Biostatistics 602 - Statistical Inference Lecture 10 Maximum Likelihood Estimator

Hyun Min Kang

February 12th, 2013

1 What is a point estimator, and a point estimate?

- 1 What is a point estimator, and a point estimate?
- 2 What is a method of moment estimator?

- 1 What is a point estimator, and a point estimate?
- What is a method of moment estimator?
- **3** What are advantages and disadvantages of method of moment estimator?

- 1 What is a point estimator, and a point estimate?
- What is a method of moment estimator?
- What are advantages and disadvantages of method of moment estimator?
- 4 What is a maximum likelihood estimator (MLE)?

- 1 What is a point estimator, and a point estimate?
- What is a method of moment estimator?
- What are advantages and disadvantages of method of moment estimator?
- 4 What is a maximum likelihood estimator (MLE)?
- 6 How can you find an MLE?

Recap - Method of Moment Estimator

- Point Estimation Estimate θ or $\tau(\theta)$.
- Method of Moment

$$m_1 = \frac{1}{n} \sum X_i = E\mathbf{X} = \mu_1$$

$$m_2 = \frac{1}{n} \sum X_i^2 = E\mathbf{X}^2 = \mu_2$$

$$\vdots$$

$$m_k = \frac{1}{n} \sum X_i^k = E\mathbf{X}^k = \mu_k$$

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$\hat{\mu} = \overline{X}$$

$$\hat{\mu}^2 + \hat{\sigma}^2 = E\mathbf{X}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\hat{\sigma}^2 = \sum (X_i - \overline{X})^2 / n$$

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$\hat{\mu} = \overline{X}$$

$$\hat{\mu}^2 + \hat{\sigma}^2 = E\mathbf{X}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\hat{\sigma}^2 = \sum (X_i - \overline{X})^2 / n$$

Easy to implement

$$X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$\hat{\mu} = \overline{X}$$

$$\hat{\mu}^2 + \hat{\sigma}^2 = E\mathbf{X}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\hat{\sigma}^2 = \sum_i (X_i - \overline{X})^2 / n$$

- Easy to implement
- Easy to understand

$$X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$\hat{\mu} = \overline{X}$$

$$\hat{\mu}^2 + \hat{\sigma}^2 = E\mathbf{X}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\hat{\sigma}^2 = \sum_i (X_i - \overline{X})^2 / n$$

- Easy to implement
- Easy to understand
- Estimators can be improved; use as initial value to get other estimators

$$X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$\hat{\mu} = \overline{X}$$

$$\hat{\mu}^2 + \hat{\sigma}^2 = E\mathbf{X}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\hat{\sigma}^2 = \sum (X_i - \overline{X})^2 / n$$

- Easy to implement
- Easy to understand
- Estimators can be improved; use as initial value to get other estimators
- No guarantee that the estimator will fall into the range of valid parameter space.

4回 > 4 三 > 4 三 > 9 へで

Recap - Likelihood Function

Definition

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$. The join distribution of $\mathbf{X} = (X_1, \dots, X_n)$ is

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$$

Recap - Likelihood Function

Definition

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$. The join distribution of $\mathbf{X} = (X_1, \dots, X_n)$ is

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$$

Given that $\mathbf{X}=\mathbf{x}$ is observed, the function of θ defined by $L(\theta|\mathbf{x})=f(\mathbf{x}|\theta)$ is called the likelihood function.

Recap - Example Likelihood Function

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 1, 1)^T$
- Intuitively, it is more likely that p is larger than smaller.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^4 p^{x_i} (1-p)^{1-x_i} = p^4$.

If the function is differentiable with respect to θ ,

1 Find candidates that makes first order derivative to be zero

- 1 Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.

- 1 Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.

- Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show

- 1 Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show

(a)
$$\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$$
 or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.

- Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive

If the function is differentiable with respect to θ ,

- Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

7 / 20

If the function is differentiable with respect to θ ,

- 1 Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

If the function is NOT differentiable with respect to θ .

