Biostatistics 602 - Statistical Inference
Lecture 11
Evaluation of Point Estimators
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Recap
@0000

Some News

= Homework 3 is posted.
= Due is Tuesday, February 26th.

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 2 /33



Recap
@0000

Some News

= Homework 3 is posted.
= Due is Tuesday, February 26th.

= Next Thursday (Feb 21) is the midterm day.

= We will start sharply at 1:10pm.
= It would be better to solve homework 3 yourself to get prepared.

= The exam is closed book, covering all the material from Lecture 1 to
12.

= Last year's midterm is posted on the web page.
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Last Lecture

@ What is a maximum likelihood estimator (MLE)?
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Recap
(o] lelele]

Last Lecture

@ What is a maximum likelihood estimator (MLE)?

® How can you find an MLE?

©® Does an ML estimate always fall into a valid parameter space?
O If you know MLE of 6, can you also know MLE of 7(0)?
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Recap
[e]e] Tele]

Recap - Maximum Likelihood Estimator

= For a given sample point x = (z1, -+ , zp),

= let A(x) be the value such that

= L(f|x) attains its maximum.

= More formally, L(A(x)|x) > L(0|x) Y0 € Q where 6(x) € Q.

= O(x) is called the maximum likelihood estimate of § based on data x,
= and A(X) is the maximum likelihood estimator (MLE) of 0.
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Recap
[e]e]e] o]

Recap - Invariance Property of MLE

If § is the MLE of 6, what is the MLE of 7(6)?

X1, , X, > Bernoulli(p) where 0 < p < 1.
@ What is the MLE of p?
® What is the MLE of odds, defined by n = p/(1 — p)?
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Recap
0000e

Getting MLE of n = 1%1) from p

n %

L*(W|X) = m

= From MLE of p, we know L*(n|x) is maximized when
p=n/(1+n) =p.

= Equivalently, L*(n|x) is maximized when n = p/(1 — p) = 7(p),
because 7 is a one-to-one function.

= Therefore 1) = 7(p).
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MLE
€000

Invariance Property of MLE

Denote the MLE of 6 by 0. If 7(6) is an one-to-one function of 6, then

~

MLE of 7(0) is 7(0).
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MLE
€000

Invariance Property of MLE

Denote the MLE of 8 by 6. If 7(6) is an one-to-one function of 6, then

~

MLE of (6) is (f).

Proof

The likelihood function in terms of 7(6) = n is

| A

L(r0)x) = ]]/fx(l0)
=1

v
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MLE
€000

Invariance Property of MLE

Denote the MLE of 8 by 6. If 7(6) is an one-to-one function of 6, then

~

MLE of (6) is (f).

Proof

The likelihood function in terms of 7(6) = n is

| A

n

L(rO)x) = []/x(@l6) =] Azlr"0)
=1

=1

v
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MLE
€000

Invariance Property of MLE

Fact

Denote the MLE of 8 by 6. If 7(6) is an one-to-one function of 6, then

~

MLE of (6) is (f).

Proof
The likelihood function in terms of 7(6) = n is

\

n

11 Fx(@il6) = [ [ Azdr—" ()
=1

=1
= L (n)lx)

LA (7 (0)1x)

v
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MLE
€000

Invariance Property of MLE

Fact
Denote the MLE of 8 by 6. If 7(6) is an one-to-one function of 6, then

~

MLE of (6) is (f).

Proof
The likelihood function in terms of 7(6) = n is

| A

n

11 Fx(@il6) = [ [ Azdr—" ()
=1

=1
= L (n)lx)

We know this function is maximized when 77! (1) = 0, or equivalently,
when n = 7(6).

LA (7 (0)1x)

v
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MLE
€000

Invariance Property of MLE

Fact

Denote the MLE of 8 by 6. If 7(6) is an one-to-one function of 6, then

~

MLE of (6) is (f).

Proof
The likelihood function in terms of 7(6) = n is

\

11 Fx(@il6) = [ [ Azdr—" ()
=l =1
= L(r ' (m)x)

We know this function is maximized when 771(n)

A~

when 1 = 7(0). Therefore, MLE of 1 = 7(0) is ().

LA (7 (0)1x)

6, or equivalently,

v
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Induced Likelihood Function

= Let L(0|x) be the likelihood function for a given data =1, - , ay,
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Induced Likelihood Function

= Let L(0|x) be the likelihood function for a given data =1, - , ay,

= and let n = 7(A) be a (possibly not a one-to-one) function of 6.
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MLE
0®00

Induced Likelihood Function

= Let L(0|x) be the likelihood function for a given data =1, - , ay,

= and let n = 7(A) be a (possibly not a one-to-one) function of 6.

