necap

Hypothesis Testing

nmary F

Hypothesis Testing

Summary

Last Lecture

Biostatistics 602 - Statistical Inference Lecture 18 Hypothesis Testing

Hyun Min Kang

March 21th, 2013

- What does mean that a statistic is asymptotically normal?
- What kind of tools are useful for obtaining parameters for asymptotic normal distributions?
- How can you evaluate whether a consistent estimator is better than another consistent estimator?
- What is the Asymptotic Relative Efficiency?
- What does mean that a statistic is asymptotically efficient?
- Is an MLE asymptotically efficient?

Hyun Min Kang

Biostatistics 602 - Lecture 18

March 21th, 2013

/ 35

Biostatistics 602 - Lecture 18

March 21th, 2013

2 / 35

Recap 0•0000

Hypothesis Testing

Summar

Hypothesis Testing

Summary

Asymptotic Normality

Definition: Asymptotic Normality

A statistic (or an estimator) $W_n(\mathbf{X})$ is asymptotically normal if

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \nu(\theta))$$

for all θ

where $\stackrel{d}{\longrightarrow}$ stands for "converge in distribution"

- $\tau(\theta)$: "asymptotic mean"
- $\nu(\theta)$: "asymptotic variance"

We denote $W_n \sim \mathcal{AN}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$.

Central Limit Theorem

Central Limit Theorem

Hyun Min Kang

Assume $X_i \stackrel{\text{i.i.d.}}{\smile} f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

$$\Leftrightarrow \sqrt{n} \left(\overline{X} - \mu(\theta) \right) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma^2(\theta))$$

Theorem 5.5.17 - Slutsky's Theorem

If $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$, $Y_n \stackrel{\mathrm{P}}{\longrightarrow} a$, where a is a constant,

A sequence of estimators W_n is asymptotically efficient for $\tau(\theta)$ if for all

Delta Method

Theorem 5.5.24 - Delta Method

Assume $W_n \sim \mathcal{AN}\left(\theta, \frac{\nu(\theta)}{n}\right)$. If a function g satisfies $g'(\theta) \neq 0$, then $g(W_n) \sim \mathcal{AN}\left(g(\theta), [g'(\theta)]^2 \frac{\nu(\theta)}{n}\right)$

Hyun Min Kang

Biostatistics 602 - Lecture 18

March 21th, 2013

Hyun Min Kang

Asymptotic Efficiency

 $\theta \in \Omega$,

Definition: Asymptotic Efficiency for iid samples

 $\iff W_n \quad \sim \quad \mathcal{AN}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)$

 $I(\theta) = E \left[\left\{ \frac{\partial}{\partial \theta} \log f(X|\theta) \right\}^2 \middle| \theta \right]$

Note: $\frac{[\tau'(\theta)]^2}{nI(\theta)}$ is the C-R bound for unbiased estimators of $\tau(\theta)$.

 $\sqrt{n}(W_n - \tau(\theta)) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$

 $= -E \left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta) \middle| \theta \right]$ (if interchangeability holds

6 / 35

000000

Asymptotic Efficiency of MLEs

Theorem 10.1.12

Let X_1, \dots, X_n be iid samples from $f(x|\theta)$. Let $\hat{\theta}$ denote the MLE of θ . Under same regularity conditions, $\hat{\theta}$ is consistent and asymptotically normal for θ , i.e.

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{1}{I(\theta)}\right) \text{ for every } \theta \in \Omega$$

And if $\tau(\theta)$ is continuous and differentiable in θ , then

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{[\tau'(\theta)]}{I(\theta)}\right)$$

$$\Rightarrow \tau(\hat{\theta}) \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)$$

Again, note that the asymptotic variance of $\tau(\hat{\theta})$ is Cramer-Rao lower bound for unbiased estimators of $\tau(\theta)$.

Hypothesis Testing

Definition

A hypothesis is a statement about a population parameter

Two complementary statements about θ

- Null hypothesis : $H_0: \theta \in \Omega_0$
- Alternative hypothesis : $H_1: \theta \in \Omega_0^c$

 $\theta \in \Omega = \Omega \cup \Omega^c$.

Simple and composite hypothesis

Simple hypothesis

Both H_0 and H_1 consist of only one parameter value.

- $H_0: \theta = \theta_0 \in \Omega_0$
- $H_1: \theta = \theta_1 \in \Omega_0^c$

Composite hypothesis

Hyun Min Kang

One or both of H_0 and H_1 consist more than one parameter values.

