Biostatistics 602 - Statistical Inference Lecture 11 Evaluation of Point Estimators

Hyun Min Kang

February 14th, 2013

1 / 33

Some News

- Homework 3 is posted.
 - Due is Tuesday, February 26th.

- Homework 3 is posted.
 - Due is Tuesday, February 26th.
- Next Thursday (Feb 21) is the midterm day.
 - We will start sharply at 1:10pm.
 - It would be better to solve homework 3 yourself to get prepared.
 - The exam is closed book, covering all the material from Lecture 1 to 12.
 - Last year's midterm is posted on the web page.

Recap

1 What is a maximum likelihood estimator (MLE)?

- 1 What is a maximum likelihood estimator (MLE)?
- 2 How can you find an MLE?

- 1 What is a maximum likelihood estimator (MLE)?
- 2 How can you find an MLE?
- Ooes an ML estimate always fall into a valid parameter space?

- 1 What is a maximum likelihood estimator (MLE)?
- 2 How can you find an MLE?
- 3 Does an ML estimate always fall into a valid parameter space?
- 4 If you know MLE of θ , can you also know MLE of $\tau(\theta)$?

Definition

Recap

- For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that
- $L(\theta|\mathbf{x})$ attains its maximum.
- More formally, $L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \geq L(\theta|\mathbf{x}) \ \forall \theta \in \Omega \ \text{where } \hat{\theta}(\mathbf{x}) \in \Omega$.
- $\hat{\theta}(\mathbf{x})$ is called the maximum likelihood estimate of θ based on data \mathbf{x} ,
- and $\hat{\theta}(\mathbf{X})$ is the maximum likelihood estimator (MLE) of θ .

Question

Recap

If $\hat{\theta}$ is the MLE of θ , what is the MLE of $\tau(\theta)$?

Example

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p) \text{ where } 0$

- lacktriangle What is the MLE of p?
- 2 What is the MLE of odds, defined by $\eta = p/(1-p)$?

Getting MLE of $\eta = \frac{p}{1-n}$ from \hat{p}

$$L^*(\eta|\mathbf{x}) = \frac{\eta^{\sum x_i}}{(1+\eta)^n}$$

- From MLE of \hat{p} , we know $L^*(\eta|\mathbf{x})$ is maximized when $p = \eta/(1+\eta) = \hat{p}$.
- Equivalently, $L^*(\eta|\mathbf{x})$ is maximized when $\eta = \hat{p}/(1-\hat{p}) = \tau(\hat{p})$, because τ is a one-to-one function.
- Therefore $\hat{\eta} = \tau(\hat{p})$.

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\hat{\theta})$ is $\tau(\hat{\theta})$.

7 / 33

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta)$$

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$
$$= L(\tau^{-1}(\eta)|\mathbf{x})$$

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$
$$= L(\tau^{-1}(\eta)|\mathbf{x})$$

We know this function is maximized when $\tau^{-1}(\eta) = \hat{\theta}$, or equivalently, when $\eta = \tau(\hat{\theta})$.

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\hat{\theta})$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$
$$= L(\tau^{-1}(\eta)|\mathbf{x})$$

We know this function is maximized when $\tau^{-1}(\eta) = \hat{\theta}$, or equivalently, when $\eta = \tau(\hat{\theta})$. Therefore, MLE of $\eta = \tau(\theta)$ is $\tau(\hat{\theta})$.

Definition

• Let $L(\theta|\mathbf{x})$ be the likelihood function for a given data x_1, \dots, x_n ,

Definition

- Let $L(\theta|\mathbf{x})$ be the likelihood function for a given data x_1, \dots, x_n
- and let $\eta = \tau(\theta)$ be a (possibly not a one-to-one) function of θ .

Definition

- Let $L(\theta|\mathbf{x})$ be the likelihood function for a given data x_1, \dots, x_n ,
- and let $\eta = \tau(\theta)$ be a (possibly not a one-to-one) function of θ .

We define the induced likelihood function L^* by

$$L^*(\eta|\mathbf{x}) = \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x})$$

where
$$\tau^{-1}(\eta) = \{\theta : \tau(\theta) = \eta, \ \theta \in \Omega\}.$$

Definition

- Let $L(\theta|\mathbf{x})$ be the likelihood function for a given data x_1, \dots, x_n ,
- and let $\eta = \tau(\theta)$ be a (possibly not a one-to-one) function of θ .

We define the induced likelihood function L^* by

$$L^*(\eta|\mathbf{x}) = \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x})$$

where $\tau^{-1}(\eta) = \{\theta : \tau(\theta) = \eta, \ \theta \in \Omega\}.$

• The value of η that maximize $L^*(\eta|\mathbf{x})$ is called the MLE of $\eta=\tau(\theta)$.

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$L^*(\hat{\eta}|\mathbf{x}) = \sup_{\eta} L^*(\eta|\mathbf{x})$$

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$L^*(\hat{\eta}|\mathbf{x}) = \sup_{\eta} L^*(\eta|\mathbf{x}) = \sup_{\eta} \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x})$$

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$L^*(\hat{\eta}|\mathbf{x}) = \sup_{\eta} L^*(\eta|\mathbf{x}) = \sup_{\eta} \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x})$$
$$= \sup_{\theta} L(\theta|\mathbf{x})$$

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$\begin{split} L^*(\hat{\eta}|\mathbf{x}) &= \sup_{\eta} L^*(\eta|\mathbf{x}) = \sup_{\eta} \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x}) \\ &= \sup_{\theta} L(\theta|\mathbf{x}) = L(\hat{\theta}|\mathbf{x}) \end{split}$$