We define the induced likelihood function L* by

L*(n|x) = , sull)( )L(Q]x)
et (n

where 771(n) = {0:7(0) =7, 6 € Q}.
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MLE
0®00

Induced Likelihood Function

= Let L(0|x) be the likelihood function for a given data =1, - , ay,

= and let n = 7(A) be a (possibly not a one-to-one) function of 6.
We define the induced likelihood function L* by
L) = sup L(Blx)
oer—1(n)

where 771(n) = {0:7(0) =7, 6 € Q}.
= The value of 7 that maximize L*(n|x) is called the MLE of n = 7(6).

v
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MLE
0000

Invariance Property of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(), where 7(6) is any
function of 6.
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MLE
0000

Invariance Property of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(), where 7(6) is any
function of 6.

Proof - Using Induced Likelihood Function

L*(7lx)

| .

sup L*(nx)
n

v
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MLE
0000

Invariance Property of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(), where 7(6) is any
function of 6.

Proof - Using Induced Likelihood Function

L*(7lx)

| .

sup L*(n|x) =sup sup L(6|x)
n N ger—1(n)

v
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MLE
0000

Invariance Property of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(), where 7(6) is any
function of 6.

Proof - Using Induced Likelihood Function

| .

Tl = smiigh—on n L6
n N ger—1(n)

= sup L(0|x)
0

v
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MLE
0000

Invariance Property of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(), where 7(6) is any
function of 6.

Proof - Using Induced Likelihood Function

| .

Tl = smiigh—on n L6
n N ger—1(n)

= sgp L(0]x) = L(0]x)

v
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MLE
0000

Invariance Property of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(), where 7(6) is any
function of 6.

Proof - Using Induced Likelihood Function

Tl = smiigh—on n L6
n N ger—1(n)

= sgp L(0]x) = L(0]x)

L@x) =  sup L(O)x)
ber—1(r(0))

V.
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MLE
0000

Invariance Property of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(), where 7(6) is any
function of 6.

Proof - Using Induced Likelihood Function

Tl = smiigh—on n L6
n N ger—1(n)

= sgp L(0]x) = L(0]x)

L@x) =  sup  L(0|x) = L*[7(0)|x]
oer—1(7(0))

V.
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MLE
0000

Invariance Property of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(), where 7(6) is any
function of 6.

Proof - Using Induced Likelihood Function

Tl = smiigh—on n L6
n N ger—1(n)

= sgp L(0]x) = L(0]x)

L@x) =  sup  L(0|x) = L*[7(0)|x]
oer—1(7(0))

Hence, L*(7|x) = L*[7(0)|x] and 7(6) is the MLE of 7(6).

V.
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Properties of MLE

@ Optimal in some sense : We will study this later
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Properties of MLE

@ Optimal in some sense : We will study this later

® By definition, MLE will always fall into the range of the parameter
space.
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Properties of MLE

@ Optimal in some sense : We will study this later

® By definition, MLE will always fall into the range of the parameter
space.

©® Not always easy to obtain; may be hard to find the global maximum.
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MLE
feelel ]

Properties of MLE

@ Optimal in some sense : We will study this later

® By definition, MLE will always fall into the range of the parameter
space.

©® Not always easy to obtain; may be hard to find the global maximum.

@ Heavily depends on the underlying distributional assumptions (i.e. not
robust).
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Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 6 is an estimator for 6, then the bias of 6 is defined as
Bias(0) = E(0) — 0
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Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 6 is an estimator for 6, then the bias of 6 is defined as
Bias(0) = E(0) — 0

If the bias is equal to 0, then 0 is an unbiased estimator for 6.
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MLE Evaluation

Summar
[ Jelele]e] O

Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 0 is an estimator for 6, then the bias of 0 is defined as
Bias(0) = E(0) — 0

If the bias is equal to 0, then 0 is an unbiased estimator for 6.

Example

| A\

X1, , X, are iid samples from a distribution with mean pu. Let
X=13"" | X;is an estimator of 4.

v
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MLE Evaluation

Summar
[ Jelele]e] O

Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 0 is an estimator for 6, then the bias of 0 is defined as
Bias(0) = E(0) — 0

If the bias is equal to 0, then 0 is an unbiased estimator for 6.

Example

| A\

)7(1, -+, X, are iid samples from a distribution with mean pu. Let
X=15"" | X, is an estimator of y. The bias is
Bias(n) = B(X)—p

v
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MLE Evaluation

Summar
[ Jelele]e] O

Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 0 is an estimator for 6, then the bias of 0 is defined as
Bias(0) = E(0) — 0

If the bias is equal to 0, then 0 is an unbiased estimator for 6.

)7(1, -+, X, are iid samples from a distribution with mean pu. Let
X =+ X;is an estimator of u. The bias is
Bias(n) = B(X)—p

1 n
=i -

v

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 11 /33



MLE Evaluation
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Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 0 is an estimator for 6, then the bias of 0 is defined as
Bias(0) = E(0) — 0

If the bias is equal to 0, then 0 is an unbiased estimator for 6.