- One-sided hypothesis: $H_0: \theta < \theta_0$ vs $H_1: \theta > \theta_0$.
- One-sided hypothesis: $H_0: \theta > \theta_0$ vs $H_1: \theta < \theta_0$.
- Two-sided hypothesis: $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.

March 21th, 2013

March 21th, 2013

Another Example of Hypothesis

- Let θ denotes the proportion of defective items from a machine.
- One may want the proportion to be less than a specified maximum acceptable proportion θ_0 .
- We want to test whether the products produced by the machine is acceptable.

 $H_0: \theta \leq \theta_0$ (acceptable)

 $H_1 : \theta > \theta_0$ (unacceptable)

An Example of Hypothesis

$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$$

Let X_i is the change in blood pressure after a treatment.

 H_0 : $\theta = 0$ (no effect)

 $H_1: \theta \neq 0$ (some effect)

Two-sided composite hypothesis.

Hyun Min Kang

Hypothesis Testing Procedure

A hypothesis testing procedure is a rule that specifies:

- $oldsymbol{1}$ For which sample points H_0 is accepted as true (the subset of the sample space for which H_0 is accepted is called the acceptable region).
- 2 For which sample points H_0 is rejected and H_1 is accepted as true (the subset of sample space for which H_0 is rejected is called the rejection region or critical region).

Rejection region (R) on a hypothesis is usually defined through a test statistic $W(\mathbf{X})$. For example,

$$R_1 = \{ \mathbf{x} : W(\mathbf{x}) > c, \mathbf{x} \in \mathcal{X} \}$$

$$R_2 = \{ \mathbf{x} : W(\mathbf{x}) < c, \mathbf{x} \in \mathcal{X} \}$$

Example of hypothesis testing

 $X_1, X_2, X_3 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$. Consider hypothesis tests

 $H_0 : p \le 0.5$

 $H_1 : p > 0.5$

• Test 1 : Reject H_0 if $\mathbf{x} \in \{(1, 1, 1)\}$

 \iff rejection region = $\{(1,1,1)\}$

 \iff rejection region = $\{\mathbf{x} : \sum x_i > 2\}$

• Test 2 : Reject H_0 if $\mathbf{x} \in \{(1,1,0), (1,0,1), (0,1,1), (1,1,1)\}$

 \iff rejection region = $\{(1,1,0),(1,0,1),(0,1,1),(1,1,1)\}$

 \iff rejection region = $\{\mathbf{x}: \sum x_i > 1\}$

Example

Let X_1, \dots, X_n be changes in blood pressure after a treatment.

 $H_0: \theta=0$

 $H_1: \theta \neq 0$

An example rejection region $R = \left\{\mathbf{x}: \frac{\overline{x}}{{}^{s}\!\mathbf{x}/\sqrt{n}} > 3\right\}$.

Decision

		Accept H_0	Reject H_0
Truth	H_0	Correct Decision	Type I error
	H_1	Type II error	Correct Decision

Hyun Min Kang

Biostatistics 602 - Lecture 18

March 21th, 2013

13

Hyun Min Kang

Biostatistics 602 - Lecture 18

March 21th. 2013

1/ / 35

Recap

Hypothesis Testing ooooooo•ooooooooooooooo nary

Hypothesis Testing

Summar

Type I and Type II error

Type I error

If $\theta \in \Omega_0$ (if the null hypothesis is true), the probability of making a type I error is

$$\Pr(\mathbf{X} \in R | \theta)$$

Type II error

If $\theta \in \Omega_0^c$ (if the alternative hypothesis is true), the probability of making a type II error is

$$\Pr(\mathbf{X} \notin R | \theta) = 1 - \Pr(\mathbf{X} \in R | \theta)$$

Power function

Definition - The power function

The power function of a hypothesis test with rejection region R is the function of θ defined by

$$\beta(\theta) = \Pr(\mathbf{X} \in R | \theta) = \Pr(\text{reject } H_0 | \theta)$$

If $\theta \in \Omega_0^c$ (alternative is true), the probability of rejecting H_0 is called the power of test for this particular value of θ .

- Probability of type I error $= \beta(\theta)$ if $\theta \in \Omega_0$.
- Probability of type II error $= 1 \beta(\theta)$ if $\theta \in \Omega_0^c$.

An ideal test should have power function satisfying $\beta(\theta) = 0$ for all $\theta \in \Omega_0$, $\beta(\theta) = 1$ for all $\theta \in \Omega_0^c$, which is typically not possible in practice.

