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Last Lecture

@ What is a complete statistic?

® Why it is called as "complete statistic”?

©® Can the same statistic be both complete and incomplete statistics,
depending on the parameter space?

O What is the relationship between complete and sufficient statistics?

@ Is a minimal sufficient statistic always complete?
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Complete Statistics

= Let 7 = {f(1|0),0 € Q} be a family of pdfs or pmfs for a statistic
T(X).

= The family of probability distributions is called complete if

= E[g(T)|0] = 0 for all 8 implies Pr[g(T) = 0]0] =1 for all 6.

= In other words, g(T) = 0 almost surely.

= Equivalently, T(X) is called a complete statistic
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Example - Poisson distribution

When parameter space is limited - NOT complete

= Suppose T = {fT s fr(N) = At‘;ﬂ} for te {0,1,2,---}. Let
A€ Q= {1,2}. This family is NOT complete

v

With full parameter space - complete

= Xp, X, 2 Poisson(\), A > 0.
= T(X) =37, X;is a complete statistic.
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Example from Stigler (1972) Am. Stat.

Let X is a uniform random sample from {1,---,0} where § € Q@ = N. Is
T(X) = X a complete statistic?

Consider a function g(7) such that E[g(T)|0] =0 for all § € N.
Note that fx(z) = 3I(z € {1,---,0}) = 3In,(2).

6 6
1 1
Hg(Tl6] = Flg(X)l6] = > 59(5) = 5 3" g(a) = 0
=1 =1
6
> g@) = 0
=1l )
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Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from {1,--- , 60} where
0€Q=N-{n}. Is T(X) = X a complete statistic?

Define a nonzero ¢(z) as follows

1 = T
g(z) = -1 z=n+1
0 otherwise
9
1 0 0+#n
Bl = 53 o0 = {
0; 5 0=n

Because (2 does not include n, g(x) = 0 for all § € Q@ = N — {n}, and

X) = X is not a complete statistic.
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Solution (cont'd)

for all & € N, which implies
= ifO =130 () = g(1) =
= if0 =230 g(x) = g(1) + g(2) = g(2) = 0.

= if 0=k S0 g(z)=g(1)+ - +g(k—1) = g(k) = 0.
Therefore, g(z) =0 for all z € N, and T(X) = X is a complete statistic for
6eQ=N.
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Last Lecture : Ancillary and Complete Statistics

- Let X1, , X, ~& Uniform(6,0 + 1), 6 € R.
= Is T(X) = (X(1), X()) @ complete statistic?

v

A Simple Proof

= We know that R = X(,,) — X(q) is an ancillary statistic, which do not
depend on 6.

= Define g(T) = X(,,) — X(1) — E(R). Note that E(R) is constant to 6.
= Then E[g(T)|0] = E(R) — E(R) =0, so T'is not a complete statistic.

v
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Useful Fact 1 : Ancillary and Complete Statistics

For a statistic 7(X), If a non-constant function of 7, say (7)) is ancillary,
then T(X) cannot be complete

Define ¢(T) = r(T) — E[r(T)], which does not depend on the parameter
because (1) is ancillary. Then E[g(T)|6] = 0 for a non-zero function

g(T), and T(X) is not a complete statistic.
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Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a
minimal sufficient statistic.

Paraphrased version

Any complete, and sufficient statistic is also a minimal sufficient statistic

The converse is NOT true

A minimal sufficient statistic is not necessarily complete. (Recall the
example in the last lecture).
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Useful Fact 2 : Arbitrary Function of Complete Statistics

If T(X) is a complete statistic, then a function of T, say T* = r(T) is also
complete.

Elg(T)|0] =

Elgo r(T)|6]

Assume that E[g(T*)|6] = 0 for all 8, then E[go r(T)|0] = 0 holds for all 0
too. Because T(X) is a complete statistic, Pr[go 7(T) = 0] = 1, V6 € Q.
Therefore Pr[g(T*) = 0] =1, and T" is a complete statistic.

Basu's Theorem
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Basu's Theorem

Theorem 6.2.24

If T(X) is a complete sufficient statistic, then T(X) is independent of
every ancillary statistic.