)7(1, -+, X, are iid samples from a distribution with mean pu. Let
X =+ X;is an estimator of u. The bias is
Bias(n) = B(X)—p

1 n
=i -
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MLE Evaluation

Summar
[ Jelele]e] O

Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 0 is an estimator for 6, then the bias of 0 is defined as
Bias(0) = E(0) — 0

If the bias is equal to 0, then 0 is an unbiased estimator for 6.

X1, , X, are iid samples from a distribution with mean pu. Let

X =+ X;is an estimator of u. The bias is
Bias(u) = E(X) —p

1 & 1 —
= E<nZXi>_“:nZE(Xi)_“
=1 =il

v
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MLE Evaluation

Summar
[ Jelele]e] O

Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 0 is an estimator for 6, then the bias of 0 is defined as
Bias(0) = E(0) — 0

If the bias is equal to 0, then 0 is an unbiased estimator for 6.

X1, , X, are iid samples from a distribution with mean pu. Let

X =+ X;is an estimator of u. The bias is
Bias(u) = E(X) —p

1 — 1 —
= E(ﬂZXz)_N:nZE(Xi)_M:M_MZO
=1 =il

v
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MLE Evaluation er-R Summar
[e]e]e]e} [ Jelele]e] O

Method of Evaluating Estimators

Definition : Unbiasedness

Suppose 0 is an estimator for 6, then the bias of 0 is defined as
Bias(0) = E(0) — 0

If the bias is equal to 0, then 0 is an unbiased estimator for 6.

X1, , X, are iid samples from a distribution with mean pu. Let
X =157 X,is an estimator of y1. The bias is

T n

Bias(n) = E(X)—p
= E(;ZXz’)—MZ;ZE(XQ—M:M—M:O
=1 =il

Therefore X is an unbiased estimator for .

v
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How important is unbiased?

Density

theta_hat
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Evaluation
o] Jelele]

How important is unbiased?

Density

theta_hat

= 6, (blue) is unbiased but has a chance to be very far away from 6 = 0.
= 0y (red) is biased but more likely to be closer to the true 6 than 6.
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Mean Squared Error

Definition

Mean Squared Error (MSE) of an estimator 0 is defined as
MSE() = E[(d — 6)]?
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Evaluation
[e]e] le]e]

Mean Squared Error

Definition

Mean Squared Error (MSE) of an estimator 0 is defined as
MSE() = E[(d — 6)]?

| \

Property of MSE

~

MSE(f) = E[(0 — Ef + E§ — 6)]?
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Evaluation
[e]e] le]e]

Mean Squared Error

Definition

Mean Squared Error (MSE) of an estimator 0 is defined as
MSE() = E[(d — 6)]?

| \

Property of MSE

~

MSE(f) = E[(0 — Ef + E§ — 6)]?
E[(6 — E§)*] + E[(Fd — 0)%] + 2E[(f — E

~

) EI(E) —6)]
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Evaluation
[e]e] le]e]

Mean Squared Error

Definition

Mean Squared Error (MSE) of an estimator 0 is defined as
MSE() = E[(d — 6)]?

Property of MSE
MSE() = E[(§ — EO + Ed — 0))?
E[(6 — )]+E[(E9 0)%] + 2E[() — EO)|E|(E — )]
= E[(0— E9)?) + (EO — )%+ 2(FE) — EQ)E[(E) — 0)]

| \
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Evaluation
[e]e] le]e]

Mean Squared Error

Definition

Mean Squared Error (MSE) of an estimator 0 is defined as
MSE() = E[(d — 6)]?

Property of MSE

MSE(f) = E[(0 — E§ + Ed — 0))?
= E[(0 EA)]+E[(E9 0)%] + 2E[() — EO)|E|(E — )]

= E[(0 — F0)?| + (E§ — 0) + 2(F9 — EA)E[(Ef — 0)]
Var(0) + Bias?(6)

| \
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EE

iid.
= Xi,, X = N (i, 1)

= =1, pp =X
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Evaluation
[e]e]e] Jo]

EE

- Xy, X 2SN (1)
= =1, pp =X

MSE(fi) = E(ju —p)* = (1—p)?
MSE(fi2) = E(X — p)?* = Var(

=
i
||
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Evaluation
[e]e]e] Jo]

EE

iid.
= Xi,, X = N (i, 1)

»pur =1, pp =X

MSE(in) = Bl — ) = (1 - p)?
MSE(jiz) = BE(X-p)* = Var(X) = %

= Suppose that the true g = 1, then MSE(u1) = 0 < MSE(u2), and no
estimator can beat i in terms of MSE when true p = 1.
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EE

iid.
= Xi,, X = N (i, 1)

»pur =1, pp =X

MSE(in) = Bl — ) = (1 - p)?
MSE(jiz) = BE(X-p)* = Var(X) = %

= Suppose that the true g = 1, then MSE(u1) = 0 < MSE(u2), and no
estimator can beat i in terms of MSE when true p = 1.