Example of power function

Problem

 $X_1, X_2, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(\theta) \text{ where } n = 5.$

 $H_0 : \theta < 0.5$

 $H_1 : \theta > 0.5$

Test 1 rejects H_0 if and only if all "success" are observed. i.e.

$$R = \{\mathbf{x} : \mathbf{x} = (1, 1, 1, 1, 1)\}$$
$$= \{\mathbf{x} : \sum_{i=1}^{5} x_i = 5\}$$

- Compute the power function
- 2 What is the maximum probability of making type I error?
- **3** What is the probability of making type II error if $\theta = 2/3$?

Hyun Min Kang

Hyun Min Kang

Another Example

Problem

 $X_1, X_2, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(\theta) \text{ where } n = 5.$

 $H_0 : \theta < 0.5$

 $H_1 : \theta > 0.5$

Test 2 rejects H_0 if and only if 3 or more "success" are observed. i.e.

$$R = \{ \mathbf{x} : \sum_{i=1}^{5} x_i \ge 3 \}$$

- Compute the power function
- 2 What is the maximum probability of making type I error?
- 3 What is the probability of making type II error if $\theta = 2/3$?

Solution for Test 1

Power function

$$\beta(\theta) = \Pr(\text{reject } H_0|\theta) = \Pr(\mathbf{X} \in R|\theta)$$

= $\Pr(\sum X_i = 5|\theta)$

Because $\sum X_i \sim \text{Binomial}(5, \theta), \ \beta(\theta) = \theta^5.$

Maximum type I error

When $\theta \in \Omega_0 = (0, 0.5]$, the power function $\beta(\theta)$ is Type I error. $\max_{\theta \in (0,0.5]} \beta(\theta) = \max_{\theta \in (0,0.5]} \theta^5 = 0.5^5 = 1/32 \approx 0.031$

Type II error when $\theta = 2/3$

$$1 - \beta(\theta)|_{\theta = \frac{2}{3}} = 1 - \theta^5|_{\theta = \frac{2}{3}} = 1 - (2/3)^5 = 211/243 \approx 0.868$$

Solution for Test 2

Power function

$$\beta(\theta) = \Pr(\sum X_i \ge 3|\theta) = {5 \choose 3} \theta^3 (1-\theta)^2 + {5 \choose 4} \theta^4 (1-\theta) + {5 \choose 5} \theta^5$$
$$= \theta^3 (6\theta^2 - 15\theta + 10)$$

Maximum type I error

We need to find the maximum of $\beta(\theta)$ for $\theta \in \Omega_0 = (0, 0.5]$ $\beta'(\theta) = 30\theta^2(\theta - 1)^2 > 0$

 $\beta(\theta)$ is increasing in $\theta \in (0,1)$. Maximum type I error is $\beta(0.5) = 0.5$

Type II error when $\theta = 2/3$

$$1 - \beta(\theta)|_{\theta = \frac{2}{3}} = 1 - \theta^3 (6\theta^2 - 15\theta + 10)|_{\theta = \frac{2}{3}} \approx 0.21$$

Sizes and Levels of Tests

Size α test

A test with power function $\beta(\theta)$ is a size α test if

$$\sup_{\theta \in \Omega_0} \beta(\theta) = \alpha$$

In other words, the maximum probability of making a type I error is α .

Level α test

A test with power function $\beta(\theta)$ is a level α test if

$$\sup_{\theta \in \Omega_0} \beta(\theta) \le \alpha$$

In other words, the maximum probability of making a type I error is equal or less than α .

Any size α test is also a level α test

Hyun Min Kang

Biostatistics 602 - Lecture 18

Hypothesis Testing

March 21th, 2013

Constructing a good test

- **1** Construct all the level α test.
- 2 Within this level of tests, we search for the test with Type II error probability as small as possible; equivalently, we want the test with the largest power if $\theta \in \Omega_0^c$.

Revisiting Previous Examples

Test 1

$$\sup_{\theta \in \Omega_0} \beta(\theta) = \sup_{\theta \in \Omega_0} \theta^5 = 0.5^5 = 0.03125$$

The size is 0.03125, and this is a level 0.05 test, or a level 0.1 test, but not a level 0.01 test.