Use numerical methods

If the function is differentiable with respect to θ ,

- Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

- Use numerical methods
- Or perform direct maximization, using inequalities, or properties of the function.

If the function is differentiable with respect to θ ,

- Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

- Use numerical methods
- Or perform direct maximization, using inequalities, or properties of the function.

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\smile} \text{Uniform}(0, \theta)$, where $X_i \in [0, \theta]$ and $\theta > 0$.

8 / 20

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$, where $X_i \in [0, \theta]$ and $\theta > 0$.

Solution

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 \le x_i \le \theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I(0 \le x_i \le \theta)$$

February 12th, 2013

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$, where $X_i \in [0, \theta]$ and $\theta > 0$.

Solution

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 \le x_i \le \theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I(0 \le x_i \le \theta)$$
$$= \frac{1}{\theta^n} I(0 \le x_1 \le \theta \land \dots \land 0 \le x_n \le \theta)$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$, where $X_i \in [0, \theta]$ and $\theta > 0$.

Solution

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 \le x_i \le \theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I(0 \le x_i \le \theta)$$
$$= \frac{1}{\theta^n} I(0 \le x_1 \le \theta \land \dots \land 0 \le x_n \le \theta)$$
$$= \frac{1}{\theta^n} I(x_{(n)} \le \theta) I(x_{(1)} \ge 0)$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$, where $X_i \in [0, \theta]$ and $\theta > 0$.

Solution

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 \le x_i \le \theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I(0 \le x_i \le \theta)$$
$$= \frac{1}{\theta^n} I(0 \le x_1 \le \theta \land \dots \land 0 \le x_n \le \theta)$$
$$= \frac{1}{\theta^n} I(x_{(n)} \le \theta) I(x_{(1)} \ge 0)$$

We need to maximize $1/\theta^n$ subject to constraint that $0 \le x_{(n)} \le \theta$.

How Min Keep 2 Productivity 600 Leaders 10

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$, where $X_i \in [0, \theta]$ and $\theta > 0$.

Solution

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 \le x_i \le \theta) = \frac{1}{\theta^n} \prod_{i=1}^{n} I(0 \le x_i \le \theta)$$
$$= \frac{1}{\theta^n} I(0 \le x_1 \le \theta \land \dots \land 0 \le x_n \le \theta)$$
$$= \frac{1}{\theta^n} I(x_{(n)} \le \theta) I(x_{(1)} \ge 0)$$

We need to maximize $1/\theta^n$ subject to constraint that $0 \le x_{(n)} \le \theta$. Because $1/\theta^n$ decreases in θ , the MLE is $\hat{\theta}(\mathbf{X}) = X_{(n)}$.

Problem

Suppose n pairs of data $(X_1, Y_1), \cdots, (X_n, Y_n)$ where X_i is generated from an unknown distribution, and Y_i are generated conditionally on X_i . $Y_i | X_i \sim \mathcal{N}(\alpha + \beta X_i, \sigma^2)$

Find the MLE of $(\alpha, \beta, \sigma^2)$.

Problem

Suppose n pairs of data $(X_1, Y_1), \cdots, (X_n, Y_n)$ where X_i is generated from an unknown distribution, and Y_i are generated conditionally on X_i . $Y_i|X_i \sim \mathcal{N}(\alpha + \beta X_i, \sigma^2)$

Find the MLE of $(\alpha, \beta, \sigma^2)$.

Solution

The joint distribution of $(X_1, Y_1), \cdots, (X_n, Y_n)$ is

Problem

Suppose n pairs of data $(X_1, Y_1), \cdots, (X_n, Y_n)$ where X_i is generated from an unknown distribution, and Y_i are generated conditionally on X_i . $Y_i|X_i \sim \mathcal{N}(\alpha + \beta X_i, \sigma^2)$

Find the MLE of $(\alpha, \beta, \sigma^2)$.