9 / 33

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$\begin{split} L^*(\hat{\eta}|\mathbf{x}) &= \sup_{\eta} L^*(\eta|\mathbf{x}) = \sup_{\eta} \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x}) \\ &= \sup_{\theta} L(\theta|\mathbf{x}) = L(\hat{\theta}|\mathbf{x}) \\ L(\hat{\theta}|\mathbf{x}) &= \sup_{\theta \in \tau^{-1}(\tau(\hat{\theta}))} L(\theta|\mathbf{x}) \end{split}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ()

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$\begin{split} L^*(\hat{\eta}|\mathbf{x}) &= \sup_{\eta} L^*(\eta|\mathbf{x}) = \sup_{\eta} \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x}) \\ &= \sup_{\theta} L(\theta|\mathbf{x}) = L(\hat{\theta}|\mathbf{x}) \\ L(\hat{\theta}|\mathbf{x}) &= \sup_{\theta \in \tau^{-1}(\tau(\hat{\theta}))} L(\theta|\mathbf{x}) = L^*[\tau(\hat{\theta})|\mathbf{x}] \end{split}$$

→□▶→□▶→□▶→□▶ □ り<0</p>

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$\begin{split} L^*(\hat{\eta}|\mathbf{x}) &= \sup_{\eta} L^*(\eta|\mathbf{x}) = \sup_{\eta} \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x}) \\ &= \sup_{\theta} L(\theta|\mathbf{x}) = L(\hat{\theta}|\mathbf{x}) \\ L(\hat{\theta}|\mathbf{x}) &= \sup_{\theta \in \tau^{-1}(\tau(\hat{\theta}))} L(\theta|\mathbf{x}) = L^*[\tau(\hat{\theta})|\mathbf{x}] \end{split}$$

Hence, $L^*(\hat{\eta}|\mathbf{x}) = L^*[\tau(\hat{\theta})|\mathbf{x}]$ and $\tau(\hat{\theta})$ is the MLE of $\tau(\theta)$.

1 Optimal in some sense : We will study this later

- Optimal in some sense : We will study this later
- 2 By definition, MLE will always fall into the range of the parameter space.

- Optimal in some sense : We will study this later
- 2 By definition, MLE will always fall into the range of the parameter space.
- Not always easy to obtain; may be hard to find the global maximum.

- Optimal in some sense : We will study this later
- 2 By definition, MLE will always fall into the range of the parameter space.
- Not always easy to obtain; may be hard to find the global maximum.
- Heavily depends on the underlying distributional assumptions (i.e. not robust).

Method of Evaluating Estimators

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as ${\rm Bias}(\theta)=E(\hat{\theta})-\theta$

Method of Evaluating Estimators

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

Example

 X_1, \cdots, X_n are iid samples from a distribution with mean μ . Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is an estimator of μ .

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

Example

 X_1,\cdots,X_n are iid samples from a distribution with mean μ . Let $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ is an estimator of μ . The bias is $\mathrm{Bias}(\mu) = E(\overline{X})-\mu$

Method of Evaluating Estimators

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

Example

 X_1,\cdots,X_n are iid samples from a distribution with mean $\mu.$ Let $\overline{X}=rac{1}{n}\sum_{i=1}^n X_i$ is an estimator of $\mu.$ The bias is $\mathrm{Bias}(\mu) \ = \ E(\overline{X})-\mu$ $= \ E\left(rac{1}{n}\sum_{i=1}^n X_i\right)-\mu$

Method of Evaluating Estimators

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

Example

 X_1,\cdots,X_n are iid samples from a distribution with mean $\mu.$ Let $\overline{X}=rac{1}{n}\sum_{i=1}^n X_i$ is an estimator of $\mu.$ The bias is $\mathrm{Bias}(\mu) \ = \ E(\overline{X})-\mu$ $= \ E\left(rac{1}{n}\sum_{i=1}^n X_i\right)-\mu$

Method of Evaluating Estimators

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

Example

 X_1,\cdots,X_n are iid samples from a distribution with mean μ . Let $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ is an estimator of μ . The bias is $\mathrm{Bias}(\mu) = E(\overline{X}) - \mu$

$$= E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) - \mu = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) - \mu$$

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

Example

 X_1,\cdots,X_n are iid samples from a distribution with mean μ . Let $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ is an estimator of μ . The bias is $\mathrm{Bias}(\mu) = E(\overline{X}) - \mu$

$$= E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) - \mu = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) - \mu = \mu - \mu = 0$$

Definition: Unbiasedness

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

Evaluation

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

Example

 X_1,\cdots,X_n are iid samples from a distribution with mean μ . Let $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ is an estimator of μ . The bias is $\mathrm{Bias}(\mu) = E(\overline{X}) - \mu$

$$= E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) - \mu = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) - \mu = \mu - \mu = 0$$

Therefore \overline{X} is an unbiased estimator for μ .

How important is unbiased?

How important is unbiased?

- $\hat{\theta}_1$ (blue) is unbiased but has a chance to be very far away from $\theta=0$.
- $\hat{\theta}_2$ (red) is biased but more likely to be closer to the true θ than $\hat{\theta}_1$.