Proof strategy - for discrete case
Suppose that S(X) is an ancillary statistic. We want to show that

Pr(S(X) = 8| T(X) = £) = Pr(S(X) = ), Vte T

Alternatively, we can show that

Pr(T(X) = #S(X)
Pr(T(X) = t A S(X)

Pr(T(X) = t)
Pr(T(X) = t) Pr(S(X) = s)

s) =

s) =
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Proof of Basu's Theorem

Basu's Theorem
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= As S(X) is ancillary, by definition, it does not depend on 6.
= As T(X) is sufficient, by definition, fx(X|7(X)) is independent of 6.

= Because S(X) is a function of X, Pr(S(X)|T(X)) is also independent
of 6.

= We need to show that
Pr(S(X) = s/ T(X) = t) = Pr(S(X) = s), Vte T.

Hyun Min Kang Biostatistics 602 - Lecture 07

January 29th, 2013

Basu's Theorem
000800000

Application of Basu's Theorem

Problem
. Xy, X, 29 Uniform(0, ).

X X1y +X
= Calculate E[%] and E[M]

A strategy for the solution

= We know that X(,, is sufficient statistic.
= We know that X(n) is complete, too.
= We can easily show that X(;)/ X, is an ancillary statistic.

= Then we can leverage Basu's Theorem for the calculation.
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Proof of Basu's Theorem (cont'd)

Pr(S(X) = sl) = > Pr(S(X)=s|T(X) = ) Pr(T(X) = #}6) (1)

teT
Pr(S(X) =sl0) = Pr(S(X)=s)> Pr(7(X)=10) (2)
teT
= > Pr(8(X) = s)Pr(T(X) = 10) (3)
teT

Define ¢(f) = Pr(S(X) = s| T(X) = ¢) — Pr(S(X) = s). Taking (1)-(3),

S [Pr(S(X) = | T(X) = &) — Pr(S(X) = 5)] Px(T(X) = 1}6) = 0
teT
> 9() Pr(T(X) = #0) = Elg(T(X))|6] = 0
teT

T(X) is complete, so g(t) = 0 almost surely for all possible t € T
Therefore, S(X) is independent of T(X).
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Showing that X(1)/ X, is Ancillary

Fo(alf) = %1(0 <z<0)

Let y = z/0, then |dz/dy| = 6, and Y ~ Uniform(0, 1).

fy(lo) = I0<y<1)
Xy _ Yo
X(m) Y(n)
Because the distribution of Y7,---, Y, does not depend on 8, X(l)/X(n) is

an ancillary statistic for 6.

15 / 21
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Applying Basu's Theorem

= By Basu’s Theorem, X(;)/X(, is independent of X(,.
= If X and Y are independent, E(XY) = E(X)E(Y).

X

ElXy) = E{—X(n)} = [X(n)

| 1x0]
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Obtaining E[Y(y]

Y ~ Uniform(0,1)
fy(y) [0<y<1)
Fy(y) = yl(0<y<1)+1I(y=1)
n! n—
fy, (W) = mfy(y) [Fy(y)]" 10 <y < 1)
= ' 0<y<1)
Yy ~ Beta(n,1)
n
EY, =
[Yin) -
Therefore, E[%} = gg&ﬂ = %l
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Obtaining E[Y(y)]

Y ~ Uniform(0, 1)
fyly) = H0<y<1)
Fy(y) = yl(0<y<1)+I(y=1)
n!
frn® = G- Fr@)" 10 <y <1)
= n(l-y"'N0<y<1)
Yy ~ Beta(l,n)
E[Y(l)] - nj— 1
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Obtaining E[Y(s)]

Y ~ Uniform(0, 1)
frly) = M0<y<1)
Fy(y) = yl(0<y<1)+I(y=1)
n!
fyo, () (n—2) (1= Fy(9)]" ™ fly) [Fy(y)] 10 < y < 1)
= n(n—1)y(l -y " 2[0<y<1)
Y(z) ~ Beta(2,n—1)
E[Y(Q)] - n—2k 1

X +X, ElY+ Y]  E[Y+E[ Y]
1) 2| _ 1) ) _ (1 @l _ 3
Therefore, E[ X } = —Hv,] BV )] ==
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Summary

= More on complete statistics

= Basu's Theorem

y

Next Lecture

= Exponential Family
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