= Therefore, we cannot find an estimator that is uniformly the best in
terms of MSE across all 6 € Q2 among all estimators
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Evaluation
[e]e]e] Jo]

EE

iid.
= Xi,, X = N (i, 1)

= =1 pp=X

MSE(in) = Bl — ) = (1 - p)?
MSE(jiz) = BE(X-p)* = Var(X) = %

= Suppose that the true g = 1, then MSE(u1) = 0 < MSE(u2), and no
estimator can beat i in terms of MSE when true p = 1.

= Therefore, we cannot find an estimator that is uniformly the best in
terms of MSE across all 6 € Q2 among all estimators

= Restrict the class of estimators, and find the "best” estimator within
the small class.
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Uniformly Minimum Variance Unbiased Estimator

Definition

W*(X) is the best unbiased estimator, or uniformly minimum variance
unbiased estimator (UMVUE) of 7(6) if,
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Uniformly Minimum Variance Unbiased Estimator

Definition

W*(X) is the best unbiased estimator, or uniformly minimum variance
unbiased estimator (UMVUE) of 7(6) if,

@ E[W*(X)|0] = 7(0) for all § (unbiased)
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Uniformly Minimum Variance Unbiased Estimator

Definition

W*(X) is the best unbiased estimator, or uniformly minimum variance
unbiased estimator (UMVUE) of 7(6) if,

@ E[W*(X)|0] = 7(0) for all 6 (unbiased)

® and Var[W*(X)|0] < Var[W(X)|6] for all #, where W is any other
unbiased estimator of 7(6) (minimum variance).
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Evaluation
[e]e]ele] ]

Uniformly Minimum Variance Unbiased Estimator

Definition

W*(X) is the best unbiased estimator, or uniformly minimum variance
unbiased estimator (UMVUE) of 7(0) if,

@ E[W*(X)|0] = 7(0) for all 6 (unbiased)

® and Var[W*(X)|0] < Var[W(X)|6] for all #, where W is any other
unbiased estimator of 7(6) (minimum variance).

v

How to find the Best Unbiased Estimator

= Find the lower bound of variances of any unbiased estimator of 7(6),
say B(0).

V.
Hyun Min Kang
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Evaluation
[e]e]ele] ]

Uniformly Minimum Variance Unbiased Estimator

W*(X) is the best unbiased estimator, or uniformly minimum variance
unbiased estimator (UMVUE) of 7(0) if,
@ E[W*(X)|0] = 7(0) for all 6 (unbiased)
® and Var[W*(X)|0] < Var[W(X)|6] for all #, where W is any other
unbiased estimator of 7(6) (minimum variance).

v

How to find the Best Unbiased Estimator

= Find the lower bound of variances of any unbiased estimator of 7(6),
say B(0).

= If W* is an unbiased estimator of 7(6) and satisfies
Var[W*(X)|0] = B(0), then W* is the best unbiased estimator.

v
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Cramer-Rao inequality

Theorem 7.3.9 : Cramer-Rao Theorem

Let X1, -+, X, be a sample with joint pdf/pmf of fx(x|@). Suppose W(X)
is an estimator satisfying

y
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Cramer-Rao inequality

Theorem 7.3.9 : Cramer-Rao Theorem

Let X1, -+, X, be a sample with joint pdf/pmf of fx(x|@). Suppose W(X)
is an estimator satisfying

@ E[W(X)|8] = 7(), V6 € .

y
Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 16 / 33



Cramer-Rao
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Cramer-Rao inequality

Theorem 7.3.9 : Cramer-Rao Theorem

Let X1, -+, X, be a sample with joint pdf/pmf of fx(x|@). Suppose W(X)
is an estimator satisfying

@ E[W(X)|0] =7(0), VO € Q.
@ Var[IW(X)|0] < co.

y
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Cramer-Rao
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Cramer-Rao inequality

Theorem 7.3.9 : Cramer-Rao Theorem

Let X1, -+, X, be a sample with joint pdf/pmf of fx(x|@). Suppose W(X)
is an estimator satisfying

@ E[W(X)|0] =7(0), VO € Q.
@ Var[IW(X)|0] < co.

For h(x) = 1 and h(x) = W(x), if the differentiation and integrations are
interchangeable, i.e.

y
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Cramer-Rao
0000000000000 0000

Cramer-Rao inequality

Theorem 7.3.9 : Cramer-Rao Theorem

Let X1, -+, X, be a sample with joint pdf/pmf of fx(x|@). Suppose W(X)
is an estimator satisfying

@ E[W(X)|0] =7(0), VO € Q.
@ Var[IW(X)|0] < co.