Definition

Mean Squared Error (MSE) of an estimator $\hat{\theta}$ is defined as $\mathrm{MSE}(\hat{\theta}) = E[(\hat{\theta} - \theta)]^2$

Definition

Mean Squared Error (MSE) of an estimator $\hat{\theta}$ is defined as $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)]^2$

$$MSE(\hat{\theta}) = E[(\hat{\theta} - E\hat{\theta} + E\hat{\theta} - \theta)]^2$$

Definition

Mean Squared Error (MSE) of an estimator $\hat{\theta}$ is defined as $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)]^2$

$$\begin{aligned} \text{MSE}(\hat{\theta}) &= E[(\hat{\theta} - E\hat{\theta} + E\hat{\theta} - \theta)]^2 \\ &= E[(\hat{\theta} - E\hat{\theta})^2] + E[(E\hat{\theta} - \theta)^2] + 2E[(\hat{\theta} - E\hat{\theta})]E[(E\hat{\theta} - \theta)] \end{aligned}$$

Definition

Mean Squared Error (MSE) of an estimator $\hat{\theta}$ is defined as $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)]^2$

$$\begin{aligned} \text{MSE}(\hat{\theta}) &= E[(\hat{\theta} - E\hat{\theta} + E\hat{\theta} - \theta)]^2 \\ &= E[(\hat{\theta} - E\hat{\theta})^2] + E[(E\hat{\theta} - \theta)^2] + 2E[(\hat{\theta} - E\hat{\theta})]E[(E\hat{\theta} - \theta)] \\ &= E[(\hat{\theta} - E\hat{\theta})^2] + (E\hat{\theta} - \theta)^2 + 2(E\hat{\theta} - E\hat{\theta})E[(E\hat{\theta} - \theta)] \end{aligned}$$

Definition

Mean Squared Error (MSE) of an estimator $\hat{\theta}$ is defined as $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)]^2$

$$MSE(\hat{\theta}) = E[(\hat{\theta} - E\hat{\theta} + E\hat{\theta} - \theta)]^{2}$$

$$= E[(\hat{\theta} - E\hat{\theta})^{2}] + E[(E\hat{\theta} - \theta)^{2}] + 2E[(\hat{\theta} - E\hat{\theta})]E[(E\hat{\theta} - \theta)]$$

$$= E[(\hat{\theta} - E\hat{\theta})^{2}] + (E\hat{\theta} - \theta)^{2} + 2(E\hat{\theta} - E\hat{\theta})E[(E\hat{\theta} - \theta)]$$

$$= Var(\hat{\theta}) + Bias^{2}(\theta)$$

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$
- $\mu_1 = 1, \ \mu_2 = \overline{X}.$

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$
- $\mu_1 = 1, \ \mu_2 = \overline{X}.$

$$MSE(\hat{\mu}_1) = E(\hat{\mu}_1 - \mu)^2 = (1 - \mu)^2$$

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$
- $\mu_1 = 1, \ \mu_2 = \overline{X}.$

$$MSE(\hat{\mu}_1) = E(\hat{\mu}_1 - \mu)^2 = (1 - \mu)^2$$

$$MSE(\hat{\mu}_2) = E(\overline{X} - \mu)^2 = Var(\overline{X}) = \frac{1}{n}$$

14 / 33

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$
- $\mu_1 = 1$, $\mu_2 = \overline{X}$.

$$MSE(\hat{\mu}_1) = E(\hat{\mu}_1 - \mu)^2 = (1 - \mu)^2$$

$$MSE(\hat{\mu}_2) = E(\overline{X} - \mu)^2 = Var(\overline{X}) = \frac{1}{n}$$

• Suppose that the true $\mu=1$, then $\mathrm{MSE}(\mu_1)=0<\mathrm{MSE}(\mu_2)$, and no estimator can beat μ_1 in terms of MSE when true $\mu = 1$.

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$
- $\mu_1 = 1, \ \mu_2 = \overline{X}.$

$$MSE(\hat{\mu}_1) = E(\hat{\mu}_1 - \mu)^2 = (1 - \mu)^2$$

$$MSE(\hat{\mu}_2) = E(\overline{X} - \mu)^2 = Var(\overline{X}) = \frac{1}{n}$$

- Suppose that the true $\mu=1$, then $\mathrm{MSE}(\mu_1)=0<\mathrm{MSE}(\mu_2)$, and no estimator can beat μ_1 in terms of MSE when true $\mu = 1$.
- Therefore, we cannot find an estimator that is uniformly the best in terms of MSE across all $\theta \in \Omega$ among all estimators

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$
- $\mu_1 = 1, \ \mu_2 = \overline{X}.$

$$MSE(\hat{\mu}_1) = E(\hat{\mu}_1 - \mu)^2 = (1 - \mu)^2$$

$$MSE(\hat{\mu}_2) = E(\overline{X} - \mu)^2 = Var(\overline{X}) = \frac{1}{n}$$

- Suppose that the true $\mu=1$, then $\mathrm{MSE}(\mu_1)=0<\mathrm{MSE}(\mu_2)$, and no estimator can beat μ_1 in terms of MSE when true $\mu=1$.
- Therefore, we cannot find an estimator that is uniformly the best in terms of MSE across all $\theta \in \Omega$ among all estimators
- Restrict the class of estimators, and find the "best" estimator within the small class.

4□▶ 4₫▶ 4½▶ 4½▶ ½ 90

Uniformly Minimum Variance Unbiased Estimator

Definition

 $W^*(\mathbf{X})$ is the best unbiased estimator, or uniformly minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$ if,

Uniformly Minimum Variance Unbiased Estimator

Definition

 $W^*(\mathbf{X})$ is the best unbiased estimator, or uniformly minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$ if,

1 $E[W^*(\mathbf{X})|\theta] = \tau(\theta)$ for all θ (unbiased)

Definition

 $W^*(\mathbf{X})$ is the best unbiased estimator, or uniformly minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$ if,

- 1 $E[W^*(\mathbf{X})|\theta] = \tau(\theta)$ for all θ (unbiased)
- 2 and $Var[W^*(\mathbf{X})|\theta] \leq Var[W(\mathbf{X})|\theta]$ for all θ , where W is any other unbiased estimator of $\tau(\theta)$ (minimum variance).