Test 2

$$\sup_{\theta \in \Omega_0} \beta(\theta) = 0.5$$

The size is 0.5

Hyun Min Kang

Review on standard normal and t distribution

Quantile of standard normal distribution

Let $Z \sim \mathcal{N}(0,1)$ with pdf $f_Z(z)$ and cdf $F_Z(z)$. The α -th quantile z_{α} or $(1-\alpha)$ -th quantile $z_{1-\alpha}$ of the standard distribution satisfy

$$\Pr(Z \ge z_{\alpha}) = \alpha \quad \text{or} \quad z_{\alpha} = F_Z^{-1}(1 - \alpha)$$

$$\Pr(Z \le z_{1-\alpha}) = \alpha \quad \text{or} \quad z_{1-\alpha} = F_Z^{-1}(\alpha)$$

$$z_{1-\alpha} = -z_{\alpha}$$

Quantile of t distribution

Let $T \sim t_{n-1}$ with pdf $f_{T,n-1}(t)$ and cdf $F_{T,n-1}(t)$. The α -th quantile $t_{n-1,\alpha}$ or $(1-\alpha)$ -th quantile $t_{n-1,1-\alpha}$ of the standard distribution satisfy

$$\Pr(T \ge t_{n-1,\alpha}) = \alpha \text{ or } t_{n-1\alpha} = F_{T,n-1}^{-1}(1-\alpha)$$

$$\Pr(T \le t_{n-1,1-\alpha}) = \alpha \text{ or } t_{n-1,1-\alpha} = F_{T,n-1}^{-1}(\alpha)$$

$$t_{n-1,1-\alpha} = -t_{n-1,\alpha}$$

Likelihood Ratio Tests (LRT)

Definition

Let $L(\theta|\mathbf{x})$ be the likelihood function of θ . The likelihood ratio test statistic for testing $H_0: \theta \in \Omega_0$ vs. $H_1: \theta \in \Omega_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Omega_0} L(\theta|\mathbf{x})}{\sup_{\theta \in \Omega} L(\theta|\mathbf{x})} = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}$$

where $\hat{\theta}$ is the MLE of θ over $\theta \in \Omega$, and $\hat{\theta}_0$ is the MLE of θ over $\theta \in \Omega_0$ (restricted MLE).

The likelihood ratio test is a test that rejects H_0 if and only if $\lambda(\mathbf{x}) < c$ where 0 < c < 1.

Properties of LRT

- For example
 - If c=1, null hypothesis will always be rejected.
 - If c=0, null hypothesis will never be rejected.
- Difference choice of $c \in [0,1]$ give different tests.
 - The smaller the c, the smaller type I error.
 - The larger the c, the smaller the type II error.
- Choose c such that type I error probability of LRT is bound above by α .

$$\sup_{\theta \in \Omega_0} \Pr(\lambda(\mathbf{x}) \le c) = \sup_{\theta \in \Omega_0} \beta(\theta)$$
$$= \sup_{\theta \in \Omega_0} \Pr(\text{reject } H_0) = \alpha$$

Then we get a size α test.

Hyun Min Kang

Biostatistics 602 - Lecture 18

March 21th, 2013

Hyun Min Kang

March 21th, 2013

Example of LRT

Problem

Consider $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where σ^2 is known.

 H_0 : $\theta < \theta_0$

 $H_1: \theta > \theta_0$

For the LRT test and its power function

Solution

$$L(\theta|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x_i - \theta)^2}{2\sigma^2}\right]$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \theta)^2}{2\sigma^2}\right]$$

We need to find MLE of θ over $\Omega = (-\infty, \infty)$ and $\Omega_0 = (-\infty, \theta_0]$.

MLE of θ over $\Omega = (-\infty, \infty)$

To maximize $L(\theta|\mathbf{x})$, we need to maximize $\exp\left[-\frac{\sum_{i=1}^{n}(x_i-\theta)^2}{2\sigma^2}\right]$, or equivalently to minimize $\sum_{i=1}^{n} (x_i - \theta)^2$.

$$\sum_{i=1}^{n} (x_i - \theta)^2 = \sum_{i=1}^{n} (x_i^2 + \theta^2 - 2\theta x_i)$$
$$= n\theta^2 - 2\theta \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} x_i^2$$

The equation above minimizes when $\theta = \hat{\theta} = \frac{\sum_{i=1}^{n} x_i}{x} = \overline{x}$.

MLE of θ over $\Omega_0 = (-\infty, \theta_0]$

- $L(\theta|\mathbf{x})$ is maximized at $\theta = \frac{\sum_{i=1}^n x_i}{n} = \overline{x}$ if $\overline{x} \leq \theta_0$.
- However, if $\overline{x} \geq \theta_0$, \overline{x} does not fall into a valid range of $\hat{\theta}_0$, and $\theta \leq \theta_0$, the likelihood function will be an increasing function. Therefore $\hat{\theta}_0 = \theta_0$.