For h(x) = 1 and h(x) = W(x), if the differentiation and integrations are
interchangeable, i.e.
SEH = [ k= [ 0 )
7 X = = X)fx (x]0)dx = X 507 x|0) dx

zeX zEX

y
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Cramer-Rao inequality

Theorem 7.3.9 : Cramer-Rao Theorem

Let X1, -+, X, be a sample with joint pdf/pmf of fx(x|@). Suppose W(X)
is an estimator satisfying

@ E[W(X)|0] =7(0), VO € Q.
@ Var[IW(X)|0] < co.

For h(x) = 1 and h(x) = W(x), if the differentiation and integrations are
interchangeable, i.e.

Gl = o [ Hookie)ax = [ heo gxo)ix
Then, a lower bound of Var[W(X)|6] is
Var[ W(X)] > O]l
~ B[{Zlogx(x/0)}?]

v
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Proving Cramer-Rao Theorem (1/4)

By Cauchy-Schwarz inequality,

[Cov(X, Y)]* < Var(X)Var(Y)
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Proving Cramer-Rao Theorem (1/4)

By Cauchy-Schwarz inequality,
[Cov(X, Y)]* < Var(X)Var(Y)

Replacing X and Y,
2

Cov{W(X), S-log (K|} | < Var[WOX)]Var [(;99 logfx<X|9>]
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Proving Cramer-Rao Theorem (1/4)

By Cauchy-Schwarz inequality,
[Cov(X, Y)]* < Var(X)Var(Y)

Replacing X and Y,

2

Cov{ W(X), % log fix(X|0)}| < Var[W(X)]Var [(;90 logfx(x|9)]
Var(wx) > LX), 1o fx(X|6)}]”
Var [ log fx (X[0)]

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 17 / 33



Cramer-Rao
0000000000000 0000

Proving Cramer-Rao Theorem (1/4)

By Cauchy-Schwarz inequality,
[Cov(X, Y)]* < Var(X)Var(Y)
Replacing X and Y,
d 2 9
Con W0, g5 (X100} < Nar{ W Var [ 2t 10

Var[ W(X)] [COV{ WX )’ 30 IngX(X|0)}]
Var [ log fx (X]6)]

Using Var(X) = EX? — (EX)?,

Var [(%logfx(X\H)] = B

[ 2 vasoxm )|~ 5[ 2 onsixm]
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Proving Cramer-Rao Theorem (2/4)

Bl gplouikxip)| = [ touk(xio)| cCxio) i
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Proving Cramer-Rao Theorem (2/4)

Bl gplouikxip)| = [ touk(xio)| cCxio) i

0
[ akee),
= L ey e
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Proving Cramer-Rao Theorem (2/4)

Bl gplouikxip)| = [ touk(xio)| cCxio) i

0
2 £ (x/6)
/xeX Sy x(xlf)x

0

[ X

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 18 / 33



Cramer-Rao
00e00000000000000

Proving Cramer-Rao Theorem (2/4)

Bl gplouikxip)| = [ touk(xio)| cCxio) i

0

Ak

- /xeX () X1
0

= [ s

d
= / x(x|@)dx  (by assumption)
db xeX
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Proving Cramer-Rao Theorem (2/4)

Bl gplouikxip)| = [ touk(xio)| cCxio) i

0
DR,
/xeX () X1

0
xeX %

d
= / x(x|@)dx  (by assumption)
db xeX

d
= —1:
7 0

x(x|6)dx
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Proving Cramer-Rao Theorem (2/4)

| gy los(X10)]

Var {889 log fX(X\Q)]

Hyun Min Kang

Biostatistics 602 - Lecture 11

/xeX [389 Iong(XW)] fx(x[0)dx

/ Salx(x16)
xeX fX(xw)

0
[ i)
d

do

d
1=
7 0

Fx (x]0) dx

Fx (x|0) dx
xeX

(by assumption)

9 2
E {aelogfx(x‘e)}
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Proving Cramer-Rao Theorem (3/4)

)
Cov | W(X), 55 log fx (X[6)
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Proving Cramer-Rao Theorem (3/4)

COV[W( ) 55

0 1ogfx<xw>]

— B W) 5 louik(XI9)| ~ LWL B| 7 lou ix(X1)
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Proving Cramer-Rao Theorem (3/4)

Cov | WX). 7 1o (XI)|
— B W) 5 louik(XI9)| ~ LWL B| 7 lou ix(X1)

— 5| W) g louik(XI)
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Proving Cramer-Rao Theorem (3/4)

Cov | WX). 7 1o (XI)|
— B W) 5 louik(XI9)| ~ LWL B| 7 lou ix(X1)
= B\ W0 g louix(XI9)| = [ W) tow (i)l
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Proving Cramer-Rao Theorem (3/4)

Cov [W( ), ;)9 logfx(X\H)]

— B W) 5 louik(XI9)| ~ LWL B| 7 lou ix(X1)

= B\ W0 g louix(XI9)| = [ W) tow (i)l
0

_ x @fx(xlﬁ) x .