Solution

The joint distribution of $(X_1, Y_1), \dots, (X_n, Y_n)$ is

$$f_{\mathbf{XY}}(\mathbf{x}, \mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) \prod_{i=1}^{n} f_{\mathbf{Y}}(y_i|x_i)$$

Problem

Suppose n pairs of data $(X_1, Y_1), \cdots, (X_n, Y_n)$ where X_i is generated from an unknown distribution, and Y_i are generated conditionally on X_i . $Y_i | X_i \sim \mathcal{N}(\alpha + \beta X_i, \sigma^2)$

Find the MLE of $(\alpha, \beta, \sigma^2)$.

Solution

The joint distribution of $(X_1, Y_1), \cdots, (X_n, Y_n)$ is

$$\begin{aligned} f_{\mathbf{XY}}(\mathbf{x}, \mathbf{y}) &= f_{\mathbf{X}}(\mathbf{x}) \prod_{i=1}^{n} f_{\mathbf{Y}}(y_i | x_i) \\ &= f_{\mathbf{X}}(\mathbf{x}) \prod_{i=1}^{n} \frac{1}{2\pi\sigma^2} \exp \left[-\frac{(y_i - \alpha - \beta x_i)^2}{2\sigma^2} \right] \end{aligned}$$

The likelihood function is

$$L(\alpha, \beta, \sigma^2 | \mathbf{x}, \mathbf{y}) = f_{\mathbf{X}}(\mathbf{x})(2\pi\sigma^2)^{-n/2} \exp\left[-\frac{\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}{2\sigma^2}\right]$$

The likelihood function is

$$L(\alpha, \beta, \sigma^2 | \mathbf{x}, \mathbf{y}) = f_{\mathbf{X}}(\mathbf{x})(2\pi\sigma^2)^{-n/2} \exp\left[-\frac{\sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2}{2\sigma^2}\right]$$

The likelihood function is

$$L(\alpha, \beta, \sigma^2 | \mathbf{x}, \mathbf{y}) = f_{\mathbf{X}}(\mathbf{x})(2\pi\sigma^2)^{-n/2} \exp\left[-\frac{\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}{2\sigma^2}\right]$$

$$l(\alpha, \beta, \sigma^2) = C - \frac{n}{2} \log(2\pi\sigma^2) - \frac{\sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2}{2\sigma^2}$$

The likelihood function is

$$L(\alpha, \beta, \sigma^2 | \mathbf{x}, \mathbf{y}) = f_{\mathbf{X}}(\mathbf{x})(2\pi\sigma^2)^{-n/2} \exp\left[-\frac{\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}{2\sigma^2}\right]$$

$$l(\alpha, \beta, \sigma^2) = C - \frac{n}{2} \log(2\pi\sigma^2) - \frac{\sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2}{2\sigma^2}$$

$$\frac{\partial l}{\partial \alpha} = \frac{2\sum_{i=1}^{n} (y_i - \alpha - \beta x_i)}{2\sigma^2} = \frac{n\overline{y} - n\alpha - n\beta \overline{x}}{\sigma^2} = 0$$

The likelihood function is

$$L(\alpha, \beta, \sigma^2 | \mathbf{x}, \mathbf{y}) = f_{\mathbf{X}}(\mathbf{x})(2\pi\sigma^2)^{-n/2} \exp\left[-\frac{\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}{2\sigma^2}\right]$$

$$l(\alpha, \beta, \sigma^2) = C - \frac{n}{2} \log(2\pi\sigma^2) - \frac{\sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2}{2\sigma^2}$$

$$\begin{array}{lcl} \frac{\partial l}{\partial \alpha} & = & \frac{2\sum_{i=1}^{n}(y_i-\alpha-\beta x_i)}{2\sigma^2} = \frac{n\overline{y}-n\alpha-n\beta\overline{x}}{\sigma^2} = 0 \\ \hat{\alpha} & = & \overline{y}-\hat{\beta}\overline{x} \end{array}$$

