\sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{(n-1)n}} \xrightarrow{P} \frac{\sigma}{\sqrt{n}}$$

Consider testing $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$. The Wald statistic

$$Z_n = \frac{\overline{X} - \mu_0}{S_n}$$

for a consistent estimator of σ/\sqrt{n} . From previous lectures, we know that

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \xrightarrow{P} \sigma^2$$

$$\sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{(n-1)n}} \xrightarrow{P} \frac{\sigma}{\sqrt{n}}$$

The Wald level α test

$$\left| \frac{(\overline{X} - \mu_0)\sqrt{n}}{\sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}} \right| > z_{\alpha/2}$$

The acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \left| \frac{(\overline{x} - \mu_0)\sqrt{n}}{\sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}}} \right| \le z_{\alpha/2} \right\}$$

The acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \left| \frac{(\overline{x} - \mu_0)\sqrt{n}}{\sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}}} \right| \le z_{\alpha/2} \right\}$$

$$(1-\alpha)$$
 CI is

$$C(\mathbf{x}) = \{\mu : \mathbf{x} \in A(\mu)\}$$

The acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \left| \frac{(\overline{x} - \mu_0)\sqrt{n}}{\sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}}} \right| \le z_{\alpha/2} \right\}$$

$$(1-\alpha)$$
 CI is

$$C(\mathbf{x}) = \left\{ \mu : \mathbf{x} \in A(\mu) \right\}$$
$$= \left\{ \mu : \left| \frac{(\overline{x} - \mu)\sqrt{n}}{\sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}}} \right| \le z_{\alpha/2} \right\}$$

The acceptance region is

$$A(\mu_0) = \left\{ \mathbf{x} : \left| \frac{(\overline{x} - \mu_0)\sqrt{n}}{\sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}}} \right| \le z_{\alpha/2} \right\}$$

$$(1-\alpha)$$
 CI is

$$\begin{split} C(\mathbf{x}) &= \left\{ \mu : \mathbf{x} \in A(\mu) \right\} \\ &= \left\{ \mu : \left| \frac{(\overline{x} - \mu)\sqrt{n}}{\sqrt{\frac{\sum_{i=1}^{n}(x_{i} - \overline{x})^{2}}{n-1}}} \right| \leq z_{\alpha/2} \right\} \\ &= \left[\overline{x} - \frac{1}{\sqrt{n}} \sqrt{\frac{\sum_{i=1}^{n}(x_{i} - \overline{x})^{2}}{n-1}} z_{\alpha/2}, \ \overline{x} + \frac{1}{\sqrt{n}} \sqrt{\frac{\sum_{i=1}^{n}(x_{i} - \overline{x})^{2}}{n-1}} z_{\alpha/2} \right] \end{split}$$

28 / 1

Summary

Today

- Interval Estimation
- Confidence Interval

Summary

Today

- Interval Estimation
- Confidence Interval

Next Lectures

- Reviews and Example Problems (every lecture)
- E-M algorithm
- Non-informative priors
- Bayesian Tests