Ay PR
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Proving Cramer-Rao Theorem (3/4)

Cov [W( ), ;)9 logfx(X\H)]

— B W) 5 louik(XI9)| ~ LWL B| 7 lou ix(X1)

= B\ W0 g louix(XI9)| = [ W) tow (i)l
o)

_ I T PP S

= R = |G o)
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Proving Cramer-Rao Theorem (3/4)

Cov [W( ), ;)9 logfx(X\H)]

— B W) 5 louik(XI9)| ~ LWL B| 7 lou ix(X1)

= B\ W0 g louix(XI9)| = [ W) tow (i)l
o)

_ I T PP S

= R = |G o)

) W(x)fx(x|0) (by assumption)
9 xeX
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Proving Cramer-Rao Theorem (3/4)

Cov | WX). 7 1o (XI)|

a6

— B W) 5 louik(XI9)| ~ LWL B| 7 lou ix(X1)

= B\ W0 g louix(XI9)| = [ W) tow (i)l
0
_ I L A
= | oo B oy = | W )
= di; W(x)fx(x|0) (by assumption)
d :
- d(,E[mxn—fT(e):r(e)
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Proving Cramer-Rao Theorem (4/4)

From the previous results

Var | 2 tou(Xin)| =

b {jglogfxmw)}?]
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Proving Cramer-Rao Theorem (4/4)

From the previous results

Var | 2 tou(Xin)| =

b {jglogfx<X|0>}2]

Cov [W(X),aaglogfx(xw)] = 7(0)

Therefore, Cramer-Rao lower bound is

[Cov{ W(X), & logfx(XW)}]
Var [89 IngX(Xle)]

Var[ W(X)]
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Proving Cramer-Rao Theorem (4/4)

From the previous results

Var | 2 tou(Xin)| =

b {jglogfx<X|0>}2]

Cov [W(X),aaglogfx(xw)] = 7(0)

Therefore, Cramer-Rao lower bound is

[Cov{ W(X), & log fx(X[0)}]*
Var [69 log fx (X]6)]
[~ (0))°
E {5y log fx(X[6)}?]

Var[ W(X)]
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Cramer-Rao bound in iid case

Corollary 7.3.10

If Xi,---, X, are iid samples from pdf/pmf fx(z]f), and the assumptions
in the above Cramer-Rao theorem hold, then the lower-bound of
Var[ W(X)|6] becomes
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Cramer-Rao bound in iid case

Corollary 7.3.10

If Xi,---, X, are iid samples from pdf/pmf fx(z]f), and the assumptions
in the above Cramer-Rao theorem hold, then the lower-bound of
Var[ W(X)|6] becomes

N [/ (6)
VarlWOOL = BT 1o (X017
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Cramer-Rao bound in iid case

Corollary 7.3.10

If Xi,---, X, are iid samples from pdf/pmf fx(z]f), and the assumptions
in the above Cramer-Rao theorem hold, then the lower-bound of
Var[ W(X)|6] becomes

reavi2
Var[ W(X)] Q)

2 B[S e f (X))

Proof
We need to show that

E [{gelogfx(X]H)}Ql = nE

| A\

{gelong(X\m}Q]

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 21 /33



Cramer-Rao
000000 @0000000000

Proving Corollary 7.3.10
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Proving Corollary 7.3.10

P 2
£ |{ g oesxio)}
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Proving Corollary 7.3.10

P 2
£ |{ g oesxio)}
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Proving Corollary 7.3.10

E

{2 wesexn |

Hyun Min Kang

E

{ n
=1
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Cramer-Rao
000000 @0000000000

B[S, {&los/x(Xd0)} +

5 i 108 Fx(Xil6) &5 log fy(X10)]
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Proving Corollary 7.3.10

Because X1, .-, X, are independent,

0
Z Gy log fx(Xi |‘9) long(X 10)
i#]

— ; E [660 long(Xi\Q)] [59 log fx(X; |9)]
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Proving Corollary 7.3.10

Because X1, .-, X, are independent,

i#]

B3 S log fy(Xi6) o5 o (X 9)]

— ; E [660 long(Xi\Q)] [689 log fx(X; |9)]

n

> { long<Xiw>}2]

i=1

D) 2
E {%long(X]Q)} = B
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Proving Corollary 7.3.10