$$\frac{\partial l}{\partial \beta} = \frac{2\sum_{i=1}^{n} (y_i - \alpha - \beta x_i) x_i}{2\sigma^2} = \frac{\sum_{i=1}^{n} x_i y_i - n\alpha \overline{x} - \beta \sum_{i=1}^{n} x_i^2}{\sigma^2} = 0$$

$$\sum_{i=1}^{n} x_i y_i - n\overline{x} (\overline{y} - \beta \overline{x}) - \beta \sum_{i=1}^{n} x_i^2 = 0$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x} \overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2}$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2} \frac{2\pi}{2\pi\sigma} + \frac{\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}{2(\sigma^2)^2} = 0$$

$$\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

$$\frac{\partial l}{\partial \beta} = \frac{2\sum_{i=1}^n (y_i - \alpha - \beta x_i) x_i}{2\sigma^2} = \frac{\sum_{i=1}^n x_i y_i - n\alpha \overline{x} - \beta \sum_{i=1}^n x_i^2}{\sigma^2} = 0$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}}{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2}$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2} \frac{2\pi}{2\pi\sigma} + \frac{\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}{2(\sigma^2)^2} = 0$$

$$\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

$$\frac{\partial l}{\partial \beta} = \frac{2\sum_{i=1}^{n} (y_i - \alpha - \beta x_i) x_i}{2\sigma^2} = \frac{\sum_{i=1}^{n} x_i y_i - n\alpha \overline{x} - \beta \sum_{i=1}^{n} x_i^2}{\sigma^2} = 0$$

$$\sum_{i=1}^{n} x_i y_i - n\overline{x} (\overline{y} - \beta \overline{x}) - \beta \sum_{i=1}^{n} x_i^2 = 0$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x} \overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2}$$

$$\frac{\partial l}{\partial \beta} = \frac{2\sum_{i=1}^{n} (y_i - \alpha - \beta x_i) x_i}{2\sigma^2} = \frac{\sum_{i=1}^{n} x_i y_i - n\alpha \overline{x} - \beta \sum_{i=1}^{n} x_i^2}{\sigma^2} = 0$$

$$\sum_{i=1}^{n} x_i y_i - n \overline{x} (\overline{y} - \beta \overline{x}) - \beta \sum_{i=1}^{n} x_i^2 = 0$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}}{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2}$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2} \frac{2\pi}{2\pi\sigma} + \frac{\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}{2(\sigma^2)^2} = 0$$

$$\frac{\partial l}{\partial \beta} = \frac{2\sum_{i=1}^{n} (y_i - \alpha - \beta x_i) x_i}{2\sigma^2} = \frac{\sum_{i=1}^{n} x_i y_i - n\alpha \overline{x} - \beta \sum_{i=1}^{n} x_i^2}{\sigma^2} = 0$$

$$\sum_{i=1}^{n} x_i y_i - n\overline{x}(\overline{y} - \beta \overline{x}) - \beta \sum_{i=1}^{n} x_i^2 = 0$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x}\overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2}$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2} \frac{2\pi}{2\pi\sigma} + \frac{\sum_{i=1}^n (y_i - \alpha - \beta x_i)^2}{2(\sigma^2)^2} = 0$$

$$\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

Putting Things Together

Therefore, the MLE of $(\alpha, \beta, \sigma^2)$ is

Putting Things Together

Therefore, the MLE of $(\alpha, \beta, \sigma^2)$ is

$$\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i - n\overline{x}\overline{y}}{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

Problem

 $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\smile} \mathcal{N}(\mu, 1)$ where $\mu \geq 0$. Find MLE of μ .

13 / 20

Problem

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$$
 where $\mu \geq 0$. Find MLE of μ .

Solution

$$L(\mu|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(x_i - \mu)^2}{2}\right] = (2\pi)^{-n/2} \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}\right]$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$ where $\mu \geq 0$. Find MLE of μ .