To summarize.

$$\hat{\theta}_0 = \begin{cases} \overline{X} & \text{if } \overline{X} \le \theta_0 \\ \theta_0 & \text{if } \overline{X} > \theta_0 \end{cases}$$

Hyun Min Kang Biostatistics 602 - Lecture 18 March 21th, 2013 29 / 3

Hypothesis Testing Summary

Specifying c

$$\exp\left[-\frac{n(\overline{x}-\theta_0)^2}{2\sigma^2}\right] \leq c$$

$$\iff -\frac{n(\overline{x}-\theta_0)^2}{2\sigma^2} \leq \log c$$

$$\iff (\overline{x}-\theta_0)^2 \geq -\frac{2\sigma^2 \log c}{n}$$

$$\iff \overline{x}-\theta_0 \geq \sqrt{-\frac{2\sigma^2 \log c}{n}} \quad (\because \overline{x} > \theta_0)$$

Likelihood ratio test

$$\lambda(\mathbf{x}) = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})} = \begin{cases} 1 & \text{if } \overline{X} \leq \theta_0 \\ \frac{\exp\left[-\frac{\sum_{i=1}^n (x_i - \theta_0)^2}{2\sigma^2}\right]}{\exp\left[-\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{2\sigma^2}\right]} & \text{if } \overline{X} > \theta_0 \end{cases}$$
$$= \begin{cases} 1 & \text{if } \overline{X} \leq \theta_0 \\ \exp\left[-\frac{n(\overline{x} - \theta_0)^2}{2\sigma^2}\right] & \text{if } \overline{X} > \theta_0 \end{cases}$$

Therefore, the likelihood test rejects the null hypothesis if and only if

$$\exp\left[-\frac{n(\overline{x}-\theta_0)^2}{2\sigma^2}\right] \le c$$

and $\overline{x} \geq \theta_0$.

Hyun Min Kang

Biostatistics 602 - Lecture 18

March 21th, 2013

)

Summary O

Specifying c (cont'd)

So, LRT rejects H_0 if and only if

$$\overline{x} - \theta_0 \ge \sqrt{-\frac{2\sigma^2 \log c}{n}}$$
 $\iff \frac{\overline{x} - \theta_0}{\sigma/\sqrt{n}} \ge \frac{\sqrt{-\frac{2\sigma^2 \log c}{n}}}{\sigma/\sqrt{n}} = c^*$

Therefore, the rejection region is

$$\left\{\mathbf{x}: \frac{\overline{x} - \theta_0}{\sigma/\sqrt{n}} \ge c^*\right\}$$

Hyun Min Kang Biostatist

Biostatistics 602 - Lecture 18

March 21th, 2013

31 / 35

Hyun Min Kang

Biostatistics 602 - Lecture 18

March 21th, 2013

Power function

$$\beta(\theta) = \Pr\left(\text{reject } H_0\right) = \Pr\left(\frac{\overline{X} - \theta_0}{\sigma/\sqrt{n}} \ge c^*\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta + \theta - \theta_0}{\sigma/\sqrt{n}} \ge c^*\right)$$

$$= \Pr\left(\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} \ge \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + c^*\right)$$

Since $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2)$, $\overline{X} \sim \mathcal{N}\left(\theta, \frac{\sigma^2}{n}\right)$. Therefore,

$$\frac{\overline{X} - \theta}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

$$\Longrightarrow \beta(\theta) = \Pr\left(Z \ge \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + c^*\right)$$

where $Z \sim \mathcal{N}(0, 1)$.

Hyun Min Kang

Biostatistics 602 - Lecture 18

March 21th, 2013

33 / 35 Summary

Hyun Min Kang

Biostatistics 602 - Lecture 18

34 / 35

Summary

Today

- Hypothesis Testing
- Likelihood Ratio Test

Next Lecture

More Hypothesis Testing

Making size α LRT

To make a size α test.

$$\sup_{\theta \in \Omega_0} \beta(\theta) = \alpha$$

$$\sup_{\theta \le \theta_0} \Pr\left(Z \ge \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + c^*\right) = \alpha$$

$$\Pr\left(Z \ge c^*\right) = \alpha$$

$$c^* = z_0$$

Note that $\Pr\left(Z \geq \frac{\theta_0 - \theta}{\sigma/\sqrt{n}} + c^*\right)$ is maximized when θ is maximum (i.e.

Therefore, size α LRT test rejects H_0 if and only if $\frac{\overline{x}-\theta_0}{\sigma/\sqrt{n}} \geq z_{\alpha}$.