Because X1, .-, X, are independent,

B[S o loa f(Xi6) o log (X 9)]
i#]

=Y E [660 long(Xi\Q)] [689 log fx(X; |9)]

i#j
5 {88010gfx(x’9)}2 = E i{(%logfx(&!@)}gl
= | {Bresixm)
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Proving Corollary 7.3.10

Because X1, .-, X, are independent,

B[S o loa f(Xi6) o log (X 9)]
i#]

— ; E [660 long(Xi\Q)] [689 log fx(X; |9)]

b 2
B |{ o xio)}

= F

> { & oss(x re>}2]

=1
{ 0w |0>}2]

:ZE

{2 long(X|9)}2]
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Remark from Corollary 7.3.10

In iid case, Cramer-Rao lower bound for an unbiased estimator of 0 is
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Remark from Corollary 7.3.10

In iid case, Cramer-Rao lower bound for an unbiased estimator of 0 is

1

Var[W(X)] > nE[%long(XW)}ﬂ
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Remark from Corollary 7.3.10

In iid case, Cramer-Rao lower bound for an unbiased estimator of 0 is

1
= WE[(2 log /x(X0)}7]

Because 7(0) = 0 and 7/(6) = 1.

Var[ W(X)]
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Score Function

Definition: Score or Score Function for X

iid.
Xi,, X 2= fx(dl0)
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Score Function

Definition: Score or Score Function for X
X1, Xy~ fx(a]0)

S(X0) = o lorfx(XI9)
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Score Function

Definition: Score or Score Function for X

Xio Ko 7S fy(al6)
S(X0) = o lorfx(XI9)
E[S(X]9)] = O
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Score Function

Definition: Score or Score Function for X

Xio Ko 7S fy(al6)
S(X0) = o lorfx(XI9)
E[S(X]9)] = O
SN0 = - logf(XI0)
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Fisher Information Number

Definition: Fisher Information Number

[ vssxm}

I0) = E = E[S%(X]0)]
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Fisher Information Number

Definition: Fisher Information Number

[ vssxm}

[ s}

I0) = E = E[S%(X]0)]

L) = E
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Fisher Information Number

Definition: Fisher Information Number

2
10) = F { ;long<X|9>} = B[$*(X10)]
2
L) = E { (felogfx(xm}
2
= nE {889 long(X|0)}] nl(0)
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Fisher Information Number

Definition: Fisher Information Number

[ vssxm}

[ s}

{ long<X|e>}2] — ui(6)

I0) = E = E[S%(X]0)]

L) = E

= nk

The bigger the information number, the more information we have about
0, the smaller bound on the variance of unbiased estimates.
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Simplified Fisher Information

Lemma 7.3.11

If fx(z]0) satisfies the two interchangeability conditions

d
%/xe fx(al0)dz = / 80fX z|0) dz
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Simplified Fisher Information

Lemma 7.3.11

If fx(z]0) satisfies the two interchangeability cond|t|ons

d
o | o = [ Loy
d 8
o | e = [ o
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Simplified Fisher Information

Lemma 7.3.11

If fx(z]0) satisfies the two interchangeability cond|t|ons

d
o | o = [ Loy
d 8
o | e = [ o

which are true for exponential family, then

1w-s|{2 logfx<xw>}2] —_E [% g [x(11)
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Example - Poisson Distribution

= Xy, Xy, P Poisson(A)
.\ =
= )\2 — SX

o >l
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Example - Poisson Distribution

= Xy, Xy, P Poisson(A)
= A =X
= )y = sg(
= E[\] = E(X) =\
Cramer-Rao lower bound is I;'(A) = [nI(A)] L.
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Example - Poisson Distribution

= Xy, Xy, P Poisson(A)
= A =X
= )y = sg(
= E[\] = E(X) =\
Cramer-Rao lower bound is I;'(A) = [nI(A)] L.

2

) = B {glogfmu)}z] — | s low x|
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Example - Poisson Distribution

= Xy, Xy, P Poisson(A)
- A =X
= )y = sg(
= E[\] = E(X) =\
Cramer-Rao lower bound is I;'(\) = [nI(\)] !

) 2 BE
1) = 5|{ 5 e} ] | e B )
32 —A)\X 82
= [8>\210g T } = E[(")AQ( A+ Xlog A — logX!)]
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Example - Poisson Distribution

= Xy, Xy, P Poisson(A)
- A =X
= )y = sg(
= E[\] = E(X) =\
Cramer-Rao lower bound is I;'(\) = [nI(\)] !

I\ = E [82 long(XlA)]

ON?