Uniformly Minimum Variance Unbiased Estimator

Definition

 $W^*(\mathbf{X})$ is the best unbiased estimator, or uniformly minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$ if,

- ① $E[W^*(\mathbf{X})|\theta] = \tau(\theta)$ for all θ (unbiased)
- 2 and $\operatorname{Var}[W^*(\mathbf{X})|\theta] \leq \operatorname{Var}[W(\mathbf{X})|\theta]$ for all θ , where W is any other unbiased estimator of $\tau(\theta)$ (minimum variance).

How to find the Best Unbiased Estimator

• Find the lower bound of variances of any unbiased estimator of $\tau(\theta)$, say $B(\theta)$.

Definition

 $W^*(\mathbf{X})$ is the best unbiased estimator, or uniformly minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$ if,

- 1 $E[W^*(\mathbf{X})|\theta] = \tau(\theta)$ for all θ (unbiased)
- 2 and $Var[W^*(\mathbf{X})|\theta] \leq Var[W(\mathbf{X})|\theta]$ for all θ , where W is any other unbiased estimator of $\tau(\theta)$ (minimum variance).

How to find the Best Unbiased Estimator

- Find the lower bound of variances of any unbiased estimator of $\tau(\theta)$, say $B(\theta)$.
- If W^* is an unbiased estimator of $\tau(\theta)$ and satisfies $\operatorname{Var}[W^*(\mathbf{X})|\theta] = B(\theta)$, then W^* is the best unbiased estimator.

February 14th, 2013

Cramer-Rao inequality

Theorem 7.3.9: Cramer-Rao Theorem

Let X_1, \dots, X_n be a sample with joint pdf/pmf of $f_{\mathbf{X}}(\mathbf{x}|\theta)$. Suppose $W(\mathbf{X})$ is an estimator satisfying

Theorem 7.3.9: Cramer-Rao Theorem

Let X_1, \dots, X_n be a sample with joint pdf/pmf of $f_{\mathbf{X}}(\mathbf{x}|\theta)$. Suppose $W(\mathbf{X})$ is an estimator satisfying

Theorem 7.3.9: Cramer-Rao Theorem

Let X_1, \dots, X_n be a sample with joint pdf/pmf of $f_{\mathbf{x}}(\mathbf{x}|\theta)$. Suppose $W(\mathbf{X})$ is an estimator satisfying

- 2 $\operatorname{Var}[W(\mathbf{X})|\theta] < \infty$.

Theorem 7.3.9 : Cramer-Rao Theorem

Let X_1, \dots, X_n be a sample with joint pdf/pmf of $f_{\mathbf{x}}(\mathbf{x}|\theta)$. Suppose $W(\mathbf{X})$ is an estimator satisfying

- 2 $\operatorname{Var}[W(\mathbf{X})|\theta] < \infty$.

For $h(\mathbf{x}) = 1$ and $h(\mathbf{x}) = W(\mathbf{x})$, if the differentiation and integrations are interchangeable, i.e.

Cramer-Rao inequality

Theorem 7.3.9: Cramer-Rao Theorem

Let X_1, \dots, X_n be a sample with joint pdf/pmf of $f_{\mathbf{X}}(\mathbf{x}|\theta)$. Suppose $W(\mathbf{X})$ is an estimator satisfying

- $2 \operatorname{Var}[W(\mathbf{X})|\theta] < \infty.$

For $h(\mathbf{x})=1$ and $h(\mathbf{x})=W(\mathbf{x})$, if the differentiation and integrations are interchangeable, i.e.

$$\frac{d}{d\theta} E[h(\mathbf{x})|\theta] = \frac{d}{d\theta} \int_{x \in \mathcal{X}} h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} = \int_{x \in \mathcal{X}} h(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

Cramer-Rao inequality

Theorem 7.3.9: Cramer-Rao Theorem

Let X_1, \dots, X_n be a sample with joint pdf/pmf of $f_{\mathbf{X}}(\mathbf{x}|\theta)$. Suppose $W(\mathbf{X})$ is an estimator satisfying

- $2 \operatorname{Var}[W(\mathbf{X})|\theta] < \infty.$

For $h(\mathbf{x})=1$ and $h(\mathbf{x})=W(\mathbf{x}),$ if the differentiation and integrations are interchangeable, i.e.

$$\frac{d}{d\theta} E[h(\mathbf{x})|\theta] = \frac{d}{d\theta} \int_{x \in \mathcal{X}} h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} = \int_{x \in \mathcal{X}} h(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

Then, a lower bound of $\mathrm{Var}[\mathit{W}(\mathbf{X})|\theta]$ is

$$\operatorname{Var}[W(\mathbf{X})] \ge \frac{\left[\tau'(\theta)\right]^2}{E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right\}^2\right]}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (

Proving Cramer-Rao Theorem (1/4)

By Cauchy-Schwarz inequality,

$$[Cov(X, Y)]^2 \le Var(X)Var(Y)$$

By Cauchy-Schwarz inequality,

$$[Cov(X, Y)]^2 \le Var(X)Var(Y)$$

Replacing X and Y,

$$\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2} \leq \operatorname{Var}[W(\mathbf{X})] \operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

Proving Cramer-Rao Theorem (1/4)

By Cauchy-Schwarz inequality,

$$[Cov(X, Y)]^2 \le Var(X)Var(Y)$$

Replacing X and Y,

$$\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2} \leq \operatorname{Var}[W(\mathbf{X})] \operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] \\
\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2}}{\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]}$$