Solution

$$L(\mu|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(x_i - \mu)^2}{2}\right] = (2\pi)^{-n/2} \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}\right]$$

$$l(\mu|\mathbf{x}) = \log L(\mu, \mathbf{x}) = C - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$$

Problem

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$$
 where $\mu \geq 0$. Find MLE of μ .

Solution

$$L(\mu|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(x_i - \mu)^2}{2}\right] = (2\pi)^{-n/2} \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}\right]$$

$$l(\mu|\mathbf{x}) = \log L(\mu, \mathbf{x}) = C - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$$
$$\frac{\partial l}{\partial \mu} = \frac{2\sum_{i=1}^{n} (x_i - \mu)}{2} = 0, \qquad \frac{\partial^2 l}{\partial \mu^2} < 0$$

Problem

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$$
 where $\mu \geq 0$. Find MLE of μ .

Solution

$$L(\mu|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(x_i - \mu)^2}{2}\right] = (2\pi)^{-n/2} \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}\right]$$

$$l(\mu|\mathbf{x}) = \log L(\mu, \mathbf{x}) = C - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$$

$$\frac{\partial l}{\partial \mu} = \frac{2\sum_{i=1}^{n} (x_i - \mu)}{2} = 0, \quad \frac{\partial^2 l}{\partial \mu^2} < 0$$

$$\hat{\mu} = \sum_{i=1}^{n} x_i / n = \overline{x}$$

Arawa dana?

Hyun Min Kang

We need to check whether $\hat{\mu}$ is within the parameter space $[0,\infty)$.

14 / 20

We need to check whether $\hat{\mu}$ is within the parameter space $[0, \infty)$.

• If $\overline{x} \geq 0$, $\hat{\mu} = \overline{x}$ falls into the parameter space.

We need to check whether $\hat{\mu}$ is within the parameter space $[0, \infty)$.

- If $\overline{x} \geq 0$, $\hat{\mu} = \overline{x}$ falls into the parameter space.
- If $\bar{x} < 0$, $\hat{\mu} = \bar{x}$ does NOT fall into the parameter space.

We need to check whether $\hat{\mu}$ is within the parameter space $[0, \infty)$.

- If $\overline{x} \geq 0$, $\hat{\mu} = \overline{x}$ falls into the parameter space.
- If $\bar{x} < 0$, $\hat{\mu} = \bar{x}$ does NOT fall into the parameter space.

When $\bar{x} < 0$

We need to check whether $\hat{\mu}$ is within the parameter space $[0,\infty)$.

- If $\bar{x} \geq 0$, $\hat{\mu} = \bar{x}$ falls into the parameter space.
- If $\bar{x} < 0$, $\hat{\mu} = \bar{x}$ does NOT fall into the parameter space.

When $\bar{x} < 0$

$$\frac{\partial l}{\partial \mu} = \sum_{i=1}^{n} (x_i - \mu) = n(\overline{x} - \mu) < 0$$

We need to check whether $\hat{\mu}$ is within the parameter space $[0, \infty)$.

- If $\overline{x} \geq 0$, $\hat{\mu} = \overline{x}$ falls into the parameter space.
- If $\bar{x} < 0$, $\hat{\mu} = \bar{x}$ does NOT fall into the parameter space.

When $\overline{x} < 0$

$$\frac{\partial l}{\partial \mu} = \sum_{i=1}^{n} (x_i - \mu) = n(\overline{x} - \mu) < 0$$

for $\mu \geq 0.$ Therefore, $\mathit{l}(\mu|\mathbf{x})$ is a decreasing function of $\mu.$ So $\hat{\mu}=0$ when $\overline{x}<0.$

We need to check whether $\hat{\mu}$ is within the parameter space $[0, \infty)$.

- If $\overline{x} \geq 0$, $\hat{\mu} = \overline{x}$ falls into the parameter space.
- If $\bar{x} < 0$, $\hat{\mu} = \bar{x}$ does NOT fall into the parameter space.