0? e MNX 0?
= —E[Wlog | = E[(")AQ( A+ Xlog A — logX!)]
X 1 1
= M = 2P0 =3
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Example - Poisson Distribution (cont'd)

Therefore, the Cramer-Rao lower bound is

Var[ W(X)] > -

where W is any unbiased estimator.
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Example - Poisson Distribution (cont'd)

Therefore, the Cramer-Rao lower bound is

1 A
Varl WX)] 2 s = 2

where W is any unbiased estimator.

Var(\) = Var(X) Var(X)—z

n
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Example - Poisson Distribution (cont'd)

Therefore, the Cramer-Rao lower bound is

Var[ W(X)] > =

where W is any unbiased estimator.

Var(h) = Var(X) = V&) %

n
Therefore, \{ = X is the best unbiased estimator of \.

. A
Var(/\g) > —
n

(details is omitted), so Ay is not the best unbiased estimator.
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With and without Lemma 7.3.11

i) = —E [59—; long(X\)\)} - E [a% (=A+ XlogA — log X1)| = 1
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With and without Lemma 7.3.11

With Lemma 7.3.11

I(\) = B | &5 log fx(XIN)] = B[ & (~A+ Xlog A — log X1)| = %

v

Without Lemma 7.3.11

o - 5 {;}\bgfx(XP\)}? _ B {(;3)\(—/\+Xlog/\—logX‘.)}2]
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With and without Lemma 7.3.11

With Lemma 7.3.11
i) = E[W long(X\)\)} E{W( A+ Xlog A — logX!)} —1

Without Lemma 7.3.11

{6‘1 1ong(X|)\)}2 {8‘1 (=A+ Xlog A — 10gX1)}2]
oy

I\

E =F

E

X X2 E(X) E(X?)
=E[1-2= =1-2——
[ N )\2} PREY
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With and without Lemma 7.3.11

With Lemma 7.3.11
i) = E[W 1ong(X\A)} E{W( A+ Xlog A — logX!)} —1

Without Lemma 7.3.11
) 2 ) 2
{GAlong(XM)} {(—/\+Xlog/\—logX1)} ]

O\
[Coet]-ehot ) ome

I(A) E =E

E

1-2
)\+A2 A A2

(X) VarX)+[E(X)] 1_254_)\—1—)\2_1
A2 A

A2
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Example - Normal Distribution

o _
 Xi,-oo, X, PS8 N(p, 0%), where 02 is known.
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Example - Normal Distribution

o _
 Xi,-oo, X, PS8 N(p, 0%), where 02 is known.

= The Cramer-Rao bound for 1 is [n(y)] 7.
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Example - Normal Distribution

o _
 Xi,-oo, X, PS8 N(p, 0%), where 02 is known.

= The Cramer-Rao bound for 1 is [n(y)] 7.

2
M) = B [ai 1ong<X|u>]
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Example - Normal Distribution

= Xy, Xy lfl\(-i/./\/’(u, 2), where o2 is known.

= The Cramer-Rao bound for i is [nd(p)]~*

) = B[ o tog ()

- e (5]
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Example - Normal Distribution

= Xy, Xy H N (i, 0?%), where o2 is known.

= The Cramer-Rao bound for 1 is [n(y)] 7.

) = —-E :aa;logfx(XW)]
_ _Eig;log{\/;r?“p(_()(;ﬁﬂ]
- [ { Sty - )
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Example - Normal Distribution

= Xy, Xy H N (i, 0?%), where o2 is known.

= The Cramer-Rao bound for 1 is [n(y)] 7.

L
M) = —B _Wlogfx(Xlu)]

B K 1 (X —p)?
= F 87#2 log{ 2mo? P (_ 202 > }]
s 1 2 (X — p)?

- (-2

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013

31/ 33



Cramer-Rao
0000000000000 000e

Applying Lemma 7.3.11

When can we interchange the order of differentiation and integration?
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Applying Lemma 7.3.11

When can we interchange the order of differentiation and integration?

= For exponential family, always yes.
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Applying Lemma 7.3.11

When can we interchange the order of differentiation and integration?

= For exponential family, always yes.

= Not always yes for non-exponential family. Will have to check the
individual case.
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Applying Lemma 7.3.11

When can we interchange the order of differentiation and integration?

= For exponential family, always yes.

= Not always yes for non-exponential family. Will have to check the
individual case.

X1, Xy~ Uniform(0, 0)
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Applying Lemma 7.3.11

When can we interchange the order of differentiation and integration?

= For exponential family, always yes.

= Not always yes for non-exponential family. Will have to check the
individual case.

X1, Xn A& Uniform(0, 0)
0

o [ i [ 1 ot

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 32/33



Summary
[ ]

Summary

= |nvariance Property

= Mean Squared Error

Unbiased Estimator

= Cramer-Rao inequality
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Summary
[ ]

Summary

= |nvariance Property
= Mean Squared Error
= Unbiased Estimator

= Cramer-Rao inequality

= More on Cramer-Rao inequality
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