By Cauchy-Schwarz inequality,

$$[Cov(X, Y)]^2 \le Var(X)Var(Y)$$

Replacing X and Y,

$$\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2} \leq \operatorname{Var}[W(\mathbf{X})] \operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] \\
\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2}}{\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]}$$

Using $Var(X) = EX^2 - (EX)^2$.

$$\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] - E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]^{2}$$

Proving Cramer-Rao Theorem (2/4)

$$E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right] f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right] f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$
$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{x}|\theta)} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

18 / 33

$$E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right] f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$
$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{x}|\theta)} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$
$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right] f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{x}|\theta)} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \frac{d}{d\theta} \int_{\mathbf{x} \in \mathcal{X}} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} \qquad \text{(by assumption)}$$

18 / 33

$$E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right] f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{x}|\theta)} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \frac{d}{d\theta} \int_{\mathbf{x} \in \mathcal{X}} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} \qquad \text{(by assumption)}$$

$$= \frac{d}{d\theta} \mathbf{1} = \mathbf{0}$$

$$E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right] f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{x}|\theta)} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \frac{d}{d\theta} \int_{\mathbf{x} \in \mathcal{X}} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} \qquad \text{(by assumption)}$$

$$= \frac{d}{d\theta} 1 = 0$$

$$\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right]$$

$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] - E\left[W(\mathbf{X})\right] E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] - E\left[W(\mathbf{X})\right] E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$Cov \left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta) \right]$$

$$= E \left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta) \right] - E \left[W(\mathbf{X}) \right] E \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta) \right]$$

$$= E \left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta) \right] = \int_{\mathbf{X} \in \mathcal{X}} W(\mathbf{X}) \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta) f(\mathbf{X}|\theta) d\mathbf{X}$$

$$\begin{aligned} &\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] \\ &= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] - E\left[W(\mathbf{X})\right] E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] \\ &= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta) f(\mathbf{x}|\theta) d\mathbf{x} \\ &= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x} \end{aligned}$$

$$\begin{aligned} &\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] \\ &= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] - E\left[W(\mathbf{X})\right] E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] \\ &= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta) f(\mathbf{x}|\theta) d\mathbf{x} \\ &= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x} = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) \end{aligned}$$

$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] - E\left[W(\mathbf{X})\right] E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta) f(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x} = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)$$

$$= \frac{d}{d\theta} \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) \quad \text{(by assumption)}$$

$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] - E\left[W(\mathbf{X})\right] E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta) f(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x} = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)$$

$$= \frac{d}{d\theta} \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) \quad \text{(by assumption)}$$

$$= \frac{d}{d\theta} E[W(\mathbf{X})] = \frac{d}{d\theta} \tau(\theta) = \tau'(\theta)$$

From the previous results

$$\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right]$$

From the previous results

$$\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right]$$
$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \tau'(\theta)$$

Therefore, Cramer-Rao lower bound is

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2}}{\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]}$$

From the previous results

$$\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right]$$
$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \tau'(\theta)$$

Evaluation

Therefore, Cramer-Rao lower bound is

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2}}{\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]}$$
$$= \frac{\left[\tau'(\theta)\right]^{2}}{E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right]}$$

Cramer-Rao bound in iid case

Corollary 7.3.10

If X_1, \dots, X_n are iid samples from pdf/pmf $f_X(x|\theta)$, and the assumptions in the above Cramer-Rao theorem hold, then the lower-bound of $Var[W(X)|\theta]$ becomes

Cramer-Rao bound in iid case

Corollary 7.3.10

If X_1, \dots, X_n are iid samples from pdf/pmf $f_X(x|\theta)$, and the assumptions in the above Cramer-Rao theorem hold, then the lower-bound of $Var[W(X)|\theta]$ becomes

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\tau'(\theta)\right]^2}{nE\left[\left\{\frac{\partial}{\partial \theta}\log f_X(X|\theta)\right\}^2\right]}$$

Cramer-Rao bound in iid case

Corollary 7.3.10

If X_1,\cdots,X_n are iid samples from pdf/pmf $f_X(x|\theta)$, and the assumptions in the above Cramer-Rao theorem hold, then the lower-bound of $\mathrm{Var}[W(\mathbf{X})|\theta]$ becomes

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\tau'(\theta)\right]^2}{nE\left[\left\{\frac{\partial}{\partial \theta}\log f_X(X|\theta)\right\}^2\right]}$$

Proof

We need to show that

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = nE\left[\left\{\frac{\partial}{\partial \theta} \log f_{X}(X|\theta)\right\}^{2}\right]$$

4 D > 4 B > 4 B > 4 B > 6 C

Proving Corollary 7.3.10

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f_{X}(X_{i}|\theta)\right\}^{2}\right]$$
$$= E\left[\left\{\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