When $\overline{x} < 0$

$$\frac{\partial l}{\partial \mu} = \sum_{i=1}^{n} (x_i - \mu) = n(\overline{x} - \mu) < 0$$

for $\mu \geq 0$. Therefore, $l(\mu|\mathbf{x})$ is a decreasing function of μ . So $\hat{\mu}=0$ when $\overline{x}<0$. Therefore, MLE is

$$\hat{\mu}(\mathbf{X}) = \max(\overline{X}, 0)$$

Invariance Property of MLE

Question

If $\hat{\theta}$ is the MLE of θ , what is the MLE of $\tau(\theta)$?

Invariance Property of MLE

Question

If $\hat{\theta}$ is the MLE of θ , what is the MLE of $\tau(\theta)$?

Example

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p) \text{ where } 0$

 \bullet What is the MLE of p?

15 / 20

Invariance Property of MLE

Question

If $\hat{\theta}$ is the MLE of θ , what is the MLE of $\tau(\theta)$?

Example

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p) \text{ where } 0$

- \bullet What is the MLE of p?
- 2 What is the MLE of odds, defined by $\eta = p/(1-p)$?

$$L(p|\mathbf{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

16 / 20

$$L(p|\mathbf{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$
$$l(p|\mathbf{x}) = \log p \sum_{i=1}^{n} x_i + \log(1-p)(n-\sum_{i=1}^{n} x_i)$$

$$L(p|\mathbf{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

$$l(p|\mathbf{x}) = \log p \sum_{i=1}^{n} x_i + \log(1-p)(n - \sum_{i=1}^{n} x_i)$$

$$\frac{\partial l}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1-p} = 0$$

16 / 20

$$L(p|\mathbf{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

$$l(p|\mathbf{x}) = \log p \sum_{i=1}^{n} x_i + \log(1-p)(n - \sum_{i=1}^{n} x_i)$$

$$\frac{\partial l}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1-p} = 0$$

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i}{p} = \bar{x}$$

$$\bullet \quad \eta = p/(1-p) = \tau(p)$$

•
$$p = \eta/(1+\eta) = \tau^{-1}(\eta)$$

- $\eta = p/(1-p) = \tau(p)$
- $p = \eta/(1+\eta) = \tau^{-1}(\eta)$

$$L^*(\eta|\mathbf{x}) = p^{\sum x_i}(1-p)^{n-\sum x_i}$$

•
$$\eta = p/(1-p) = \tau(p)$$

•
$$p = \eta/(1+\eta) = \tau^{-1}(\eta)$$

$$L^{*}(\eta|\mathbf{x}) = p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}$$
$$= \frac{p}{1-p}^{\sum x_{i}}(1-p)^{n} = \frac{\eta^{\sum x_{i}}}{(1+\eta)^{n}}$$

•
$$\eta = p/(1-p) = \tau(p)$$

•
$$p = \eta/(1+\eta) = \tau^{-1}(\eta)$$

$$L^{*}(\eta|\mathbf{x}) = p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}$$

$$= \frac{p}{1-p}^{\sum x_{i}}(1-p)^{n} = \frac{\eta^{\sum x_{i}}}{(1+\eta)^{n}}$$

$$l^{*}(\eta|\mathbf{x}) = \sum_{i=1}^{n} x_{i} \log \eta - n \log(1+\eta)$$

•
$$\eta = p/(1-p) = \tau(p)$$

•
$$p = \eta/(1+\eta) = \tau^{-1}(\eta)$$

$$\begin{split} L^*(\eta | \mathbf{x}) &= p^{\sum x_i} (1 - p)^{n - \sum x_i} \\ &= \frac{p}{1 - p}^{\sum x_i} (1 - p)^n = \frac{\eta^{\sum x_i}}{(1 + \eta)^n} \\ l^*(\eta | \mathbf{x}) &= \sum_{i=1}^n x_i \log \eta - n \log (1 + \eta) \\ \frac{\partial l^*}{\partial n} &= \frac{\sum_{i=1}^n x_i}{n} - \frac{n}{1 + n} = 0 \end{split}$$