Proving Corollary 7.3.10

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= E\left[\left\{\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= E\left[\left\{\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$\begin{split} E\left[\left\{\frac{\partial}{\partial \theta}\log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] &= E\left[\left\{\frac{\partial}{\partial \theta}\log \prod_{i=1}^{n}f_{X}(X_{i}|\theta)\right\}^{2}\right] \\ &= E\left[\left\{\frac{\partial}{\partial \theta}\sum_{i=1}^{n}\log f_{X}(X_{i}|\theta)\right\}^{2}\right] \\ &= E\left[\left\{\sum_{i=1}^{n}\frac{\partial}{\partial \theta}\log f_{X}(X_{i}|\theta)\right\}^{2}\right] \\ &= E\left[\sum_{i=1}^{n}\left\{\frac{\partial}{\partial \theta}\log f_{X}(X_{i}|\theta)\right\}^{2} + \sum_{i\neq j}\frac{\partial}{\partial \theta}\log f_{X}(X_{i}|\theta)\frac{\partial}{\partial \theta}\log f_{X}(X_{j}|\theta)\right] \end{split}$$

$$E\left[\sum_{i \neq j} \frac{\partial}{\partial \theta} \log f_X(X_i|\theta) \frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right]$$
$$= \sum_{i \neq j} E\left[\frac{\partial}{\partial \theta} \log f_X(X_i|\theta)\right] E\left[\frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right] = 0$$

Proving Corollary 7.3.10

$$E\left[\sum_{i \neq j} \frac{\partial}{\partial \theta} \log f_X(X_i|\theta) \frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right]$$
$$= \sum_{i \neq j} E\left[\frac{\partial}{\partial \theta} \log f_X(X_i|\theta)\right] E\left[\frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right] = 0$$

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = E\left[\sum_{i=1}^{n} \left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$E\left[\sum_{i \neq j} \frac{\partial}{\partial \theta} \log f_X(X_i|\theta) \frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right]$$
$$= \sum_{i \neq j} E\left[\frac{\partial}{\partial \theta} \log f_X(X_i|\theta)\right] E\left[\frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right] = 0$$

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = E\left[\sum_{i=1}^{n} \left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$
$$= \sum_{i=1}^{n} E\left[\left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$E\left[\sum_{i \neq j} \frac{\partial}{\partial \theta} \log f_X(X_i|\theta) \frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right]$$
$$= \sum_{i \neq j} E\left[\frac{\partial}{\partial \theta} \log f_X(X_i|\theta)\right] E\left[\frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right] = 0$$

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = E\left[\sum_{i=1}^{n} \left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= \sum_{i=1}^{n} E\left[\left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= nE\left[\left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

Remark from Corollary 7.3.10

In iid case, Cramer-Rao lower bound for an unbiased estimator of θ is

24 / 33

Remark from Corollary 7.3.10

In iid case, Cramer-Rao lower bound for an unbiased estimator of θ is

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{1}{nE\left[\left\{\frac{\partial}{\partial \theta}\log f_X(X|\theta)\right\}^2\right]}$$

Remark from Corollary 7.3.10

In iid case, Cramer-Rao lower bound for an unbiased estimator of θ is

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{1}{nE\left[\left\{\frac{\partial}{\partial \theta}\log f_X(X|\theta)\right\}^2\right]}$$

Because $\tau(\theta) = \theta$ and $\tau'(\theta) = 1$.

$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$$

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$$

$$S(X|\theta) = \frac{\partial}{\partial \theta} \log f_X(X|\theta)$$

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$$

 $S(X|\theta) = \frac{\partial}{\partial \theta} \log f_X(X|\theta)$
 $E[S(X|\theta)] = 0$

$$X_1, \dots, X_n \quad \stackrel{\text{i.i.d.}}{\sim} \quad f_X(x|\theta)$$

$$S(X|\theta) = \frac{\partial}{\partial \theta} \log f_X(X|\theta)$$

$$E[S(X|\theta)] = 0$$

$$S_n(X|\theta) = \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)$$

Fisher Information Number

Definition: Fisher Information Number

$$I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = E\left[S^2(X|\theta)\right]$$

Fisher Information Number

Definition: Fisher Information Number

$$I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = E\left[S^2(X|\theta)\right]$$

$$I_n(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^2\right]$$

Definition: Fisher Information Number

$$I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = E\left[S^2(X|\theta)\right]$$

$$I_n(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^2\right]$$

$$= nE\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = nI(\theta)$$

Fisher Information Number

Definition: Fisher Information Number

$$\begin{split} I(\theta) &= E\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = E\left[S^2(X|\theta)\right] \\ I_n(\theta) &= E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^2\right] \\ &= nE\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = nI(\theta) \end{split}$$

The bigger the information number, the more information we have about θ , the smaller bound on the variance of unbiased estimates.

Simplified Fisher Information

Lemma 7.3.11

If
$$f_X(x|\theta)$$
 satisfies the two interchangeability conditions
$$\frac{d}{d\theta} \int_{x \in \mathcal{X}} f_X(x|\theta) \, dx \quad = \quad \int_{x \in \mathcal{X}} \frac{\partial}{\partial \theta} f_X(x|\theta) \, dx$$

Simplified Fisher Information

Lemma 7.3.11

If $f_X(x|\theta)$ satisfies the two interchangeability conditions

$$\frac{d}{d\theta} \int_{x \in \mathcal{X}} f_X(x|\theta) dx = \int_{x \in \mathcal{X}} \frac{\partial}{\partial \theta} f_X(x|\theta) dx$$

$$\frac{d}{d\theta} \int_{x \in \mathcal{X}} \frac{\partial}{\partial \theta} f_X(x|\theta) dx = \int_{x \in \mathcal{X}} \frac{\partial^2}{\partial \theta^2} f_X(x|\theta) dx$$

Lemma 7.3.11

If $f_X(x|\theta)$ satisfies the two interchangeability conditions

$$\frac{d}{d\theta} \int_{x \in \mathcal{X}} f_X(x|\theta) dx = \int_{x \in \mathcal{X}} \frac{\partial}{\partial \theta} f_X(x|\theta) dx$$

$$\frac{d}{d\theta} \int_{x \in \mathcal{X}} \frac{\partial}{\partial \theta} f_X(x|\theta) dx = \int_{x \in \mathcal{X}} \frac{\partial^2}{\partial \theta^2} f_X(x|\theta) dx$$

which are true for exponential family, then

$$I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = -E\left[\frac{\partial^2}{\partial \theta^2} \log f_X(X|\theta)\right]$$

Example - Poisson Distribution

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$
- $\lambda_1 = \overline{X}$
- $\lambda_2 = s_{\mathbf{X}}^2$
- $E[\lambda_1] = E(\overline{X}) = \lambda$.

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$
- $\lambda_1 = \overline{X}$
- $\lambda_2 = s_{\mathbf{X}}^2$
- $E[\lambda_1] = E(\overline{X}) = \lambda$.

Example - Poisson Distribution

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$
- $\lambda_1 = \overline{X}$
- $\lambda_2 = s_{\mathbf{X}}^2$
- $E[\lambda_1] = E(\overline{X}) = \lambda$.

$$I(\lambda) = E\left[\left\{\frac{\partial}{\partial \lambda} \log f_X(X|\lambda)\right\}^2\right] = -E\left[\frac{\partial^2}{\partial \lambda^2} \log f_X(X|\lambda)\right]$$

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$
- $\lambda_1 = \overline{X}$
- $\lambda_2 = s_{\mathbf{X}}^2$
- $E[\lambda_1] = E(\overline{X}) = \lambda$.

$$\begin{split} I(\lambda) &= E\left[\left\{\frac{\partial}{\partial\lambda}\log f_X(X|\lambda)\right\}^2\right] = -E\left[\frac{\partial^2}{\partial\lambda^2}\log f_X(X|\lambda)\right] \\ &= -E\left[\frac{\partial^2}{\partial\lambda^2}\log\frac{e^{-\lambda}\lambda^X}{X!}\right] = -E\left[\frac{\partial^2}{\partial\lambda^2}\left(-\lambda + X\log\lambda - \log X!\right)\right] \end{split}$$

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$
- $\lambda_1 = \overline{X}$
- $\lambda_2 = s_{\mathbf{X}}^2$
- $E[\lambda_1] = E(\overline{X}) = \lambda$.

$$\begin{split} I(\lambda) &= E\left[\left\{\frac{\partial}{\partial\lambda}\log f_X(X|\lambda)\right\}^2\right] = -E\left[\frac{\partial^2}{\partial\lambda^2}\log f_X(X|\lambda)\right] \\ &= -E\left[\frac{\partial^2}{\partial\lambda^2}\log\frac{e^{-\lambda}\lambda^X}{X!}\right] = -E\left[\frac{\partial^2}{\partial\lambda^2}\left(-\lambda + X\log\lambda - \log X!\right)\right] \\ &= E\left[\frac{X}{\lambda^2}\right] = \frac{1}{\lambda^2}E(X) = \frac{1}{\lambda} \end{split}$$

Example - Poisson Distribution (cont'd)

Therefore, the Cramer-Rao lower bound is

$$\operatorname{Var}[W(\mathbf{X})] \ge \frac{1}{nI(\lambda)} = \frac{\lambda}{n}$$

where W is any unbiased estimator.

Therefore, the Cramer-Rao lower bound is

$$\operatorname{Var}[W(\mathbf{X})] \ge \frac{1}{nI(\lambda)} = \frac{\lambda}{n}$$

where W is any unbiased estimator.

$$\operatorname{Var}(\hat{\lambda}_1) = \operatorname{Var}(\overline{X}) = \frac{\operatorname{Var}(X)}{n} = \frac{\lambda}{n}$$

29 / 33

Therefore, the Cramer-Rao lower bound is

$$\operatorname{Var}[W(\mathbf{X})] \ge \frac{1}{nI(\lambda)} = \frac{\lambda}{n}$$

where W is any unbiased estimator.

$$\operatorname{Var}(\hat{\lambda}_1) = \operatorname{Var}(\overline{X}) = \frac{\operatorname{Var}(X)}{n} = \frac{\lambda}{n}$$

Therefore, $\lambda_1 = \overline{X}$ is the best unbiased estimator of λ .

$$\operatorname{Var}(\hat{\lambda}_2) > \frac{\lambda}{n}$$

(details is omitted), so $\hat{\lambda}_2$ is not the best unbiased estimator.

With and without Lemma 7.3.11

With Lemma 7.3.11

$$\mathit{I}(\lambda) = -E\left[\tfrac{\partial^2}{\partial \lambda^2}\log f_{\mathit{X}}(\mathit{X}|\lambda)\right] = -E\left[\tfrac{\partial^2}{\partial \lambda^2}\left(-\lambda + \mathit{X}\log\lambda - \log\mathit{X}!\right)\right] = \tfrac{1}{\lambda}$$

With and without Lemma 7.3.11

With Lemma 7.3.11

$$\mathit{I}(\lambda) = -E\left[\frac{\partial^2}{\partial \lambda^2} \log f_X(X|\lambda)\right] = -E\left[\frac{\partial^2}{\partial \lambda^2} \left(-\lambda + X \log \lambda - \log X!\right)\right] = \frac{1}{\lambda}$$

Without Lemma 7.3.11

$$I(\lambda) = E\left[\left\{\frac{\partial}{\partial \lambda} \log f_X(X|\lambda)\right\}^2\right] = E\left[\left\{\frac{\partial}{\partial \lambda} \left(-\lambda + X \log \lambda - \log X!\right)\right\}^2\right]$$