MLE of $\eta = \frac{p}{1-p}$

- $\eta = p/(1-p) = \tau(p)$
- $p = \eta/(1+\eta) = \tau^{-1}(\eta)$

$$L^{*}(\eta|\mathbf{x}) = p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}$$

$$= \frac{p}{1-p}^{\sum x_{i}}(1-p)^{n} = \frac{\eta^{\sum x_{i}}}{(1+\eta)^{n}}$$

$$l^{*}(\eta|\mathbf{x}) = \sum_{i=1}^{n} x_{i} \log \eta - n \log(1+\eta)$$

$$\frac{\partial l^{*}}{\partial \eta} = \frac{\sum_{i=1}^{n} x_{i}}{\eta} - \frac{n}{1+\eta} = 0$$

$$\hat{\eta} = \frac{\sum_{i=1}^{n} x_{i}/n}{1-\sum_{i=1}^{n} x_{i}/n} = \tau(\hat{p})$$

Another way to get MLE of $\eta = \frac{p}{1-p}$

$$L^*(\eta|\mathbf{x}) = \frac{\eta^{\sum x_i}}{(1+\eta)^n}$$

18 / 20

Another way to get MLE of $\eta=rac{p}{1-p}$

$$L^*(\eta|\mathbf{x}) = \frac{\eta^{\sum x_i}}{(1+\eta)^n}$$

• From MLE of \hat{p} , we know $L^*(\eta|\mathbf{x})$ is maximized when $p=\eta/(1+\eta)=\hat{p}$.

18 / 20

Another way to get MLE of $\eta = \frac{p}{1-p}$

$$L^*(\eta|\mathbf{x}) = \frac{\eta^{\sum x_i}}{(1+\eta)^n}$$

- From MLE of \hat{p} , we know $L^*(\eta|\mathbf{x})$ is maximized when $p = \eta/(1+\eta) = \hat{p}$.
- Equivalently, $L^*(\eta|\mathbf{x})$ is maximized when $\eta=\hat{p}/(1-\hat{p})=\tau(\hat{p})$, because τ is a one-to-one function.

Another way to get MLE of $\eta = \frac{p}{1-p}$

$$L^*(\eta|\mathbf{x}) = \frac{\eta^{\sum x_i}}{(1+\eta)^n}$$

- From MLE of \hat{p} , we know $L^*(\eta|\mathbf{x})$ is maximized when $p=\eta/(1+\eta)=\hat{p}$.
- Equivalently, $L^*(\eta|\mathbf{x})$ is maximized when $\eta=\hat{p}/(1-\hat{p})=\tau(\hat{p})$, because τ is a one-to-one function.
- Therefore $\hat{\eta} = \tau(\hat{p})$.

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

19 / 20

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\hat{\theta})$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$
$$= L(\tau^{-1}(\eta)|\mathbf{x})$$

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\hat{\theta})$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$
$$= L(\tau^{-1}(\eta)|\mathbf{x})$$

We know this function is maximized when $\tau^{-1}(\eta) = \hat{\theta}$, or equivalently, when $\eta = \tau(\hat{\theta})$.

February 12th, 2013

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$
$$= L(\tau^{-1}(\eta)|\mathbf{x})$$

We know this function is maximized when $\tau^{-1}(\eta) = \hat{\theta}$, or equivalently, when $\eta = \tau(\hat{\theta})$. Therefore, MLE of $\eta = \tau(\theta)$ is $\tau(\hat{\theta})$.

February 12th, 2013

Summary

Today

Maximum Likelihood Estimator

Summary

Today

Maximum Likelihood Estimator

Next Lecture

- Mean Squared Error
- Unbiased Estimator
- Cramer-Rao inequality