With Lemma 7.3.11

$$\mathit{I}(\lambda) = -E\left[\frac{\partial^2}{\partial \lambda^2} \log f_X(X|\lambda)\right] = -E\left[\frac{\partial^2}{\partial \lambda^2} \left(-\lambda + X \log \lambda - \log X!\right)\right] = \frac{1}{\lambda}$$

Without Lemma 7.3.11

$$\begin{split} I(\lambda) &= E\left[\left\{\frac{\partial}{\partial\lambda}\log f_X(X|\lambda)\right\}^2\right] = E\left[\left\{\frac{\partial}{\partial\lambda}\left(-\lambda + X\log\lambda - \log X!\right)\right\}^2\right] \\ &= E\left[\left\{-1 + \frac{X}{\lambda}\right\}^2\right] = E\left[1 - 2\frac{X}{\lambda} + \frac{X^2}{\lambda^2}\right] = 1 - 2\frac{E(X)}{\lambda} + \frac{E(X^2)}{\lambda^2} \end{split}$$

With and without Lemma 7.3.11

With Lemma 7.3.11

$$I(\lambda) = -E\left[\frac{\partial^2}{\partial \lambda^2} \log f_X(X|\lambda)\right] = -E\left[\frac{\partial^2}{\partial \lambda^2} \left(-\lambda + X \log \lambda - \log X!\right)\right] = \frac{1}{\lambda}$$

Without Lemma 7.3.11

$$\begin{split} I(\lambda) &= E\left[\left\{\frac{\partial}{\partial\lambda}\log f_X(X|\lambda)\right\}^2\right] = E\left[\left\{\frac{\partial}{\partial\lambda}\left(-\lambda + X\log\lambda - \log X!\right)\right\}^2\right] \\ &= E\left[\left\{-1 + \frac{X}{\lambda}\right\}^2\right] = E\left[1 - 2\frac{X}{\lambda} + \frac{X^2}{\lambda^2}\right] = 1 - 2\frac{E(X)}{\lambda} + \frac{E(X^2)}{\lambda^2} \\ &= 1 - 2\frac{E(X)}{\lambda} + \frac{\operatorname{Var}(X) + [E(X)]^2}{\lambda^2} = 1 - 2\frac{\lambda}{\lambda} + \frac{\lambda + \lambda^2}{\lambda^2} = \frac{1}{\lambda} \end{split}$$

Example - Normal Distribution

• $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.

Example - Normal Distribution

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.
- The Cramer-Rao bound for μ is $[nI(\mu)]^{-1}$.

Example - Normal Distribution

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.
- The Cramer-Rao bound for μ is $[nI(\mu)]^{-1}$.

$$I(\mu) = -E \left[\frac{\partial^2}{\partial \mu^2} \log f_X(X|\mu) \right]$$

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.
- The Cramer-Rao bound for μ is $[nI(\mu)]^{-1}$.

$$I(\mu) = -E \left[\frac{\partial^2}{\partial \mu^2} \log f_X(X|\mu) \right]$$
$$= -E \left[\frac{\partial^2}{\partial \mu^2} \log \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(X-\mu)^2}{2\sigma^2} \right) \right\} \right]$$

- $X_1 \cdot \cdots \cdot X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.
- The Cramer-Rao bound for μ is $[nI(\mu)]^{-1}$.

$$I(\mu) = -E \left[\frac{\partial^2}{\partial \mu^2} \log f_X(X|\mu) \right]$$

$$= -E \left[\frac{\partial^2}{\partial \mu^2} \log \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(X-\mu)^2}{2\sigma^2} \right) \right\} \right]$$

$$= -E \left[\frac{\partial^2}{\partial \mu^2} \left\{ -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(X-\mu)^2}{2\sigma^2} \right\} \right]$$

- $X_1 \cdot \cdots \cdot X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.
- The Cramer-Rao bound for μ is $[nI(\mu)]^{-1}$.

$$I(\mu) = -E \left[\frac{\partial^2}{\partial \mu^2} \log f_X(X|\mu) \right]$$

$$= -E \left[\frac{\partial^2}{\partial \mu^2} \log \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(X-\mu)^2}{2\sigma^2} \right) \right\} \right]$$

$$= -E \left[\frac{\partial^2}{\partial \mu^2} \left\{ -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(X-\mu)^2}{2\sigma^2} \right\} \right]$$

$$= -E \left[\frac{\partial}{\partial \mu} \left\{ \frac{2(X-\mu)}{2\sigma^2} \right\} \right] = \frac{1}{\sigma^2}$$

Question

When can we interchange the order of differentiation and integration?

Question

When can we interchange the order of differentiation and integration?

Answer

For exponential family, always yes.

Question

When can we interchange the order of differentiation and integration?

<u>Answer</u>

- For exponential family, always yes.
- Not always yes for non-exponential family. Will have to check the individual case.

Question

When can we interchange the order of differentiation and integration?

Answer

- For exponential family, always yes.
- Not always yes for non-exponential family. Will have to check the individual case.

Example

$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$$

Question

When can we interchange the order of differentiation and integration?

Answer

- For exponential family, always yes.
- Not always yes for non-exponential family. Will have to check the individual case.

Example

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$$

$$\frac{d}{d\theta} \int_0^\theta h(x) f_X(x|\theta) dx \neq \int_0^\theta h(x) \frac{\partial}{\partial \theta} f_X(x|\theta) dx$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かへの

Summary

Today

- Invariance Property
- Mean Squared Error
- Unbiased Estimator
- Cramer-Rao inequality

Summary

Today

- Invariance Property
- Mean Squared Error
- Unbiased Estimator
- Cramer-Rao inequality

Next Lecture

More on Cramer-Rao inequality

